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B.P. 47870, 21078 – Dijon Cédex, France

Abstract

We establish subdifferential calculus rules for the sum of convex functions defined on
normed spaces. This is achieved by means of a condition relying on the continuity behaviour
of the inf-convolution of their corresponding conjugates, with respect to any given topology
intermediate between the norm and the weak* topologies on the dual space. Such a condition
turns out to be also necessary in Banach spaces. These results extend both the classical
formulas by Hiriart Urruty-Phelps [17] and by Thibault [27].
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1 Introduction

Given two lower semicontinuous (lsc) convex proper functions f, g : X → R ∪ {+∞}, defined
on a normed space X, we consider two families fk, gk : X → R ∪ {+∞} of (lsc convex proper)
functions approximating them respectively, in a sense which will be made precise later on. Under
a condition relying on the continuity behaviour of the inf-convolution of their corresponding
Fenchel conjugates, it will be established that the approximate subdifferential of f + g can
be written as the τ -limit of the sum of the approximate subdifferentials of fk and gk at the
reference point, where τ is any given topology intermediate between the weak* and the norm
topology on the dual space. This extends the classical Hiriart Urruty-Phelps formula [17] (see,
also, [16]). Moreover, when X is Banach, it is shown that the subdifferential of the sum is
written as the τ -limit of the sum of the subdifferentials of fk and gk at nearby points. The
same characterization holds for the approximate subdifferential. This generalizes some results
by Thibault [27], established in reflexive spaces (see, also, Jourani [20]), and others by Attouch-
Baillon-Théra [2] in Hilbert spaces. The condition just mentioned is naturally verified under
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any one of the well-known qualification conditions like those of Moreau-Rockafellar, Robinson,
Attouch-Brézis and so on [29], which guarantee exact calculus rules. However, our condition is
automatically satisfied in reflexive spaces, and also in other frameworks. For instance, it holds
for the inf-convolution of the biconjugates at all points of the primal space. This leads to the
characterization of the subgradients, of the biconjugates sum, living in the dual space.

The problem dealing with the subdifferential of the sum of convex functions can also be
handled from the point of view of the variational convergence theory [1], [8]. This approach
guarantees that the sum fk + gk slice (Mosco in the reflexive setting) converges whenever both
fk and gk converge in the same sense. These results also require conditions on the continuity of
the inf-convolution of the conjugates together with some constraint qualifications in the spirit
of Moreau-Rockafellar condition (see, e.g., [5], [22], [13], [21], [25], [30]). Consequently, using
results on quantitative stability of the subdifferentials (see, e.g., [1], [8], [28]), it can be deduced
that the subdifferential of fk + gk (but not necessarily the sum of subdifferentials) converges in
the sense of Painlevé-Kuratowski to the subdifferential of f + g. It is important to observe that
the approach in this paper leads to characterizations of the approximate subdifferential of f + g
by means of those of each approximating function. This goes into the spirit of subdifferential
calculus where one is interested in decoupling the subdifferential of the involved approximating
functions fk, gk.

This paper is organized as follows. Section 2 is reserved to fix the main notation and present
some preliminary results which shed light on the orientation of this work. Despite their simple
appearance, Theorems B and C should be considered a starting point for other subdifferential
formulas studied in the following sections.

In Section 3, the main result is given in Theorem 1, which provides two different character-
izations of the approximate subdifferential mapping ∂ε(f + g), valid in normed spaces under a
continuity assumption on f∗�g∗ (the inf-convolution of the Fenchel conjugates). In Theorem 3
this condition is shown to be necessary when X is Banach.

In Section 4, it is shown that the inf-convolution of the biconjugates always verifies, for all
points in X, the required continuity assumption of Theorem 1. Consequently, Theorem 7 gives
formulas for characterizing the mapping X∗∩∂ε(f∗∗+g∗∗) using approximate subdifferentials of
the approximating sequences fk and gk, without appealing to the continuity condition mentioned
above.

Finally, in section 5 we give the limiting formulas characterizing the approximate subdiffer-
ential of the sum f + g in line with [27], where the approximate subdifferentials of the involved
functions are evaluated at nearby points. For the sake of simplicity, we don’t consider approxi-
mating sequences fk and gk in this section. The main tool toward this objective is an approximate
version of the Ekeland’s variational principle given in Lemma 13.

2 Preliminary results and notation

To motivate this work, we begin by considering the natural and useful role of the Moreau-Yosida
envelopes within the theory of subdifferential calculus of convex functions. This will allow simple
and nice proofs of well-known formulas in line with [17] (see, also, [15]).

Let f : X → R ∪ {+∞} be a proper lsc convex function defined on a real normed space
(X, ‖·‖), where proper means that dom f := {x ∈ X | f(x) < ∞} is nonempty. For λ > 0, we
denote by fλ the function

fλ(x) := inf
y∈X

{
f(y) +

‖y − x‖2

2λ

}
,
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usually known as the Moreau-Yosida envelope of f [23].
The first result expresses the approximate subdifferential of f at a given point x ∈ dom f :=

{x ∈ X | f(x) <∞}, defined for ε ≥ 0 by

∂εf(x) := {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f(y)− f(x) + ε ∀y ∈ X},

where X∗ denotes the topological dual of X and 〈·, ·〉 the duality product on X∗×X. When ε = 0,
we recover the (Fenchel) subdifferential ∂f(x). Recall that ∂εf(x) = {x∗ ∈ X∗ | f(x) + f∗(x∗) ≤
〈x∗, x〉+ ε}, where f∗ : X∗ → R ∪ {+∞} is the Fenchel conjugate of f given by

f∗(x∗) := sup
y∈X
{〈x∗, y〉 − f(y)}.

Theorem A: For f : X → R ∪ {+∞} proper, convex, and lsc, we have that

∂εf(x) =
⋂
δ>ε

⋃
η>0

⋂
λ∈(0,η)

∂δfλ(x) ∀x ∈ X, ∀ε ≥ 0. (1)

Proof. Taking x∗ ∈ ∂εf(x), we get

f∗λ(x∗) = f∗(x∗) + λ ‖x∗‖2 ≤ 〈x∗, x〉 − f(x) + λ ‖x∗‖2 + ε ∀λ > 0.

Then, for all δ > 0 and λ ∈ (0, δ
‖x∗‖2 ) we have f∗λ(x∗) ≤ 〈x∗, x〉− f(x) + δ+ ε ≤ 〈x∗, x〉− fλ(x) +

δ + ε and so x∗ ∈ ∂ε+δfλ(x). Then, x∗ ∈
⋂
λ∈(0,η) ∂ε+δfλ(x) for all δ > 0 and η sufficiently

small, showing that x∗ ∈
⋃
η>0

⋂
λ∈(0,η) ∂ε+δfλ(x) for all δ > 0. Because the converse inclusion is

straightforward we obtain the desired formula.
Formula (1) provides a pure algebraic representation of the approximate subdifferential of the

function f. Similar results hold for nonconvex functions in Asplund spaces [19], in terms of upper
limits involving the sequential weak* topology. An interesting question is how to adapt formula
(1) in order to express the approximate subdifferential of the sum of two convex functions in
terms of approximate subdifferentials of their Moreau-Yosida envelopes. For this purpose, one
needs to include a topological operation as we do in the following theorem.

Recall that h
τ
and clτ (A) denote the τ -closures of a function h : X∗ → R ∪ {+∞} and a set

A ⊂ X∗, respectively. When τ is the norm topology, we simply write h and cl(A). Moreover, if
coh denotes the convex envelope of h, then coτh = coh

τ
. We shall use w∗ to denote the weak*

topology on X∗ (also denoted by σ(X∗, X)).
Theorem B: For f, ġ : X → R ∪ {+∞} convex and lsc functions such that dom f ∩ dom g 6= ∅,
we have that

(f + g)
∗

= inf
λ>0

(fλ + gλ)∗
w∗

(2)

and, consequently,

∂ε(f + g)(x) =
⋂
δ>ε

clw
∗

⋃
η>0

⋂
λ∈(0,η)

⋃
δ1,δ2≥0
δ1+δ2=δ

∂δ1fλ(x) + ∂δ2gλ(x)

 ∀x ∈ X, ∀ε ≥ 0. (3)

Proof. Let us prove (2). We denote h(λ) := fλ + gλ. Since f + g = supλ>0 h(λ), we have

(f + g)∗ ≤ infλ>0 h(λ)
∗ and then (f + g)∗ ≤ cow

∗
(infλ>0 h(λ)

∗) = clw
∗
(infλ>0 h(λ)

∗); the last
equality follows from the fact that (h(λ)

∗)λ is nonincreasing (as λ ↘ 0) so that infλ>0 h(λ)
∗
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is a convex function. To obtain the converse inequality, we observe that clw
∗
(infλ>0 h(λ)

∗) ≤
infλ>0 h(λ)

∗. Then, considering X∗ with its weak* topology, we get [clw
∗
(infλ>0 h(λ)

∗)]∗ ≥
[infλ>0 h

∗
λ]∗ = supλ>0 h(λ)

∗∗ = supλ>0 h(λ) = f + g which implies that clw
∗
(infλ>0 h(λ)

∗) =

[clw
∗
(infλ>0 h(λ)

∗)]∗∗ ≤ (f + g)∗; for the last equality recall that the function clw
∗
(infλ>0 h(λ)

∗)
never takes the value −∞ because (f + g)∗ is proper and infλ>0 h(λ)

∗ ≥ (f + g)∗ as was shown
above. The proof of (2) is complete.

To prove (3) we take x∗ ∈ ∂ε(f + g)(x) so that for each δ > ε we have that

(f + g)∗(x∗) < −(f + g)(x) + 〈x∗, x〉+ δ.

Since from (2) there exists a net (x∗γ)γ w*-convergent to x∗ such that (f+g)∗(x∗) = limγ infλ>0(fλ+
gλ)∗(x∗γ), for some γ0 we get

inf
λ>0

(fλ + gλ)∗(x∗γ) < −(f + g)(x) + 〈x∗, x〉+ δ ∀γ ≥ γ0.

So, invoking the fact that (fλ + gλ)∗ is nonincreasing in λ for λ↘ 0, there exists ηγ such that

(fλ + gλ)∗(x∗γ) < −(f + g)(x) + 〈x∗, x〉+ δ ∀λ ∈ (0, ηγ), γ ≥ γ0;

that is, x∗γ ∈
⋃
η>0

⋂
λ∈(0,η) ∂δ(fλ + gλ)(x). Hence, x∗ ∈ clw

∗

( ⋃
η>0

⋂
λ∈(0,η) ∂δ(fλ + gλ)(x)

)
for all

δ > ε. This finishes the proof since the continuity of the Moreau-Yoshida approximation implies
that ∂δ(fλ + gλ) =

⋃
δ1,δ2≥0
δ1+δ2=δ

∂δ1fλ(x) + ∂δ2fλ(x), and, on the other hand, the inclusion “⊃” in (2)

is straightforward.
The following theorem is a direct consequence of Theorem B.

Theorem C: Let Y be another normed space, h a lsc convex function defined on Y, and A :
X → Y a linear continuous mapping, whose adjoint is denoted A∗, satisfying domh ∩ AX 6= ∅.
Then, we have that

(h ◦A)
∗

= clw
∗
( inf
λ>0

(hλ ◦A)∗), (4)

and, consequently,

∂ε(h ◦A)(x) =
⋂
δ>ε

clw
∗

⋃
η>0

⋂
λ∈(0,η)

A∗∂δhλ(Ax)

 ∀x ∈ X, ∀ε ≥ 0. (5)

Proof. It suffices to apply Theorem B with f, g : X × Y → R ∪ {+∞} being defined by

f(x, y) := h(y) and g(x, y) := IGrA (the indicator function of the graph of A).

Theorems B and C encompass many well-known results of subdifferential calculus.
At this step, our objective in the following sections is to extend the formulas in Theorems

B and C above, by considering general approximating sequences fk, gk, and working with any
topology τ in X∗, which is intermediate between the weak* and the norm topology.
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3 Subdifferential calculus rules

In this section, we first give calculus rules for the subdifferential of the sum of convex functions
defined on a normed space X, not necessarily reflexive, which extend the Hiriart Urruty-Phelps
formula. We recall that τ is a topology defined onX∗ which is intermediate between the weak*and
norm topologies.

Given a sequence (Ak)k∈N of subsets in X∗, we define the τ -closed sets

τ - lim inf
k→∞

Ak :=
⋂

V ∈Nτ (θ)

⋃
n≥0

⋂
k≥n

(Ak + V ) , τ - lim sup
k→∞

Ak :=
⋂

V ∈Nτ (θ)

⋂
n≥0

⋃
k≥n

(Ak + V ) ,

where Nτ (θ) is the family of neighborhoods of the origin θ. Observe that the following inclusions
always hold,

{τ - lim
k
xk | xk ∈ Ak} ⊂ τ - lim inf

k→∞
Ak, clτ

⋃
n≥0

⋂
k≥n

Ak

 ⊂ τ - lim inf
k→∞

Ak

with equality in the first inclusion if the topology τ is metrizable (note that both inclusions may
be strict). Following the notation in [4], we write

σ- lim inf
k→∞

Ak := {w∗- lim
k
xk | xk ∈ Ak}.

When τ is the norm topology, we omit the reference to it and simply write lim infk→∞Ak,
lim supk→∞Ak, and so on.

We also use the inf-convolution of two functions f, g : X → R ∪ {+∞} defined by

f�g(x) := inf
y∈X
{f(y) + g(x− y)}.

Theorem 1 Let f, g : X → R ∪ {+∞} be two lsc convex functions, with dom f ∩ dom g 6= ∅,
and let (fk), (gk) be two sequences of lsc convex functions pointwise converging to f and g,
respectively. We assume that for all x∗ ∈ X∗ there exist two sequences (u∗k), (v∗k), τ -convergent
to x∗ such that

lim sup
k

f∗k (u∗k) ≤ f∗(x∗), lim sup
k

g∗k(v∗k) ≤ g∗(x∗). (6)

If f and g verify the condition

f∗�g∗
w∗

= f∗�g∗
τ
, (7)

then we have

∂ε(f + g)(x) =
⋂
δ>ε

τ - lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x) ∀x ∈ X, ∀ε ≥ 0. (8)

In addition, if the sequences (fk), (gk), are nondecreasing, the last formula is also written as

∂ε(f + g)(x) =
⋂
δ>ε

clτ

⋃
n≥0

⋂
k≥n

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 . (9)
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Proof. We begin by showing that (8) holds. Pick x∗ ∈ ∂ε(f + g)(x) for given x ∈ X and ε ≥ 0.
If δ > ε is fixed we write

(f + g)(x) + (f + g)∗(x∗) ≤ 〈x∗, x〉+ ε < 〈x∗, x〉+
δ + ε

2
.

Since f + g is proper, it holds (f + g)∗ = f∗�g∗
w∗

[23] and so, invoking (7),

(f + g)(x) + f∗�g∗
τ
(x∗) ≤ 〈x∗, x〉+ ε < 〈x∗, x〉+

δ + ε

2
.

Let (x∗i ) ⊂ X∗ be a τ -convergent net to x∗ such that for all i,

f∗�g∗(x∗i ) ≤ f∗�g∗
τ
(x∗) +

δ − ε
4

, |〈x∗i − x∗, x〉| ≤
δ − ε

4
.

Hence, we obtain (f + g)(x) + f∗�g∗(x∗i ) < 〈x∗i , x〉 + δ, and so there are u∗i , v
∗
i ∈ X∗ such that

u∗i + v∗i = x∗i and
(f + g)(x) + f∗(u∗i ) + g∗(v∗i ) < 〈u∗i + v∗i , x〉+ δ. (10)

Now, using the convergence assumption on the conjugates, for each i we find sequences u∗i,k
τ→k u

∗
i

and v∗i,k
τ→k v

∗
i such that, for all k sufficiently large,

(fk + gk)(x) + f∗k (u∗i,k) + g∗k(v∗i,k) <
〈
u∗i,k + v∗i,k, x

〉
+ δ. (11)

Whence, taking δ1,k := fk(x)+f∗k (u∗i,k)−
〈
u∗i,k, x

〉
and δ2,k := δ−δ1,k, we check that δ1,k, δ2,k ≥ 0

together with u∗i,k ∈ ∂δ1,kfk(x) and v∗i,k ∈ ∂δ2,kgk(x). Consequently, for k sufficiently large we
obtain

u∗i,k + v∗i,k ∈ ∂δ1,kfk(x) + ∂δ2,kgk(x) ⊂
⋃

δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x),

which implies that x∗i ∈ τ -lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x). Thus, to get the direct inclusion it

suffices to take the limit on i and next make the intersection on δ > ε. This completes the proof
of (8) in view of the straightforwardness of the opposite inclusion.

To establish the last statement (9), we suppose that fk ↗ f and gk ↗ g. If x∗ ∈ ∂ε(f + g)(x)
is given for fixed ε ≥ 0 and x ∈ X, we take δ > ε and argue as above to conclude that (10)
holds for all i. Then, by the current assumptions (the convergence property of the conjugates

and monotonicity of the functions) we find sequences u∗i,k
τ→k u

∗
i and v∗i,k

τ→k v
∗
i such that for

sufficiently large k we have that

(fk′ + gk′)(x) + f∗k′(u
∗
i,k) + g∗k′(v

∗
i,k) <

〈
u∗i,k + v∗i,k, x

〉
+ δ ∀k′ ≥ k.

In other words, u∗i,k +v∗i,k ∈
⋃
k≥0

⋂
k′≥k

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk′(x)+∂δ2gk′(x) and, so, the desired inclusion is

obtained by taking the limits on k and i, consecutively. This finishes the proof since the opposite
inclusion always holds.

Formula (9) is of algebraic type; in fact, the limit that appears in (8) is replaced in (9)
by intersections and unions of the involved sequence of sets. In addition, we observe that the
equality in (9) is not a consequence of (8), only one inclusion (⊃) is direct from (8). On the
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other hand, as the following inclusion is straightforward, for every x ∈ X and ε ≥ 0,⋂
δ>ε

τ - lim sup
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x) ⊂ ∂ε(f + g)(x),

relation (8) in Theorem 1 also ensures that

∂ε(f + g)(x) =
⋂
δ>ε

τ - lim sup
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x).

Moreover, by reading carefully the proof of Theorem 1, the last formula is still valid if, instead
of (6), we suppose in Theorem 1 above that for each x∗ ∈ X∗ the sequences (u∗k), (v∗k), satisfy
the weaker condition

lim inf
k

f∗k (u∗k) ≤ f∗(x∗), lim inf
k

g∗k(v∗k) ≤ g∗(x∗). (12)

Let us also observe, as it comes out of the same proof of Theorem 1, that (6) (together with (7))
gives rise to the following more explicit characterization of the subdifferential of the sum,

∂ε(f + g)(x) =
⋂
δ>ε

clτ

τ - lim
k→∞

x∗k, x
∗
k ∈

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 . (13)

For instance, if τ is the weak* topology on X∗, then the last formula reads

∂ε(f + g)(x) =
⋂
δ>ε

clw
∗

σ- lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 ,

while for τ being the norm topology one gets

∂ε(f + g)(x) =
⋂
δ>ε

 lim
k→∞

x∗k, x
∗
k ∈

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 .

Now we are going to specify Theorem 1 for some useful topologies. Let us denote by w∗b the
topology on X∗ defined by declaring that a net (x∗i ) converges to x∗ for w∗b iff (x∗i ) is bounded
and w*-convergent to x∗; this topology may be strictly stronger than the usual bounded weak*
topology (see, e.g., [18]). Then, as a consequence of Banach-Dieudonné Theorem [14, Theorem
3.92], for any convex functions f, g : X → R ∪ {+∞} with dom f ∩ dom g 6= ∅ we have that

f∗�g∗
w∗

(x∗) = f∗�g∗
w∗b (x∗) ∀x∗ ∈ X∗;

that is, (7) always holds for τ = w∗b . In particular, whenever the closed unit ball in X∗ is w*-
sequentially compact (which is the case, for instance, when X is separable, weakly compactly
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generated, or Asplund, ) we get

f∗�g∗
w∗

(x∗) = f∗�g∗
σ
(x∗) ∀x∗ ∈ X∗,

where σ refers to the sequential weak* topology in X∗, so that

f∗�g∗
σ
(x∗) = inf

x∗n⇀
w∗x∗

lim inf
n

f∗�g∗(x∗n).

Hence, the following corollary is an immediate consequence of Theorem 1.

Corollary 2 Let f, g, (fk), and (gk) be as in Theorem 1. Then,

∂ε(f + g)(x) =
⋂
δ>ε

w∗b - lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x) ∀x ∈ X, ∀ε ≥ 0.

Moreover, if the closed unit ball in X∗ is w∗-sequentially compact, then the above formula reduces
to

∂ε(f + g)(x) =
⋂
δ>ε

σ- lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x).

Remark 1 Theorem 1 can be stated in an equivalent form without appealing explicitly to (7).

Indeed, for D := {x∗ ∈ X∗ | f∗�g∗w
∗

(x∗) = f∗�g∗
τ
(x∗)} we have (assuming that (fk), (gk) are

nondecreasing)

D ∩ ∂ε(f + g)(x) = D ∩
⋂
δ>ε

clτ

⋃
n≥0

⋂
k≥n

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 ∀x ∈ X, ∀ε ≥ 0.

Remark 2 The convergence assumptions used in Theorem 1 imply that (fk) and (gk) slice
converge to f and g, respectively; that is, for each (x, x∗) ∈ X × X∗, there is a sequence
(xk, x

∗
k) ⊂ X ×X∗ which converges to (x, x∗) such that limk fk(xk) = f(x) and limk f

∗
k (x∗k) =

f∗(x∗), and the same for (gk). We refer to [8] for more details on this topic. Moreover, the
pointwise convergence assumption ensures also the slice convergence of the sum (fk + gk) to
f + g (see, e.g., [6, Corollary 2.8]). Hence, by Attouch-Beer Theorem [3, 9] together with
its normed version [28, Theorem 3.4] (see, also [12] or [30]) one concludes that (∂ε(fk + gk))k
graphically converges in the sense of Painlevé-Kuratowski to ∂ε(f + g) for all ε ≥ 0. In this
line, the approximate subdifferential set ∂ε(f + g)(x), for x ∈ X and ε ≥ 0, is characterized by
means of the mappings ∂ε(fk + gk) evaluated at nearby points of x. However, the formulas in
Theorem 1 goes into the spirit of subdifferential calculus where one is interested in decoupling the
subdifferential of the involved approximating functions fk, gk, and considering only the reference
point x rather than nearby ones.

Condition (7) of Theorem 1 is satisfied for any topology τ (being intermediate between the
weak* and the norm topologies) whenever there exists a point in dom f∩dom g where one of these
functions is continuous (Moreau-Rockafellar’s qualification condition). Indeed, in this case, the

function f∗�g∗ is w∗-lsc so that f∗�g∗
w∗ ≤ f∗�g∗τ ≤ f∗�g∗ = f∗�g∗

w∗

. It is worth observing
that condition (7) may hold without requiring such a condition; consider the case f = g, or when
the underlying space is reflexive. The following example shows the existence of functions defined
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on a nonreflexive Banach space which satisfy condition (7) and, consequently, formula (8). These
functions are often used in convex analysis [27] (see the proof of Theorem C in Section 2).

Example 1 Let X be a reflexive Banach space, Y a non-reflexive normed space, A : X → Y
a continuous linear operator with adjoint mapping A∗, and h : Y → R ∪ {+∞} a lsc convex
function such that A−1(domh) 6= ∅. We endow the product space X ×Y with the box norm and
define the functions f, g : X × Y → R ∪ {+∞} by

f(x, y) := h(y), g(x, y) := IGrA(x, y).

Then, although the normed space X ×Y is not reflexive, the functions f, g satisfy condition (7);

that is, f∗�g∗
w∗

= f∗�g∗
τ
, for any locally convex topology τ between the weak* and the norm

topology. In other words, the formula in (8) holds for any such a τ . Moreover, if the unit ball of

the dual of X is w*-sequentially compact, then f∗�g∗
w∗

= f∗�g∗
σ

and, so, the formula in (8)
holds with σ.

Proof. It is not difficult to check that f∗�g∗(x∗, y∗) = (A∗h∗)(x∗ +A∗y∗), where A∗h∗ : X∗ →
R ∪ {+∞} is the mapping defined as

A∗h∗(u∗) := inf{h∗(z∗) | A∗z∗ = u∗}. (14)

Observe that the reflexivity assumption entails A∗h∗
w∗

= A∗h∗. Then, for (x∗, y∗) ∈ X∗ × Y ∗
there exists a net (x∗i , y

∗
i )i w*-convergent to (x∗, y∗) such that

f∗�g∗
w∗

(x∗, y∗) = lim
i
f∗�g∗(x∗i , y

∗
i ) = lim

i
A∗h∗(x∗i +A∗y∗i ) ≥ A∗h∗(x∗ +A∗y∗).

On the other hand, if A∗h∗(x∗+A∗y∗) = limj A
∗h∗(u∗j ) for some sequence u∗j → x∗+A∗y∗, then

u∗j −A∗y∗ → x∗ and we get

A∗h∗(x∗ +A∗y∗) = lim
j
A∗h∗(u∗j −A∗y∗ +A∗y∗) = lim

j
f∗�g∗(u∗j −A∗y∗, y∗) ≥ f∗�g∗(x∗, y∗).

Whence, f∗�g∗
w∗

(x∗, y∗) ≥ f∗�g∗(x∗, y∗) and, so, the desired equality follows.

The next theorem gives the converse of Theorem 1.

Theorem 3 Let f, g : X → R ∪ {+∞} be two lsc convex functions, with dom f ∩ dom g 6= ∅,
and let (fk), (gk) be two nondecreasing sequences of lsc convex functions pointwise converging
to f and g, respectively. We assume that for all x∗ ∈ X∗ there exist two sequences (u∗k), (v∗k),
τ -convergent to x∗ such that

lim sup
k

f∗k (u∗k) ≤ f∗(x∗), lim sup
k

g∗k(v∗k) ≤ g∗(x∗).

Then, (7)⇐⇒ (8)⇐⇒ (9)⇐⇒ (15), where

∂ε(f + g)(x) =
⋂
δ>ε

clτ

⋃
n≥0

⋂
k≥n

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 ∀x ∈ X, ∀ε > 0. (15)
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If, in addition, X is a Banach space, then (7) ⇐⇒ (8) ⇐⇒ (9) ⇐⇒ (15) ⇐⇒ (16) ⇐⇒ (17),
where

∂(f + g)(x) =
⋂
δ>0

τ - lim inf
k→∞

∂δfk(x) + ∂δgk(x) ∀x ∈ X; (16)

∂(f + g)(x) =
⋂
δ>0

clτ

⋃
n≥0

⋂
k≥n

∂δfk(x) + ∂δgk(x)

 ∀x ∈ X. (17)

Proof. According to Theorem 1, the following implications hold true,

(7) =⇒ (9) =⇒ (8) and (9) =⇒ (15).

Thus, it remains to prove that (15) =⇒ (7) because the proof of the implication (8) =⇒ (7)

is similar. Since f∗�g∗
w∗ ≤ f∗�g∗

τ
and (f + g)∗ = f∗�g∗

w∗

, we only need to prove that
f∗�g∗

τ
(x∗) ≤ (f + g)∗(x∗) for any given x∗ ∈ dom(f + g)∗. Fix ε > 0. Since X ∩ ∂ε(f + g)∗(x∗)

is always nonempty, we pick x ∈ X ∩ ∂ε(f + g)∗(x∗) so that x∗ ∈ X∗ ∩ ∂ε(f + g)∗∗(x) =
∂ε(f + g)(x). Given δ > ε, by applying the current assumption (15) we find a net (x∗γ) ⊂⋃
n≥0

⋂
k≥n

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x) which τ -converges to x∗. Fix then γ and let nγ ∈ N and the

vectors u∗γ,k ∈ ∂δfk(x) and v∗γ,k ∈ ∂δgk(x), k > nγ , be such that x∗γ = u∗γ,k+v∗γ,k. Hence, invoking
the monotonicity assumption, for all k > nγ we get

(fk + gk)(x) + f∗�g∗(x∗γ) ≤ fk(x) + gk(x) + f∗(u∗γ,k) + g∗(v∗γ,k)

≤ fk(x) + gk(x) + f∗k (u∗γ,k) + g∗k(v∗γ,k) ≤
〈
x∗γ , x

〉
+ 2δ.

Therefore, taking the limits as k → ∞, δ → ε and ε → 0, consecutively, we get the desired
inequality.

Now we suppose that X is a Banach space. Because (9) =⇒ (17) =⇒ (16) we only have to
prove that (16) =⇒ (7). Indeed, it suffices as above to establish the inequality f∗�g∗

τ
(x∗) ≤

(f+g)∗(x∗) for any given x∗ ∈ dom(f+g)∗. Indeed, according to [29, Theorem 3.1.4], there exists
(x∗n, x

∗∗
n )n ⊂ ∂(f + g)∗ such that (x∗n)n (norm-)converges to x∗ and (f + g)∗(x∗n)→ (f + g)∗(x∗).

Moreover, by Rockafellar’s Theorem [26, Proposition 1] for each n there exist bounded nets (xγ) ⊂
X w*-converging to x∗∗n and (x∗γ) ⊂ X∗ (norm-)converging to x∗n such that x∗γ ∈ ∂(f + g)(xγ)
for all γ. Let us fix γ and δ > 0, and choose a τ -neighborhood U of the origin such that, for all
u ∈ U,

f∗�g∗
τ
(x∗γ + u) ≥ f∗�g∗τ (x∗γ)− δ and 〈u, xγ〉 ≤ δ. (18)

Applying the current assumption (16), there exist sequences u∗γ,k ∈ ∂δfk(xγ) and v∗γ,k ∈ ∂δgk(xγ)
such that u∗γ,k + v∗γ,k ∈ x∗γ +U for each sufficiently large k. Hence, with the argument above, we
get

(fk + gk)(xγ) + f∗�g∗(u∗γ,k + v∗γ,k) ≤
〈
u∗γ,k + v∗γ,k, xγ

〉
+ 2δ.

Then, by the choice of U in (18) we get (fk+gk)(xγ)+f∗�g∗
τ
(x∗γ) ≤

〈
x∗γ , xγ

〉
+4δ, which implies

that f∗�g∗
τ
(x∗γ) ≤

〈
x∗γ , xγ

〉
− (f +g)(xγ) as k and δ go to∞ and 0, consecutively. Finally, since

(x∗γ) (norm-)converges to x∗n and (xγ) is bounded, by taking the limit on γ we get

f∗�g∗
τ
(x∗n) ≤ 〈x∗n, x∗∗n 〉 − (f + g)∗∗(x∗∗n ) ≤ (f + g)∗∗∗(x∗n) = (f + g)∗(x∗n).

Therefore, the required inequality follows when n→∞ (recall that (f+g)∗(x∗n)→ (f+g)∗(x∗)).
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Using the same arguments of the proof above, under the weaker assumption (12) instead of
(6), condition (7) is also equivalent to the following characterization

∂ε(f + g)(x) =
⋂
δ>ε

τ - lim sup
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x).

In particular, when (fk) and (gk) are the constant sequences (f) and (g), respectively, we obtain
the following generalization of Hiriart Urruty-Phelps Theorem [17].

Corollary 4 Let f, g : X → R ∪ {+∞} be two lsc convex functions with dom f ∩ dom g 6= ∅.
Then, condition (7) is equivalent to

∂ε(f + g)(x) =
⋂
δ>ε

clτ

 ⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1f(x) + ∂δ2g(x)

 ∀x ∈ X, ε ≥ 0. (19)

If, in addition, X is a Banach space, then each one of the relationships (7) and (19) is equivalent
to

∂(f + g)(x) =
⋂
δ>0

clτ (∂δf(x) + ∂δg(x)) ∀x ∈ X.

In the following result we apply the previous theorems to the Moreau-Yoshida envelope, which
is a reference example for the approximating sequences (fk) and (gk) used before. This result
has already been established in the reflexive case in [20] (see, also, [2] for the Hilbert setting).
Its proof is straightforward from the previous Theorem 3, taking into account that for λk ↘ 0
we have

τ - lim inf
λ→0+

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fλ(x) + ∂δ2gλ(x) = τ - lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fλk(x) + ∂δ2gλk(x) ∀x ∈ X, δ > 0,

where τ -lim inf
λ→0+

Bλ :=
⋂

V ∈Nτ (θ)

⋃
η>0

⋂
λ∈(0,η)

(Bλ + V ) for any family (Bλ)λ>0 of subsets in X∗.

Corollary 5 Let f, g : X → R ∪ {+∞} be two lsc convex functions with dom f ∩ dom g 6= ∅.
Then, the following assertions are equivalent :

(i) f∗�g∗
w∗

= f∗�g∗
τ
;

(ii) for every x ∈ X and ε ≥ 0 we have that

∂ε(f + g)(x) =
⋂
δ>ε

clτ

⋃
η>0

⋂
λ∈(0,η)

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fλ(x) + ∂δ2gλ(x)

 ;

(iii) for every x ∈ X and ε ≥ 0 we have that

∂ε(f + g)(x) =
⋂
δ>ε

τ - lim inf
λ→0+

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fλ(x) + ∂δ2gλ(x).
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In addition, if X is a Banach space, each one of the above statements is equivalent to
(iv) for every x ∈ X we have that

∂(f + g)(x) =
⋂
δ>0

τ - lim inf
λ→0+

∂δfλ(x) + ∂δgλ(x).

Examples of useful topologies on X∗ which are included within our analysis are the weak*, the
sequential weak*, and the norm topology. For instance, when τ is the weak* topology, then the
formulas above (7), (8), (9), (15), (16), and (17) always holds. The same conclusion follows for τ
being the norm topology when X is reflexive. Moreover, when τ is the norm topology in X∗, if one
of the assertions (i)–(iv) in Corollary 5 holds for every lsc convex functions f, g : X → R∪{+∞}
with dom f∩dom g 6= ∅, then X is necessarily reflexive. Indeed, based on the proof of [7, Theorem
3.8], it has been proved in [30] that in every nonreflexive Banach space there exist lsc convex
functions, with dom f ∩ dom g 6= ∅, which violate condition (i) of Corollary 5.

4 Calculus in the bidual setting

The main stream of this section is devoted to the characterization of the approximate subd-
ifferential of the sum of the biconjugates f∗∗ + g∗∗, by means of strong limits involving the
subdifferential of the approximating functions. The reason for considering the bidual setting
is that the analysis in this case does not require supplementary conditions as in the previous
section. This will also make clear the nature of the sets⋂

δ>ε

lim inf
k→∞

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x), ε ≥ 0, x ∈ X,

which indeed are nothing else but the part of ∂ε(f
∗∗ + g∗∗)(x) living in X∗ (Theorem 7).

We will need the following Lemma, which may also be of independent interest.

Lemma 6 Let f, g : X → R ∪ {+∞} be two lsc convex functions such that dom f ∩ dom g 6= ∅.
Then, we have that

f∗∗�g∗∗
w∗

(x) = f∗∗�g∗∗(x) ∀x ∈ X.

Proof. We denote A := epi f, B := epi g so that epi f∗∗ and epi g∗∗ coincide with the w*-closures
of A and B in X∗∗ × R, respectively. Then, taking into account Mazur’s Theorem we write

A+B
‖‖∗ = A+B

w
= (X × R) ∩A+B

w∗

= (X × R) ∩Aw
∗

+B
w∗

w∗

.

Thus, since A+B
‖‖∗ ⊂ (X × R) ∩ Aw

∗
+B

w∗
‖‖∗
⊂ (X × R) ∩ Aw

∗
+B

w∗
w∗

, we infer that

(X×R)∩Aw
∗

+B
w∗
‖‖∗

= (X×R)∩Aw
∗

+B
w∗

w∗

, which in turn implies the desired equality in

view of the relationships epi f∗∗�g∗∗
w∗

= epi f∗∗�g∗∗
w∗

= epi f∗∗ + epi g∗∗
w∗

(the same holds
for the norm topology).

Now, we state our main results of this section.

Theorem 7 Let f, g : X → R ∪ {+∞} be two lsc convex functions with dom f ∩ dom g 6= ∅,
and let (fk), (gk) be two nondecreasing sequences of lsc convex functions converging to f and g,
respectively. We assume that for every x∗ ∈ X∗ there exist two sequences (u∗k), (v∗k), convergent
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to x∗ such that
lim sup
k→∞

f∗k (u∗k) ≤ f∗(x∗), lim sup
k→∞

g∗k(v∗k) ≤ g∗(x∗).

Then, for all x∗∗ ∈ X∗∗ and ε ≥ 0 we have

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x∗∗) = X∗ ∩
⋂
δ>ε

cl

⋃
n

⋂
k≥n

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1f
∗∗
k (x∗∗) + ∂δ2g

∗∗
k (x∗∗)

 .

Consequently, for x ∈ X the last formula reads

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) =
⋂
δ>ε

cl

⋃
n

⋂
k≥n

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)

 .

Proof. The first formula follows by combining Lemma 6 and Remark 1. To establish the second
one we suppose that x ∈ X and take x∗ on the right-hand-side. Fix y∗∗ ∈ X∗∗. Then, for every
δ > ε there exist sequences x∗k ∈ ∂δk,1fk(x), y∗k ∈ ∂δk,2gk(x), with δk,1, δk,2 ≥ 0 and δk,1+δk,2 = δ,
such that x∗k + y∗k → x∗. Then, for all y ∈ X we write

fk(y) ≥ fk(x) + 〈x∗k, y − x〉 − δk,1, gk(y) ≥ gk(x) + 〈y∗k, y − x〉 − δk,2. (20)

By using Rockafellar’s Theorem, for each k there exist (bounded) nets (xi), (yj) ⊂ X, w*-
converging in X∗∗ to y∗∗, such that

fk(xi)→ f∗∗k (y∗∗), gk(yj)→ g∗∗k (y∗∗).

Thus, evaluating at xi and yj the first and second inequality in (20), respectively, taking the
limits on i, j, and next summing the resulting inequalities we obtain

f∗∗k (y∗∗) + g∗∗k (y∗∗) ≥ fk(x) + gk(x) + 〈x∗k + y∗k, y
∗∗ − x〉 − δ.

Now, by appealing to the pointwise convergence assumption and the fact that fk = f∗∗k and
gk = g∗∗k on X, we get

f∗∗(y∗∗) + g∗∗(y∗∗) ≥ f∗∗(x) + g∗∗(x) + 〈x∗, y∗∗ − x〉 − δ,

and so taking the limit when δ → ε we obtain x∗ ∈ X∗ ∩ ∂ε(f∗∗ + g∗∗)(x).
It remains to establish the direct inclusion in the last statement. For this aim, we pick

x∗ ∈ X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) so that, according to the first formula, for each ρ > 0 we find
y∗∗∗ ∈ ρBX∗∗∗ and n such that x∗ + y∗∗∗ ∈ ∪

δ1+δ2=δ
δ1,δ2≥0

∂δ1f
∗∗
k (x) + ∂δ2g

∗∗
k (x) for all k ≥ n; hence,

with i∗ the adjoint of the canonical injection i : X → X∗∗, we write

x∗ + i∗(y∗∗∗) ∈
⋃

δ1+δ2=δ
δ1,δ2≥0

i∗(∂δ1f
∗∗
k (x)) + i∗((∂δ2g

∗∗
k (x)) =

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x)
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so that x∗ + i∗(y∗∗∗) ∈ ∪
n

∩
k≥n

∪
δ1+δ2=δ
δ1,δ2≥0

∂δ1fk(x) + ∂δ2gk(x). Since i∗(y∗∗∗) ∈ ρBX∗ and i∗ is

continuous, with ρ small enough we obtain the desired conclusion.

By comparing both Theorems 1 and 7, it follows under condition (7) that

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) = ∂ε(f + g)(x).

On the other hand, Theorem 1 can be obtained from Theorem 7 in view of the relationship
X∗∩∂ε(f∗∗+g∗∗)(x) = X∗∩∂ε(f+g)∗∗(x), which is a consequence of the equality (f∗∗+g∗∗) =
(f + g)∗∗, that follows from condition (7) (see, e.g., [29]).

The following result is a direct consequence of Theorem 7.

Corollary 8 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f ∩dom g 6= ∅.
Then, we have that

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) =
⋂
δ>ε

cl

 ⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1f(x) + ∂δ2g(x)

 ∀x ∈ X, ∀ε ≥ 0.

The Moreau-Yoshida envelope satisfies the assumptions in Theorem 7, and so we get

Corollary 9 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f ∩dom g 6= ∅.
Then, we have that

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) =
⋂
δ>ε

lim inf
λ→0

⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1fλ(x) + ∂δ2gλ(x) ∀x ∈ X, ε ≥ 0.

In the following result, we use conditions which ensures subdifferential sum rules similar to
those obtained under usual qualification conditions.

Corollary 10 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f∩dom g 6= ∅.
(i) If epi f∗∗∗ + epi g∗∗∗ is (norm-)closed, then we have that

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x∗∗) = X∗ ∩
⋃

ε1,ε2≥0
ε1+ε2=ε

∂ε1f
∗∗(x∗∗) + ∂ε2g

∗∗(x∗∗) ∀x∗∗ ∈ X∗∗, ε ≥ 0.

(ii) If epi f∗ + epi g∗ is (norm-)closed, then we have that

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

∂ε1f(x) + ∂ε2g(x) ∀x ∈ X, ε ≥ 0;

in particular, for ε = 0 we write

X∗ ∩ ∂(f∗∗ + g∗∗)(x) = ∂f(x) + ∂g(x).

Proof. (i) We fix x∗∗ ∈ X∗∗ and ε ≥ 0. Pick x∗ ∈ X∗ ∩ ∂ε(f∗∗ + g∗∗)(x∗∗) and take δ > ε. By
Corollary 8, there exist αn, βn ≥ 0 with αn + βn = δ, ζn ∈ ∂αnf∗∗(x∗∗), and ψn ∈ ∂βng∗∗(x∗∗)

14



such that
x∗ = lim

n→∞
ζn + ψn.

Observe that (ζn, 〈ζn, x∗∗〉−f∗∗(x∗∗)+αn) ∈ epi f∗∗∗ and (ψn, 〈ψn, x∗∗〉−g∗∗(x∗∗)+βn) ∈ epi g∗∗∗

so that (ζn + ψn, 〈ζn + ψn, x
∗∗〉 − f∗∗(x∗∗) − g∗∗(y∗∗) + δ) ∈ epi f∗∗∗ + epi g∗∗∗. Hence, taking

the limit on n and making δ → ε, by the closedness assumption we infer that (x∗, 〈x∗, x∗∗〉 −
f∗∗(x∗∗) − g∗∗(x∗∗) + ε) ∈ epi f∗∗∗ + epi g∗∗∗. Let (ξ1, µ1) ∈ epi f∗∗∗ and (ξ2, µ2) ∈ epi g∗∗∗ be
such that

x∗ = ξ1 + ξ2, 〈x∗, x∗∗〉 − f∗∗(x∗∗)− g∗∗(x∗∗) + ε = µ1 + µ2.

Writing 〈ξ1 + ξ2, x
∗∗〉 − f∗∗(x∗∗)− g∗∗(x∗∗) + ε = µ1 + µ2 ≥ f∗∗∗(ξ1) + g∗∗∗(ξ2), we deduce that

0 ≤ f∗∗∗(ξ1) + f∗∗(x∗∗)− 〈ξ1, x∗∗〉+ g∗∗∗(ξ2) + g∗∗(x∗∗)− 〈ξ2, x∗∗〉 ≤ ε,

and so there are ε1, ε2 ≥ 0 with ε1 + ε2 = ε such that f∗∗∗(ξ1) + f∗∗(x∗∗) − 〈ξ1, x∗∗〉 ≤ ε1 and
g∗∗∗(ξ2) + g∗∗(x∗∗) − 〈ξ2, x∗∗〉 ≤ ε2. In other words, ξ1 ∈ ∂ε1f

∗∗(x∗∗) and ξ2 ∈ ∂ε2g
∗∗(x∗∗),

showing that x∗ = ξ1 + ξ2 ∈ ∂ε1f∗∗(x∗∗) + ∂ε2g
∗∗(x∗∗). This finishes the proof of (i) since the

opposite inclusion always holds.
(ii) The proof of this statement follows similarly as above by taking into account the last

formula in Theorem 7.
The following two corollaries interpret the previous limiting formulas, namely Corollary 8, in

the context of the classical convex duality theory [23].

Corollary 11 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f∩dom g 6= ∅.
Then, there exist sequences (ζk), (ξk) ⊂ X∗∗∗ with ζk + ξk → θ such that

inf
X∗∗

f∗∗ + g∗∗ = lim
k
−f∗∗∗(ζk)− g∗∗∗(ξk).

In particular, if epi f∗∗∗ + epi g∗∗∗ is (norm-)closed, then

inf
X∗∗

f∗∗ + g∗∗ = max
ξ∈X∗∗∗

−f∗∗∗(ξ)− g∗∗∗(−ξ).

Proof. Let us first observe that the inequality ” ≥ ” always holds. To prove the other inequality,
we may assume that infX∗∗ f

∗∗+ g∗∗ = −(f∗∗+ g∗∗)∗(θ) ∈ R. Then, for every ε > 0 there exists
x∗∗ ∈ X∗∗ such that x∗∗ ∈ ∂ε(f∗∗ + g∗∗)∗(θ) or, equivalently, θ ∈ X∗∗ ∩ ∂ε(f∗∗ + g∗∗)∗∗(x∗∗) =
∂ε(f

∗∗ + g∗∗)(x∗∗). Thus, using Theorem 7, we find sequences (ζk), (ξk) ⊂ X∗∗∗ such that
ζk ∈ ∂εf∗∗(x∗∗), ξk ∈ ∂εg∗∗(x∗∗), and ζk + ξk → θ; hence,

f∗∗∗(ζk) + f∗∗(x∗∗) ≤ 〈ζk, x∗∗〉+ ε, g∗∗∗(ξk) + g∗∗(x∗∗) ≤ 〈ξk, x∗∗〉+ ε.

The addition of these two inequalities gives, for sufficiently large k,

f∗∗(x∗∗) + g∗∗(x∗∗) ≤ −f∗∗∗(ζk)− g∗∗∗(ξk) + 〈ζk + ξk, x
∗∗〉+ 2ε ≤ −f∗∗∗(ζk)− g∗∗∗(ξk) + 3ε,

so that the conclusion follows when ε→ 0+.
Finally, the last statement follows similarly as above by invoking, instead of Theorem 7,

Corollary 10(i) which guarantees that the sequences (ζk), (ξk) may be taken fixed.

Corollary 12 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f∩dom g 6= ∅
and infX∗∗ f

∗∗+ g∗∗ = infX f + g. Then, there exist sequences (x∗k), (y∗k) ⊂ X∗ with x∗k + y∗k → θ
such that

inf
X
f + g = lim

k
−f∗(x∗k)− g∗(y∗k).
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While, in case the set epi f∗ + epi g∗ is (norm-)closed it holds that

inf
X
f + g = max

x∗∈X∗
−f∗(x∗)− g∗(−x∗).

Proof. With the arguments in the proof of Corollary 11, and taking into account the current
assumption, for every ε > 0 we find x ∈ X such that θ ∈ ∂ε(f∗∗+ g∗∗)(x). Thus, using Corollary
10, we find sequences x∗k ∈ ∂εf(x) and y∗k ∈ ∂εg(x) such that x∗k + y∗k → θ together with

f(x) + g(x) ≤ −f∗(x∗k)− g∗(y∗k) + 〈x∗k + y∗k, x〉+ 2ε ≤ −f∗(x∗k)− g∗(y∗k) + 3ε.

Thus, the conclusion follows when ε→ 0+.

5 Subdifferential limiting calculus

In this section, we give the limiting formulas characterizing the approximate subdifferential of the
sum, in terms of only the approximate subdifferentials at nearby points of the involved functions.
The involved approximate subdifferentials are of the same order of ε; that is, the intersection
over δ > ε, that appears in formulas of previous sections, here will disappear. For the sake of
simplicity, we don’t consider approximating sequences fk and gk. In fact, given ε ≥ 0 we deal
with the following set

τ - lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

 ⋃
α+β=ε
α,β≥0

∂αf(u) + ∂βg(v)

 , (21)

of elements of the form τ -limi u
∗
i +v∗i where u∗i ∈ ∂αif(ui) and v∗i ∈ ∂βig(vi), for some ui, vi ∈ X,

αi, βi ≥ 0, and αi + βi = ε verifying

ui
f→ x, vi

g→ x, lim
i
〈u∗i , ui − x〉 = lim

i
〈v∗i , vi − x〉 = 0,

where ui
f→ xmeans that ui → x and f(ui)→ f(x). For ε = 0, we simply write τ - lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

∂f(u)+

∂g(v).
We begin by establishing an approximate variational principle in line with [28]-[11]-[12], where

the original Ekeland’s variational principle have been adapted to general normed spaces for
approximate subdifferentials. The quantities which appear in the following lemma have been
established in the Banach setting for ε = 0 by many authors, including [10, Theorem 4.3.12],
[24], [27]. The following lemma, which is necessary for our purpose, is a slight refinement of these
results in normed spaces.

Lemma 13 Let f : X → R ∪ {∞} be a proper lsc convex function, x0 ∈ X, and δ ≥ 0. For
ε > 0 (resp., ε ≥ 0 and X is a Banach space) and x∗0 ∈ ∂ε+δf(x0), there exist (z, z∗) ∈ ∂εf and
λ ∈ [−1, 1] such that ∥∥∥z∗ − (1 +

√
δλ)x∗0

∥∥∥ ≤ √δ,
‖z − x0‖+ |〈x∗0, z − x0〉| ≤

√
δ,
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|〈z∗, z − x0〉| ≤ δ +
√
δ,

f(z)− f(x0) ≤ δ +
√
δ, and f(x0)− f(z) ≤ δ +

√
δ + ε.

Proof. Suppose δ > 0. If ε = 0 and X is Banach, the conclusion is known (see, e.g., [29,
Theorem 3.1.1]). So, let ε > 0 and x∗0 ∈ ∂ε+δf(x0). Consider the function ϕ : X → R ∪ {+∞}
defined by ϕ(x) := f(x)− 〈x∗0, x〉+

√
δ(‖x− x0‖+ |〈x∗0, x− x0〉|). We denote

A := {x ∈ X | ϕ(x) ≤ ϕ(x0)− ε}.

If A is empty, we get ϕ(x0) ≤ ϕ(x) + ε for all x ∈ X and so (by the approximate chain rule [29,
Theorem 3.1.1])

x∗0 ∈ ∂εϕ(x0) ⊂ ∂εf(x0) +
√
δ∂ε(‖· − x0‖+ |〈x∗0, · − x0〉|)(x0) ⊂ ∂εf(x0) +

√
δ(BX∗ + [−1, 1]x∗0).

Therefore, there exist λ ∈ [−1, 1] and u∗ ∈ BX∗ such that z∗ := (1 +
√
δλ)x∗0 +

√
δu∗ ∈ ∂εf(x0).

Thus, the pair (x0, z
∗) yields the desired conclusion.

From now on, we suppose that A 6= ∅. Observe that since x∗0 ∈ ∂ε+δf(x0) it follows

ϕ(x) ≥ f(x)− 〈x∗0, x〉 ≥ ϕ(x0)− ε− δ for all x ∈ X, (22)

implying that infA ϕ ∈ R. Then, there exists z ∈ A such that

ϕ(z) ≤ ϕ(x) + ε for all x ∈ A. (23)

Observe that for x /∈ A it holds (recall that z ∈ A)

ϕ(x) > ϕ(x0)− ε

≥ ϕ(z) = f(z)− 〈x∗0, z〉+
√
δ(‖z − x0‖+ |〈x∗0, z − x0〉|).

In other words, (23) holds for every x ∈ X and, hence,

θ ∈ ∂εϕ(z) ⊂ ∂εf(z)− x∗0 +
√
δ(BX∗ + [−1, 1]x∗0).

Pick λ ∈ [−1, 1] and u∗ ∈ BX∗ such that z∗ := (1 +
√
δλ)x∗0 +

√
δu∗ ∈ ∂εf(z). In particular,

we have that
∥∥∥z∗ − (1 +

√
δλ)x∗0

∥∥∥ ≤ √δ so that the first two required properties of the lemma

follow.
Now, by replacing x by x0 in (23) and using the definition of A we get (by taking x = xδ in

(22))

f(z)− 〈x∗0, z〉+
√
δ(‖z − x0‖+ |〈x∗0, z − x0〉|) ≤ f(x0)− 〈x∗0, x0〉 − ε ≤ f(z)− 〈x∗0, z〉+ δ, (24)

which implies that ‖z − x0‖ + |〈z − x0, x∗0〉| ≤
√
δ; that is, the second inequality of the lemma

holds. On the other hand, invoking the definition of z∗ we obtain

|〈z∗ − x∗0, z − x0〉| =
√
δ |〈u∗ + λx∗0, z − x0〉|

≤
√
δ(‖z − x0‖+ |〈z − x0, x∗0〉|) ≤ δ

and, hence |〈z∗, z − x0〉| ≤ δ +
√
δ, yielding the third inequality of the lemma. Finally, by using
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(24) we get

f(z)− f(x0) ≤ 〈z∗, z − x0〉 − ε ≤ δ +
√
δ − ε, and f(x0)− f(z) ≤ δ +

√
δ + ε,

yielding the last property.

We give now the main theorem of this section, which directly follows from Theorem 3 and
Lemma 15 below. It extends the results of [27] without assuming the reflexivity of the underlying
space.

Theorem 14 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f∩dom g 6= ∅.
If X is a Banach space, the following assertions are equivalent :

(i) f∗�g∗
w∗

= f∗�g∗
τ
;

(ii) ∂ε(f + g)(x) = τ - lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

 ⋃
α+β=ε
α,β≥0

∂αf(u) + ∂βg(v)

 ∀x ∈ X, ε ≥ 0;

(iii) ∂ε(f + g)(x) = τ - lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

 ⋃
α+β=ε
α,β≥0

∂αf(u) + ∂βg(v)

 ∀x ∈ X, ε > 0;

(iii) ∂(f + g)(x) = τ - lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

(∂f(u) + ∂g(v)) ∀x ∈ X.

Lemma 15 Let f, g : X → R∪ {+∞} be two lsc convex functions such that dom f ∩ dom g 6= ∅.
Then, for every x ∈ X and ε > 0 (resp., ε ≥ 0 and X is a Banach space) the following equality
holds,

τ - lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

 ⋃
α+β=ε
α,β≥0

∂αf(u) + ∂βg(v)

 =
⋂
δ>ε

clτ

 ⋃
δ1+δ2=δ
δ1,δ2≥0

∂δ1f(x) + ∂δ2g(x)

 .

Proof. We fix x ∈ X and ε > 0 (resp., ε ≥ 0 and X is Banach).
To prove the inclusion “⊂” we pick x∗ in the left-hand side and take the nets (ui, u

∗
i ) ⊂ ∂αif

and (vi, v
∗
i ) ∈ ∂βig such that u∗i+v

∗
i
τ→ x∗, ui

f→ x, vi
g→ x, and limi〈u∗i , ui−x〉 = limi〈v∗i , vi−x〉 =

0, where αi, βi ≥ 0 and αi + βi = ε. Let δ > ε and denote

δ1,i := αi + f(x)− f(ui) + 〈u∗i , ui − x〉 and δ2,i := δ − δ1,i;

we may suppose that for all i it holds δ2,i ≥ βi+g(x)−g(vi)+〈v∗i , vi−x〉. So, since u∗i ∈ ∂αif(ui)
and v∗i ∈ ∂βig(vi) we have, for every y ∈ X,

〈u∗i , y − x〉 ≤ f(y)− f(x) + αi + f(x)− f(ui) + 〈u∗i , ui − x〉 ≤ f(y)− f(x) + δ1,i,

〈v∗i , y − x〉 ≤ g(y)− g(x) + βi + g(x)− g(ui) + 〈v∗i , vi − x〉 ≤ g(y)− g(x) + δ2,i.

Whence, u∗i ∈ ∂δ1,if(x) and v∗i ∈ ∂δ2,ig(x), showing that x∗ belongs to the right-hand side of the
desired inclusion.
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For the opposite inclusion we consider a net of positive integer numbers (nV )V ∈N (θ) converg-
ing to ∞, where Nτ (θ) is the set of closed convex symmetric neighborhoods of θ endowed with
the usual partial order given by the reverse inclusion. We take x∗ on the right-hand side and,
for a given V ∈ Nτ (θ), choose nV such that for all n ≥ nV it holds

2

√
1

n
BX∗ ⊂

1

3
V,

√
1

n
λn(x∗ +

1

n
V ) ⊂ 1

3
V,

(
1 +

√
1

n

)
1

n
≤ 1

3
.

We fix n ≥ max{nV , 3}. Then, we find δ1,n, δ2,n ≥ 0, with δ1,n + δ2,n = 1
n + ε, x∗n ∈ ∂δ1,nf(x),

and y∗n ∈ ∂δ2,ng(x) such that

x∗ − x∗n − y∗n ∈
1

n
V. (25)

So, (x∗n, y
∗
n) ∈ ∂δ1,nf(x) × ∂δ2,ng(x) ⊂ ∂ε+ 1

n
ϕ(x, x), where ϕ : X × X → R ∪ {+∞} is the

proper lsc convex function defined by ϕ(u, v) := f(u) + g(v). We endow X ×X with the norm
‖(u, v)‖ := ‖u‖ + ‖v‖ whose dual norm is ‖(u∗, v∗)‖ = max{‖u∗‖ , ‖v∗‖}. Then, by Lemma 13,
there exist ((un, vn), (u∗n, v

∗
n)) ∈ ∂εϕ and λn ∈ [−1, 1] such that∥∥∥∥∥u∗n −

(
1 +

√
1

n
λn

)
x∗n

∥∥∥∥∥ ≤
√

1

n
,

∥∥∥∥v∗n − (1 +

√
1

nn
λn

)
y∗n

∥∥∥∥ ≤
√

1

n
, (26)

‖un − x‖+ |〈un − x, x∗n〉| ≤
√

1

n
, ‖vn − x‖+ |〈vn − x, y∗n〉| ≤

√
1

n
,

|〈un − x, u∗n〉| ≤
1

n
+

√
1

n
, |〈vn − x, v∗n〉| ≤

1

n
+

√
1

n
,

f(un) + g(vn)− f(x)− g(x) ≤ 1

n
+

√
1

n
.

Consequently, in view of the lsc of f and g, the last inequality implies that

lim
V
f(unV ) = f(x), lim

V
g(vnV ) = g(x).

Moreover, by using the triangle inequality we get

u∗n + v∗n = x∗n + y∗n + u∗n −

(
1 +

√
1

n
λn

)
x∗n + v∗n −

(
1 +

√
1

n
λn

)
y∗n +

√
1

n
λn(x∗n + y∗n)

∈ x∗n + y∗n + 2

√
1

n
BX∗ +

√
1

n
λn(x∗n + y∗n)

∈ x∗ + 2

√
1

n
BX∗ +

√
1

n
λn(x∗ +

1

n
V ) +

1

n
V ⊂ x∗ + V.

This shows that u∗nV + v∗nV →τ x
∗. To conclude the proof, it suffices to observe that

(u∗nV , v
∗
nV ) ∈ ∂εϕ(unV , vnV ) =

⋃
ε1+ε2=ε
ε1,ε2≥0

∂ε1f(unV )× ∂ε2g(vnV ).
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The following combines the last theorem and Corollary 2.

Corollary 16 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f∩dom g 6= ∅.
If X is a Banach space such that the closed unit ball of its dual is w∗-sequentially compact, then
for every x ∈ X and ε ≥ 0 we have that

∂ε(f + g)(x) = σ- lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

 ⋃
α+β=ε
α,β≥0

∂αf(u) + ∂βg(v)

 ;

that is, x∗ ∈ ∂ε(f + g)(x) if and only if there are sequences (u∗n)n, (v∗n)n ⊂ X∗ such that
x∗ = w∗-limi u

∗
n+v∗n for u∗n ∈ ∂αnf(un) and v∗n ∈ ∂βng(vn), where un, vn ∈ X, αn, βn ≥ 0 satisfy

αn + βn = ε,

un
f→ x, vn

g→ x, lim
n
〈u∗n, un − x〉 = lim

n
〈v∗n, vn − x〉 = 0.

The following result gives the counterpart of the previous theorem in the bidual setting,
without requiring the closure condition (7). Its proof follows from Theorem 7 and Lemma 15.

Theorem 17 Let f, g : X → R∪{+∞} be two lsc convex functions such that dom f∩dom g 6= ∅.
Then, for all x∗∗ ∈ X∗∗ and ε ≥ 0 we have

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x∗∗) = X∗
⋂

lim sup

u
f∗∗→ x∗∗, v

g∗∗→ x∗∗

〈·,u−x∗∗〉, 〈·,v−x∗∗〉→0

 ⋃
α+β=ε
α,β≥0

∂αf
∗∗(u) + ∂βg

∗∗(v)

 .

Moreover, when x ∈ X and ε > 0 (resp., ε ≥ 0 if X is a Banach space) this formula reads

X∗ ∩ ∂ε(f∗∗ + g∗∗)(x) = lim sup

u
f→x, v g→x

〈·,u−x〉, 〈·,v−x〉→0

 ⋃
α+β=ε
α,β≥0

∂αf(u) + ∂βg(v)

 .

In what follows, we use the set

τ - lim sup
y∗

{
A∗y∗ | z∗ − y∗ → θ, z∗ ∈ ∂εh(v), v

h→ Ax, 〈z∗, v −Ax〉 → 0
}
,

of elements of the form τ -limiA
∗y∗i where y∗i − z∗i → θ for some z∗i ∈ ∂εh(vi), vi

h→ Ax, and
〈z∗i , vi −Ax〉 → 0. When τ is the norm topology, we omit the reference to τ .

Corollary 18 Let X be a reflexive Banach space, Y a Banach space, A : X → Y a continu-
ous linear operator with adjoint A∗, and h : Y → R ∪ {+∞} a lsc convex function such that
A−1(domh) 6= ∅. Then, for every x ∈ X and ε ≥ 0 it holds

∂ε(h ◦A)(x) = lim sup
y∗

{
A∗y∗ | z∗ − y∗ → θ, z∗ ∈ ∂εh(v), v

h→ Ax, 〈z∗, v −Ax〉 → 0
}
.

Proof. We endow the product space X × Y with the box norm and define the functions f, g :
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X × Y → R ∪ {+∞} by
f(x, y) := h(y), g(x, y) := IGrA(x, y).

According to Example 1, we have that f∗�g∗
w∗

= f∗�g∗, and so the desired conclusion follows
by Theorem 14, in view of the following straightforward relationships

x∗ ∈ ∂ε(h ◦A)(x)⇐⇒ (x∗, θ) ∈ ∂ε(f + g)(x,Ax),

(u∗, v∗) ∈ ∂δIGrA(u,Au)⇐⇒ u∗ = −A∗v∗, and ∂δf(u, v) = {θ} × ∂δh(v).

Remark 3 The corollary above can be stated without assuming the reflexivity assumption in
terms of any topology τ := τX∗ × τY ∗ , being intermediate between the weak* and norm topology

on X∗ × Y ∗. Indeed, it suffices to observe that A∗h∗
w∗

= A∗h∗
τX∗

iff f∗�g∗
w∗

= f∗�g∗
τ

(see
(14) for the definition of A∗h∗), thus, according to Theorem 3 and Lemma 15, iff

∂ε(h ◦A)(x) = τ - lim sup
y∗∈Y ∗

{
A∗y∗ | z∗ − y∗ → θ, z∗ ∈ ∂εh(v), v

h→ Ax, 〈z∗, v −Ax〉 → 0
}
.

On the other hand, if instead of the reflexivity assumption in the previous corollary we assume
that the dual of X has a w*-sequentially compact unit ball, then for every x ∈ X and ε ≥ 0 we
obtain that

∂ε(h ◦A)(x) = σ- lim sup
y∗∈Y ∗

{
A∗y∗ | z∗ − y∗ → θ, z∗ ∈ ∂εh(v), v

h→ Ax, 〈z∗, v −Ax〉 → 0
}
.

In general, when no extra assumption is used, according to Theorem 17 the subdifferential
formulas are given in the bidual setting:

Corollary 19 Let X and Y be two Banach spaces, A : X → Y a continuous linear operator, and
h : Y → R ∪ {+∞} a lsc convex function such that A−1(domh) 6= ∅. Then, for every x∗∗ ∈ X∗∗
and ε ≥ 0 we have that

X∗ ∩ ∂ε(h∗∗ ◦A∗∗)(x∗∗) = lim sup
ξ∈Y ∗∗∗

{A∗∗∗ξ | ζ − ξ → θ, ζ ∈ ∂εh∗∗(v∗∗),

v∗∗
h∗∗→ A∗∗x∗∗, 〈ζ, v∗∗ −A∗∗x∗∗〉 → 0

}
.

In particular, when x ∈ X we get

X∗ ∩ ∂ε(h∗∗ ◦A∗∗)(x) = lim sup
y∗∈Y ∗

{A∗y∗ | z∗ − y∗ → θ, z∗ ∈ ∂εh(v),

v
h→ Ax, 〈z∗, v −Ax〉 → 0

}
.
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