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Abstract The paper deals with the problem of locating new facilities in presence of attract-
ing and repulsive demand points in a continuous location space. When an arbitrary norm is
used to measure distances and with closed convex constraints, we develop necessary condi-
tions of efficiency. In the unconstrained case and if the norm derives from a scalar product,
we completely characterize strict and weak efficiency and prove that the efficient set co-
incides with the strictly efficient set and/or coincides with the weakly efficient set. When
the convex hulls of the attracting and repulsive demand points do not meet, we show that
the three sets coincide with a closed convex set for which we give a complete geometrical
description. We establish that the convex hulls of the attracting and repulsive demand points
overlap iff the weakly efficient set is the whole space and a similar result holds for the ef-
ficient set when we replace the convex hulls by their relative interiors. We also provide a
procedure which computes, in the plane and with a finite number of demand points, the ef-
ficient sets in polynomial time. Concerning constrained efficiency, we show that the process
of projecting unconstrained weakly efficient points on the feasible set provides constrained
weakly efficient points.
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1 Introduction

The problem of locating desirable facilities such as schools, hospitals, fire stations has been
extensively studied. A large overview on this question can be found in Plastria (1993, 1995),
Love et al. (1988).

However with people getting more and more concerned about their living environment
and its impact on health and safety, the undesirable effects of certain types of facilities can-
not be left aside. Placing a factory, an airport, hazardous facilities, power plants, chemical
factories, dump sites, etc, close by users may cause damages to the quality of their life due
to noise, traffic, risk and pollution. At the same time one cannot afford to select certain sites
too far away from the population zones. Unfortunately, the objectives of locating a facility
close to certain demand points and far from others are conflicting. The difficulties in se-
lecting unanimously approved sites are commonly raised (see Erkut and Neuman 1989) and
leads to consider models which combine attraction and repulsion forces. For the last twenty
years a lot of such models have been studied in a variety of metric spaces. Concerning one-
objective continuous location problems, see e.g. Brimberg and Juel (1998a, 1998b), Carri-
zosa and Plastria (1999), Chen et al. (1992), Drezner and Wesolowsky (1990), Hansen et
al. (1981), Melachrinoudis and Cullinane (1985), Melachrinoudis and Xanthopulos (2003),
Muñoz-Pérez and Saameno-Rodriguez (1999), Plastria (1991, 1996), Plastria and Carrizosa
(1999), Ratick and White (1988), Romero-Morales et al. (1997), Saameño-Rodríguez et al.
(to appear), Tamir (2006), Tellier and Polanski (1989).

Only a limited number of papers deal with multiple criteria in a continuous setting. Most
of them addressed a bi-criteria problem which is to locate a semi-obnoxious facility with
the two objectives of maximizing a utility function which measures the benefits provided by
the facility and of minimizing the undesirable effects induced, see Blanquero and Carrizosa
(2002), Brimberg and Juel (1998c), Carrizosa et al. (1997), Carrizosa and Plastria (2000),
Melachrinoudis (1999), Melachrinoudis and Xanthopulos (2003), Ohsawa (2000), Ohsawa
et al. (to appear), Ohsawa and Tamura (2003), Skriver and Andersen (2003), Yapicioglu et al.
(2004, 2006). These authors propose different solution methods as heuristic and/or branch
and bound based approaches, solutions methods using Voronoi diagrams, or scalarization
based techniques which consist in transforming the problem in a single-objective one. All
the approaches followed exploit the bi-criteria aspect of the problem.

In this paper we focus on the problem of locating a facility in presence of attracting
and repulsive demand points. We consider a multiple criteria framework where the objec-
tives consist in simultaneously minimizing the distance to the attracting demand points and
maximizing the distance to the repulsive ones. We assume that the distances to the demand
points are measured by a unique norm function. The paper addresses the case of a regional
demand. We are thus, a priori, faced with an infinite number of criteria except if the demand
is concentrated on a finite number of points. Regional constraints can also be imposed on
the location of the facility. We study the properties of the classical concepts of non domi-
nated solutions, referred to in the literature as weakly efficient, efficient and strictly efficient
solutions. Our approach is not based on scalarization techniques. As in Durier (1987, 1990),
Durier and Michelot (1986), Ndiaye and Michelot (1998), Ndiaye (1996), we follow a com-
pletely different way which consists in exploiting in depth the geometrical properties of the
norm.

With an arbitrary norm and in presence of closed convex constraints, we give necessary
conditions of strict efficiency, efficiency and weak efficiency. These conditions involve the
geometry of the unit ball of the norm and clearly show that for a facility to be efficient it is
required that the attracting and repulsive demand points are conveniently dispatched around
it in a certain sense revealed by the geometry of the unit ball of the norm.
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In the unconstrained case and if the norm derives from a scalar product, we develop
specific and additional properties. In particular, we completely characterize strict and weak
efficiency. This result was somewhat unexpected because, in general, the non convexities
induced by the repulsive demand points prevent from obtaining necessary and sufficient
optimality conditions. We show that the efficient set coincides with the strictly efficient
set and/or coincides with the weakly efficient set. As a consequence, we obtain that the
three sets of efficiency are closed and convex. When the convex hulls of the attracting and
repulsive demand points do not meet, we show that, as in the pure attracting setting, the
three sets of efficiency coincide with a closed convex set for which we give a complete
geometrical description. This common set is unbounded provided that there is at least one
repulsive demand point. In the pure attractive setting, we rediscover that the strictly efficient,
efficient, and weakly efficient sets coincide with the convex hull of the demand points. We
establish that the convex hulls of the attracting and repulsive demand points overlap iff the
weakly efficient set is the whole space and that a similar result holds for the efficient set
when we replace the convex hulls by their relative interiors. We also show that the process
of projecting (unconstrained) weakly efficient points on the feasible set provides constrained
weakly efficient points. We terminate by providing a procedure which generates, for a finite
set of demand points in the plane, the efficient sets in polynomial time.

Definitions, notations and first properties of efficiency are given in Sect. 2. In Sect. 3, we
consider the general case where distances are measured by an arbitrary norm. We provide
necessary conditions for efficiency in presence of (closed convex) regional constraints. Sec-
tion 4 is devoted to the particular case where the norm used to measure the distances derives
from a scalar product. The paper ends with a conclusion in Sect. 5.

2 Notations, definitions and first properties

Throughout the paper, (X,γ ) is a real normed space. Though a part of the results obtained
remain valid in infinite dimension, we assume that X is a finite dimensional space. For
convenience the reader may assume that X = R

n.
For a subset � ⊂ X we denote respectively by int(�), ri(�), cl(�) and by co(�), the

interior, the relative interior, the closure and the convex hull of �. The cone generated by
the origin and � is defined by

cone(�) := {λx: x ∈ �,λ ≥ 0}.
If � is closed and convex and if x ∈ �, we denote by

F�(x) := {δ �= 0: x + λδ ∈ � for some λ > 0}
the set of feasible directions at x ∈ �. For δ ∈ F�(x), we set

λδ = sup{λ > 0: x + λδ ∈ �}.
In the sequel we will consider two sets A+ and A− of attracting and repulsive demand points
respectively. For technical convenience we will assume that A+ and A− are compact and non
simultaneously empty sets.

According to our aim which is to simultaneously minimize distances to attracting de-
mand points and maximize the distances to the repulsive demand points, we introduce the
following concepts of dominance.
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Definition 2.1 We say that a point y �= x dominates a point x when γ (y −a+) ≤ γ (x −a+)

for all a+ ∈ A+ and γ (y −a−) ≥ γ (x −a−) for all a− ∈ A−. In case where at least one of the
previous inequalities is strict the dominance is called strict. If all the inequalities involved
are strict, we say that y strongly dominates x.

Each of these dominance notions induces a set of non dominated solutions known as the
set of weakly efficient, efficient and strictly efficient points. We recall the formal definitions.

Definition 2.2 Let � ⊂ X be a nonempty set of constraints. A point x ∈ � is said to be
strictly efficient (with respect to A+, A− and �) if there is no feasible point y �= x which
dominates x. Similarly we say that a feasible point x is efficient (resp. weakly efficient) if
there is no y ∈ � which strictly (resp. strongly) dominates x.

The sets of strictly efficient, efficient and weakly efficient points will be respectively
denoted by SE(A+,A−,�), E(A+,A−,�) and WE(A+,A−,�).

In absence of constraint, we use the simplified notation SE(A+,A−), E(A+,A−)

and WE(A+,A−). We also set SE(A+) := SE(A+,∅), SE(A−) := SE(∅,A−), E(A+) :=
E(A+,∅), E(A−) := E(∅,A−), WE(A+) := WE(A+,∅) and WE(A−) := WE(∅,A−).

Below we give without proof a list of straightforward properties, direct consequence of
the definitions.

Proposition 2.1 Let � ⊂ �
′ ⊂ X be two nonempty sets of constraints. Then the following

properties hold:

1. SE(A+) ⊂ SE(A+,A−), E(A+) ⊂ E(A+,A−) WE(A+) ⊂ WE(A+,A−).
2. If A+ ∩ A− �= ∅ then WE(A+,A−,�) = �.
3. A+ ∩ � ⊂ SE(A+,A−,�) ⊂ E(A+,A−,�) ⊂ WE(A+,A−,�).
4. SE(A+,A−,�

′
) ∩ � ⊂ SE(A+,A−,�), E(A+,A−,�

′
) ∩ � ⊂ E(A+,A−,�),

WE(A+,A−,�
′
) ∩ � ⊂ WE(A+,A−,�).

5. SE(A+,A−) ∩ � ⊂ SE(A+,A−,�), E(A+,A−) ∩ � ⊂ E(A+,A−,�) WE(A+,A−) ∩
� ⊂ WE(A+,A−,�).

Note that in a pure repulsive setting without constraint, i.e. if A+ = ∅ and � = X,
the efficient points are, let say, “pushed to infinity” so that we have SE(A−) = E(A−) =
WE(A−) = ∅. In presence of constraints, the repulsive demand points, contrary to the feasi-
ble attracting ones, may not be strictly efficient, efficient or weakly efficient. As illustration,
consider one attracting demand point a, one repulsive demand point b and the set of con-
straint � := [a, b].

3 Necessary conditions for efficiency in terms of Qδ sets

In pure attracting models, characterizations of strict efficient, efficient and weak efficient
solutions have been obtained in terms of Qδ sets (Durier 1990; Durier and Michelot 1986;
Ndiaye and Michelot 1998; Ndiaye 1996). These sets, induced by a norm (see Durier and
Michelot 1986) and closely related to the geometry of the unit ball B := {x ∈ X: γ (x) ≤ 1},
play also an important role to give necessary conditions for efficiency in presence of repul-
sive demand points.
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Definition 3.1 (Durier and Michelot 1986) For any δ ∈ X, δ �= 0, we consider the two
complementary sets

Qδ := {z ∈ X: ∀λ > 0, γ (z − λδ) > γ (z)},
Pδ := {z ∈ X: ∃λ > 0, γ (z − λδ) ≤ γ (z)}.

It can be easily shown that Qδ and Pδ are cones. For a given direction δ �= 0, Qδ is
exactly the cone generated by the points x of the unit sphere S := {x ∈ X: γ (x) = 1} such
that we leave the unit ball B when moving from x in the direction −δ. Note that several sets
Qδ may overlap and that the whole family of Qδ sets cover the whole space. Topological
and geometrical properties of the sets Qδ have been studied in detail in Durier and Michelot
(1986). Let us recall the main results.

When the norm derives from a scalar product denoted by 〈·, ·〉, we have Qδ = cl(P−δ) =
{x; 〈x, δ〉 ≤ 0} and Pδ = {x; 〈x, δ〉 > 0}. Thus the family of Qδ sets (resp. Pδ sets) is made
up of the closed (resp. open) half-spaces passing through the origin.

In dimension two, the Qδ sets are closed convex cones:

• If the norm is polyhedral, its unit ball generates two types of Qδ sets. If the direction δ is
not parallel to a one-dimensional face (a one-face in short) of the unit ball, Qδ is a half-
plane generated by two opposite extreme points. If the unit ball has 2p extreme points,
the pairs of two opposite extreme points generate 2p sets Qδ . When the direction δ is
parallel to a one-face of the unit ball, Qδ is a closed pointed cone generated by the origin
and p − 1 consecutive one-faces of the unit ball. We have thus 2p such sets Qδ .

• With the rectilinear norm we get eight Qδ sets, the four quarter of planes R
+ × R

+,
R

+ × R
−, R

− × R
−, and R

− × R
+, and the four half-planes R × R

+, R × R
−, R

+ × R

and R
− × R.

• With the �∞-norm we get again four quarter of plane and four half-planes obtained by
rotating the Qδ sets of the �1 norm counterclockwise through a π/4 angle.

In dimension n > 2, some Qδ sets may not be convex as those associated to the �1 and
�∞ norms for which a complete description can be found in Durier and Michelot (1986).
With exotic norms, the Qδ sets may also not be closed. An example is given in Durier and
Michelot (1986). The closure is guaranteed when the norm is B-regular.

Definition 3.2 A norm γ is called B-regular (i.e. regular in the sense of Brown 1964) if for
each direction δ �= 0 and for each x such that γ (x − δ) ≤ γ (x), there exists some λ > 0 and
a neighborhood W of x such that γ (y − λδ) ≤ γ (y) for every y ∈ W .

The B-regularity property is not very restrictive. It is satisfied by strictly convex norms,
by polyhedral norms in any dimension, and by any norm in dimension two (Durier and
Michelot 1986).

We terminate by several topological properties. Due to the symmetry of the unit ball of
a norm we have a relationship between each Qδ set and the set P−δ . More precisely we
have int(Qδ) ⊂ P−δ , and the inclusion may be strict. For a given direction δ �= 0, if the unit
sphere S does not contain a line segment parallel to δ, as for strictly convex norms, then
Qδ = cl(P−δ). The following result provides several useful characterizations of the interior
of a Qδ set. A proof can be found in Durier (1987, 1990), Durier and Michelot (1986) or
Ndiaye and Michelot (1998).

Proposition 3.1 For each δ ∈ X, δ �= 0, we have the following equivalences:
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(i) x ∈ int(Q−δ);
(ii) x /∈ cl(P−δ);

(iii) ∃λ > 0, γ (x − λδ) < γ (x).

Let us now give necessary conditions for weak efficiency, efficiency and strict efficiency.

Proposition 3.2 Let � ⊂ X be a nonempty closed convex set of constraints and x ∈
WE(A+,A−,�). Then, for each feasible direction δ ∈ F�(x) at least one of the two fol-
lowing properties is satisfied:

(i) A+ ∩ (x + cl(P−δ)) �= ∅;
(ii) A− ∩ (x + Pδ) �= ∅.

Proof Suppose that there exists a feasible direction δ ∈ F�(x) such that A+ ∩ (x +
cl(P−δ)) = ∅ and A− ∩ (x + Pδ) = ∅. By Proposition 3.1, for each attracting demand point
a ∈ A+ there exists some λa > 0 such that γ (a − x) > γ (a − x − λaδ). The norm γ being
continuous, this strict inequality still holds in a neighborhood, say V (a), of a. Using the con-
vexity of the norm, we deduce that γ (a′ − x) > γ (a′ − x − λδ) for each a′ ∈ V (a) and each
λ such that 0 < λ ≤ λa . The set A+ being compact, one can select a finite subset A+ ⊂ A+
of attracting demand points such that A+ is covered by the neighborhoods V (a), a ∈ A+.
Putting λ = min{min{λa, a ∈ A+}, λδ}, it follows that

∀a ∈ A+, γ (a − x) > γ (a − x − λδ).

Since it is assumed that the set A− of repulsive demand points does not meet x + Pδ , by
definition of Pδ we also have

∀a ∈ A−, γ (a − x − λδ) > γ (a − x).

Thus, x is strongly dominated by the point y := x + λδ which is feasible by construction,
and we conclude that x /∈ WE(A+,A−,�). �

Proposition 3.2 shows that, for a point x ∈ � to be weakly efficient, it is necessary that
the attracting and repulsive demand points are conveniently dispatched around x relative
to the constraints in the sense that each cl(P−δ) generated by a feasible direction should
contain at least one attractive demand point and each Pδ should contain at least one repulsive
demand point. Unfortunately, and contrary to the pure attracting setting, the conditions are
not sufficient.

When the norm γ is strictly convex, the sets cl(P−δ) and Qδ coincide as already men-
tioned (see Durier and Michelot 1986, Corollary 1.2). So Proposition 3.2 can be rewritten in
a more simple way as follows.

Corollary 3.1 Let γ be a strictly convex norm, � ⊂ X be a nonempty closed convex set of
constraints and x ∈ WE(A+,A−,�). Then, for each feasible direction δ ∈ F�(x) at least
one of the two following properties is satisfied:

(i) A+ ∩ (x + Qδ) �= ∅;
(ii) A− ∩ (x + Pδ) �= ∅.

In the case of non constrained problems involving the Euclidean norm, and as a conse-
quence of Proposition 3.2, we see that the points belonging to an hyperplane which strictly
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separates A+ and A− cannot be weakly efficient because the attracting (resp. repulsive) de-
mand points are all located in a half-space passing through x, and thus are not conveniently
dispatched around x. This observation will be developed in the next section to give a com-
plete characterization of weak efficiency when distances are measured by the norm induced
by a scalar product.

Proposition 3.2 provides necessary conditions which are not sufficient as illustrated by
the following example. Consider in the plane X = R

2 the sets A+ := {a+} and A− := {a−}
with a+ = (−1,0), a− = (1,0) and assume that the distances are measured by the Euclidean
norm. The Qδ sets are thus the half-planes limited by a line passing through the origin. If
no constraint is involved, the point x0 = (2,0) is strongly dominated by y0 = (−2,0). Then
x0 /∈ WE(A+,A−,�). However any half-plane limited by a line passing through x0 cannot
strictly separate a+ and a− because x0, a+ and a− are aligned. Note that a point x which is
located outside the x-axis is not weakly efficient because the half-planes containing a− and
limited by a line passing through x and a point y situated between a+ and a− neither satisfy
condition (i) nor condition (ii).

The two next results give similar necessary conditions for efficiency and strict efficiency.
Their justifications being very close, we only give a proof for efficient points. According
to the characterizations of efficiency and strict efficiency in a pure attracting setting, as
developed in Durier and Michelot (1986), Ndiaye and Michelot (1998), Ndiaye (1996), these
results require the norm be B-regular.

Proposition 3.3 Let � ⊂ X be a nonempty closed convex set of constraints and assume
that the norm γ is B-regular. If x ∈ SE(A+,A−,�) and δ ∈ F�(x), at least one of the two
following properties is satisfied:

(i) A+ ∩ (x + Qδ) �= ∅;
(ii) A− ∩ (x + int(Q−δ)) �= ∅.

Again, these conditions mean that the attracting and repulsive demand points should be
well dispatched around x. Note however that the conditions are more demanding than the
conditions for weak efficiency because for a given direction δ �= 0 we have Qδ ⊂ cl(P−δ)

and int(Q−δ) ⊂ P−δ .

Proposition 3.4 Let � ⊂ X be a nonempty closed convex set of constraints and assume that
the norm γ is B-regular. For x ∈ E(A+,A−,�) and a feasible direction δ ∈ F�(x) at least
one of the three following properties is satisfied:

(i) A+ ∩ (x + Qδ) �= ∅;
(ii) A− ∩ (x + int(Q−δ)) �= ∅;

(iii) A+ ∩ (x + int(Q−δ)) = ∅ and A− ∩ (x + Qδ) = ∅.

Proof Suppose there exists a feasible direction δ ∈ F�(x) for which none of the three con-
ditions (i), (ii) and (iii) are satisfied and let us prove that x is strictly dominated by some
feasible point of the form yλ := x + λδ with λ > 0.

Condition (ii) being not satisfied, by Proposition 3.1 we already have

∀a ∈ A−, ∀λ > 0, γ (a − x − λδ) ≥ γ (a − x).

Since (i) does not hold, for each a ∈ A+, there exists some μa > 0 such that

γ (a − x − μaδ) ≤ γ (a − x).
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By the B-regularity of the norm , for each a ∈ A+ it follows that γ (a′ −x −λaδ) ≤ γ (a′ −x)

for some λa > 0 and all a′ in a neighborhood V (a) of a. Then, due to the convexity the norm,
we have γ (a′ − x − λδ) ≤ γ (a′ − x) for any a′ ∈ V (a) and any λ such that 0 < λ ≤ λa .
Since A+ is compact, one can select a finite subset A+ ⊂ A+ such that A+ is covered by the
neighborhoods V (a), a ∈ A+. With λ := min{λa, a ∈ A+}, one gets

γ (a − x − λδ) ≤ γ (a − x) ∀a ∈ A+, ∀λ ∈ ]0, λ[.

Thus x is already dominated by all the yλ for which 0 < λ ≤ λ.
Since condition (iii) is not satisfied, either γ (a − x − λδ) > γ (a − x) for some a ∈ A−

and any λ > 0 or γ (a − x − μδ) < γ (a − x) for some a ∈ A+ and some μ > 0. In the first
case yλ strictly dominates x for any λ such that 0 < λ ≤ λ. In the second case, due to the
convexity of the norm we also have γ (a − x − λδ) < γ (a − x) for 0 < λ ≤ μ, and thus
yλ strictly dominates x as soon as 0 < λ ≤ min{λ,μ}. Since the yλ becomes feasible when
λ ≤ λδ , the result follows. �

4 The case of a norm induced by a scalar product

In this section we assume that the norm γ derives from a scalar product denoted by 〈·, ·〉.
The (bi)linearity properties of the scalar product provide an extra tool which will be deeply
exploited.

4.1 Unconstrained strict efficiency

Theorem 4.1 The following properties hold:

(i) co(A+) ∩ ri(co({x} ∪ A−)) �= ∅ �⇒ x ∈ SE(A+,A−);
(ii) SE(A+,A−) = co(A+) + cl[cone[co(A+) − co(A−)]].

Proof Let K be the closed convex set defined by

K := co(A+) + cl
[
cone[co(A+) − co(A−)]].

Suppose that x /∈ SE(A+,A−). Then, x is dominated, i.e. there exists y ∈ X, y �= x, such
that A+ ⊂ H≥ and A− ⊂ H≤ with H≥ = {z ∈ X; 〈p, z〉 ≥ α}, H≤ = {z ∈ X; 〈p, z〉 ≤ α},
p = y − x and α = (‖y‖2 − ‖x‖2)/2. It follows that

K ⊂ H≥ and co(A−) ⊂ H≤.

Indeed, the first inclusion occurs because a point z ∈ co(A+) + cone
[

co(A+) − co(A−)
]

can be written as z = â+ + λ(a+ − a−) with â+, a+ ∈ co(A+), a− ∈ co(A−) and λ ≥ 0. It
follows that

〈p, z〉 = 〈p, â+〉 + λ〈p,a+〉 − λ〈p,a−〉 ≥ α + λα − λα = α

and thus z ∈ H≥. The second inclusion is clear. Next, since x ∈ H< := {z ∈ X; 〈p, z〉 < α}
we deduce that x /∈ K and that the sets co(A+) and ri(co({x} ∪ A−)) are disjoint. This
simultaneously proves (i) and the inclusion K ⊂ SE(A+,A−).
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Now let us establish the reverse inclusion SE(A+,A−) ⊂ K . Let x /∈ K . We can separate
strictly x and K . Thus there exist p ∈ X, p �= 0, and α ∈ R such that

{
〈p,x〉 < α

λ〈p,a+ − a−〉 + 〈p, â+〉 ≥ α ∀a+, â+ ∈ co(A+), ∀a− ∈ co(A−), ∀λ ≥ 0.

Dividing the last inequality by λ and making λ → +∞, we obtain

〈p,a+ − a−〉 ≥ 0 ∀a+ ∈ co(A+), ∀a− ∈ co(A−).

Now, observe that we can take α = inf{〈p,a+〉; a+ ∈ co(A+)} so that

⎧
⎪⎨

⎪⎩

〈p,x〉 < α,

〈p,a+〉 ≥ α ∀a+ ∈ co(A+),

〈p,a−〉 ≤ α ∀a− ∈ co(A−).

It is then clear that the symmetric y of x with respect to H := {z ∈ X; 〈p, z〉 = α} dominates
x and thus x is not strictly efficient. �

The following example shows that the sufficient condition of strict efficiency (i) is, un-
fortunately, not necessary. Consider in the Euclidean space R

3 the sets A+ := {a+
1 , a+

2 , a+
3 },

and A− := {a−
1 , a−

2 } with a+
1 = (−1,0,0), a+

2 = (0,0,−1), a+
3 = (0,0,1), a−

1 = (1,0,0),
a−

2 = (0,1,0) and look at x = (0,−1,0). The relative interior of co({x}∪A−) does not meet
co(A+). However x is strictly efficient. If x was not strictly efficient it would be dominated,
i.e. there would exist a point y ∈ R

3, y �= x such that

{
γ (a+

i − x) ≥ γ (a+
i − y) ∀i = 1,2,3,

γ (a−
i − x) ≤ γ (a−

i − y) ∀i = 1,2.

The plane H(x,y) made up of the points which are equidistant to x and y would then sepa-
rate co(A+) and co({x} ∪ A−). Observing that x /∈ H(x,y), that there is a unique plane de-
fined by H := {(x, y, z); x = 0} which separates co(A+) and co({x} ∪ A−) and that x ∈ H ,
we get a contradiction.

Corollary 4.1 The set SE(A+,A−) is closed and convex. Moreover if A+ and A− are finite
sets or if co(A+) and co(A−) are polyhedral sets, then

SE(A+,A−) = co(A+) + cone
[

co(A+) − co(A−)
]
.

Corollary 4.2 If co(A+) ∩ ri(co(A−)) �= ∅ then co(A−) ⊂ SE(A+,A−).

Proof A direct consequence of Theorem 4.1(i). �

The following result yields another characterization of strict efficiency.

Theorem 4.2 We have the following equivalence:

x ∈ ri(SE(A+,A−)) ⇐⇒ ri(co(A+)) ∩ ri(co({x} ∪ A−)) �= ∅.
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Proof Since the relative interior of a convex set coincides with the relative interior of its
closure and the relative interior of a sum of convex sets is the sum of their relative interiors
(Rockafellar 1970), the result is a direct consequence of Theorem 4.1 and of the following
technical result. �

Lemma 4.1 Let C ⊂ X and D ⊂ X be two convex sets. Then

ri(C) ∩ ri[co(D ∪ {x})] �= ∅ ⇐⇒ x ∈ ri(C) + ri[cone(C − D)].

Proof Assume that ri(C) ∩ ri[co(D ∪ {x})] �= ∅. According to Theorem 6.9 of Rockafellar
(1970), there exist c ∈ ri(C), d ∈ ri(D) and 0 < λ < 1 such that c = (1 − λ)d + λx. Since

x = c + μ(c − d) with μ := 1 − λ

λ
,

we conclude by Corollary 6.6.2 and the remark following Corollary 6.8.1 of Rockafellar
(1970) that μ(c − d) ∈ ri(cone(C − D)) and hence x ∈ ri(C) + ri[cone(C − D)].

Conversely, if x ∈ ri(C)+ri(cone(C−D)), there exist c1 ∈ ri(C) and ξ ∈ ri(cone(C−D))

such that x = c1 + ξ . Again, according to Corollary 6.6.2 and the remark following Corol-
lary 6.8.1 of Rockafellar (1970), we see that ξ is of the form ξ = λ(c2 − d) with c2 ∈ ri(C),
d ∈ ri(D) and λ > 0. Then

λ

λ + 1
d + 1

λ + 1
x = 1

λ + 1
c1 + λ

λ + 1
c2.

By Theorem 6.9 of Rockafellar (1970) the left-hand side of this equality belongs to
ri(co(D ∪ {x})) while the right-hand side is in ri(C) because the relative interior of C is
convex. Thus ri(C) ∩ ri(co(D ∪ {x})) �= ∅ and the proof is complete. �

4.2 Unconstrained efficiency

Proposition 4.1 A condition under which the efficient set coincides with the whole space is
given by:

ri(co(A+)) ∩ ri(co(A−)) �= ∅ ⇐⇒ E(A+,A−) = X.

Proof Let x be a point which is not efficient. Then x is strictly dominated by some y �= x. Set
H≥ := {z;γ (z − x) ≥ γ (z − y)} and H≤ := {z;γ (z − x) ≤ γ (z − y)}. We have A+ ⊂ H≥,
A− ⊂ H≤ and, as the dominance is strict, there exists a+

0 ∈ int(H≥) or a−
0 ∈ int(H≤). It

follows that ri(co(A+)) ∩ ri(co(A−)) = ∅ and the implication �⇒ is proved.
Conversely, if ri(co(A+))∩ ri(co(A−)) = ∅ then the convex sets co(A+) and co(A−) can

be properly separated (Rockafellar 1970). That implies there exist some p ∈ X, p �= 0, and
α ∈ R such that

⎧
⎪⎨

⎪⎩

co(A+) ⊂ H≥ := {z ∈ X: 〈p, z〉 ≥ α},
co(A−) ⊂ H≤ := {z ∈ X: 〈p, z〉 ≤ α},
sup{〈p, z〉: z ∈ co(A+)} > inf{〈p, z〉: z ∈ co(A−)}.

The last condition implies the existence of some a+
0 ∈ A+ such that a+

0 ∈ int(H≥) or the ex-
istence of some a−

0 ∈ A− such that a−
0 ∈ int(H≤). Then, consider the point x which is sym-

metric to a+
0 (resp. to a−

0 ) with respect to the hyperplane H = {z, 〈p, z〉 = α}. The point x
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(resp. a−
0 )is not efficient because strictly dominated by a+

0 (resp. x). Thus there exists a point
which is not efficient and the proof is complete. �

Theorem 4.3 We have the following properties:

(i) If both sets A+ and A− are not contained in a same hyperplane then SE(A+,A−) =
E(A+,A−).

(ii) If A+ and A− are contained in a same hyperplane H , then

ri(co(A+)) ∩ ri(co(A−)) = ∅ ⇐⇒ E(A+,A−) ⊂ H.

(iii) ri(co(A+)) ∩ ri(co(A−)) = ∅ ⇐⇒ SE(A+,A−) = E(A+,A−) �= X.

Proof (i) Assume that there exists a point x which is efficient without being strictly efficient.
This point is then dominated but not strictly dominated. Since the norm is induced by a scalar
product, that exactly means all the attracting and repulsive demand points are contained in
a same hyperplane and the result follows.

(ii) Now, assume that ri(co(A+)) ∩ ri(co(A−)) = ∅ and let us start by proving that, if
x /∈ H , then there exist p̂ ∈ X, p̂ �= 0, and α̂ ∈ R

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A+ ⊂ Ĥ≥ := {z ∈ X; 〈p̂, z〉 ≥ α̂},
A− ⊂ Ĥ≤ := {z ∈ X; 〈p̂, z〉 ≤ α̂},
A+ ∪ A− �⊂ Ĥ ,

〈p̂, x〉 < α̂.

Indeed, since ri(co(A+)) ∩ ri(co(A−)) = ∅, the sets co(A+) and co(A−) can be properly
separated (Rockafellar 1970). That means there exist some q ∈ X, q �= 0, and β ∈ R such
that

⎧
⎪⎨

⎪⎩

〈q, a+〉 ≥ β ∀a+ ∈ co(A+),

〈q, a−〉 ≤ β ∀a− ∈ co(A−),

∃a ∈ A+ ∪ A− such that 〈q, a〉 �= β.

If 〈q, x〉 < β then we can take p̂ := p and α̂ := α. If 〈q, x〉 > β then, any p̂ and α̂ of the
form p̂ = q + λp and α̂ = β + λα, with H := {z ∈ X; 〈p, z〉 = α}, and λ satisfying

λ
[〈p,x〉 − α

]
< 〈q, x〉 − β,

work because we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈p̂, a+〉 = 〈q, a+〉 + λ〈p,a+〉 ≥ β + λα = α̂ ∀a+ ∈ A+,

〈p̂, a−〉 = 〈q, a−〉 + λ〈p,a−〉 ≤ β + λα = α̂ ∀a− ∈ A−,

〈p̂, a〉 = 〈q, a〉 + λ〈p,a〉 �= α̂,

〈p̂, x〉 = 〈q, x〉 + λ〈p,x〉 < β + λα = α̂.

Note that the sign of λ depends on the position of x relative to H . Next, consider the point
y which is symmetric to x with respect to Ĥ . It is clear that y strictly dominates x and
thus x /∈ E(A+,A−). We finally have proved that E(A+,A−) ⊂ H . The reverse implication
directly follows from Proposition 4.1.
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(iii) Assume that x /∈ SE(A+,A−). Then x is dominated by some y �= x. Set H≥ :=
{z;γ (z − x) ≥ γ (z − y)} and H≥ := {z;γ (z − x) ≥ γ (z − y)}. We have A+ ⊂ H≥,
A− ⊂ H≤. If A+ ∪A− �⊂ H := {z;γ (z−x) = γ (z−y)} then y strictly dominates x and thus
x /∈ E(A+,A−). If A+ ∪ A− ⊂ H then assertion (ii) shows that E(A+,A−) ⊂ H . However,
since x /∈ H , we deduce that x /∈ E(A+,A−). Consequently E(A+,A−) ⊂ SE(A+,A−)

and these two sets coincide. The proof ends by observing that Proposition 4.1 implies that
E(A+,A−) �= X. �

4.3 Unconstrained weak efficiency

Theorem 4.4 A characterization of weakly efficient points is given by

x ∈ WE(A+,A−) ⇐⇒ co(A+) ∩ co({x} ∪ A−) �= ∅.

Proof Suppose that co(A+) ∩ co({x} ∪ A−) = ∅. The sets co(A+) and co({x} ∪ A−) are
convex and compact. Thus, by a classical separation theorem they can be strictly separated
by an hyperplane. Thus there exists some p ∈ X, p �= 0, and α ∈ R such that

{
co(A+) ⊂ H> := {z ∈ X; 〈p, z〉 > α} and

co({x} ∪ A−) ⊂ H< := {z ∈ X; 〈p, z〉 < α}.

Now consider the point y which is symmetric to x with respect to H := {z ∈ X, 〈p, z〉 = α}.
Since γ derives from a scalar product, H> and H< can be equivalently redefined via x and
y as H> = {z ∈ X; γ (z − x) > γ (z − y)} and H< = {z ∈ X; γ (z − x) < γ (z − y)}. It
immediately follows that y strongly dominates x and thus x /∈ WE(A+,A−).

Conversely suppose that x /∈ WE(A+,A−). Then x is strongly dominated, i.e., there ex-
ists y ∈ X, y �= x, such that

{
∀a+ ∈ A+, γ (a+ − x) > γ (a+ − y) and

∀a− ∈ A−, γ (a− − x) < γ (a− − y).

Thus A+ ⊂ H> := {z ∈ X; γ (z − x) > γ (z − y)} and A− ⊂ H< := {z ∈ X; γ (z − x) <

γ (z − y)}. It follows that co(A+) ⊂ H>, co({x} ∪A−) ⊂ H< and consequently co(A+) and
co({x} ∪ A−) are disjoint. �

As already mentioned in the introduction, this very simple characterization of weak effi-
ciency is somewhat surprising due to the non-convexity induced by the presence of repulsive
demand points. Unfortunately this result, the proof of which is completely based on the spe-
cific properties induced by the scalar product, cannot be extended to arbitrary norms or in
presence of constraints. A major difficulty consists in finding a convenient substitute for
co(A+) and co({x} ∪ A−) due to the lack of nice properties of the set of points equidistant
to two points (which is the bisector in the Euclidean plane).

Note that in the pure attracting case, i.e. if A− = ∅, the efficiency condition merely re-
duces to co(A+) ∩ {x} �= ∅. We rediscover the well known property asserting that the set of
weakly efficient points coincides with the convex hull of the demand points.

We also should indicate that, in presence of repulsive demand points, the set of weakly
efficient points is never bounded. More precisely, we have the following results which are
direct consequences of Theorem 4.4 and the proofs of which are omitted.
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Corollary 4.3 The following assertions are equivalent:

(i) WE(A+,A−) is compact;
(ii) A− is empty;

(iii) WE(A+,A−) = co(A+).

Proposition 4.2 A condition under which the weakly efficient set coincides with the whole
space is given by

co(A+) ∩ co(A−) �= ∅ ⇐⇒ WE(A+,A−) = X.

Now, we can give a complete geometrical description of the efficient sets.

Theorem 4.5 Assume that A+ and A− are both non empty and consider the set K :=
co(A+) + cone[co(A+) − co(A−)]. Then:

(i) E(A+,A−) = WE(A+,A−) or E(A+,A−) = SE(A+,A−).
(ii) If co(A+) ∩ co(A−) = ∅ then

SE(A+,A−) = E(A+,A−) = WE(A+,A−) = K.

The proof of Theorem 4.5 requires the following technical result.

Lemma 4.2 Let C ⊂ X and D ⊂ X be two nonempty convex sets such that C ∩D = ∅. Then

C ∩ co(D ∪ {x}) �= ∅ ⇐⇒ x ∈ C + cone(C − D).

Proof The justification is very similar to the proof of Lemma 4.1. Assume that C ∩ co(D ∪
{x}) �= ∅. Then there exist c ∈ C, d ∈ D and 0 ≤ λ ≤ 1 such that c = (1 − λ)d + λx. Since
C ∩ D = ∅, we have λ > 0. Then

x = c + 1 − λ

λ
(c − d)

and this asserts that x ∈ C + cone(C − D).
Conversely, if x ∈ C + cone(C − D), there exist c1, c2 ∈ C, d ∈ D and λ ≥ 0 such that

x = c1 + λ(c2 − d). Then

λ

λ + 1
d + 1

λ + 1
x = 1

λ + 1
c1 + λ

λ + 1
c2.

The left-hand side of this equality is in co(D ∪ {x}) while the right-hand side is in C. Thus
C ∩ co(D ∪ {x}) �= ∅ and the proof is complete. �

Proof of Theorem 4.5 Let us start by proving (i) and assume that E(A+,A−) �=
WE(A+,A−). According to Proposition 4.1, we have

ri(co(A+)) ∩ ri(co(A−)) = ∅

and we conclude by Theorem 4.3(iii).
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Now let us prove (ii). Consider some x /∈ SE(A+,A−). Then, by Theorem 4.1, x /∈ K .
Since co(A+) ∩ co(A−) = ∅, Lemma 4.2 shows that co(A+) ∩ co({x} ∪ A−) = ∅. By The-
orem 4.4 we conclude that x /∈ WE(A+,A−). Thus WE(A+,A−) ⊂ SE(A+,A−) and finally
the sets SE(A+,A−), E(A+,A−) and WE(A+,A−) coincide with K . �

In presence of attracting and repulsive demand points it should be noted that the sets
SE(A+,A−), E(A+,A−) and WE(A+,A−) may no longer coincide as in the pure attract-
ing case. As example consider in the plane X = R

2 the sets A+ = {a+
1 , a+

2 } and A− =
{a−

1 , a−
2 , a−

3 } with a+
1 = (0,0), a+

2 = (0,−1), a−
1 = (−1,0), a−

2 = (1,0) and a−
3 = (−1,1)

and take x = (1,1). We have co(A+) ∩ co(A−) �= ∅ and thus WE(A+,A−) = R
2. However,

x, which is weakly efficient, is strictly dominated by y = (1,−1) and hence is not efficient.

Corollary 4.4 The sets E(A+,A−) and WE(A+,A−) are closed and convex.

4.4 Constrained efficiency

The following very simple example gives an idea of the difficulty to obtain sufficient condi-
tions for efficiency in presence of constraints. Consider in the plane X = R

2 the attracting
demand point a+ = (0,1) and the repulsive demand point a− = (0,0). If we consider as set
of constraints the set � := co{b1, b2, b3}, with b1 = (−2,0), b2 = (−1, 1

2 ) and b3 = (0,− 1
2 ),

the feasible point x = (−2,0) if weakly efficient. However if we slightly move b3 in the
direction δ = (0,−1), e.g. if we consider the set of constraint � := co{b1, b2, b4} with
b4 = (0,−1), the point x becomes not weakly efficient because strongly dominated by b4.
Note that b4 is, among the feasible points, the one which is the farthest from x. The condi-
tion of weak efficiency hence does not only depend on the geometry of � at x. This is due to
the non convexity induced by the repulsive demand point. Note also that x remains locally
weakly efficient.

The following relationship between WE(A+,A−) and WE(A+,A−,�) provides a suffi-
cient condition for weak efficiency. However this condition just allows to reach a small part
of the constrained weakly efficient points as will be illustrated.

Proposition 4.3 If � ⊂ X is a nonempty closed convex set of constraints, then

Proj� WE(A+,A−) ⊂ WE(A+,A−,�).

Proof Consider some x of the form x = Proj�(x) with x ∈ WE(A+,A−) and assume that x

is not weakly efficient. Then, there exists y ∈ � such that

A+ ⊂ H> := {z; γ (z − x) > γ (z − y)} and

A− ⊂ H< := {z; γ (z − x) < γ (z − y)}.

The norm being strictly convex, x is the unique feasible point minimizing the distance be-
tween x and �. It follows that x ∈ H< and co({x} ∪ A−) ⊂ H<. Since co(A+) ⊂ H> we
deduce that

co({x} ∪ A−) ∩ co(A+) = ∅
and we get a contradiction with Theorem 4.4. �
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The following example shows that, in general, there may exist constrained weakly ef-
ficient points which cannot be obtained as projection of an unconstrained weakly efficient
point. Consider in the plane X = R

2 the sets A+ = {a+ = (0,0)} and A− = {a− = (0,1)}
and take as set of constraints � the line segment [b, c] with b = (−1,0) and c = (−3,0).
The set of weakly efficient points is the negative half line on the y-axis. The projection of
the set WE(A+,A−) onto � is then reduced to the single point b. But one can easily see that
all points in � are weakly efficient.

Note that all the points of � satisfy the necessary conditions of Corollary 3.1. At a point
x ∈ ri(�) we have two feasible directions, δ1 = (1,0) and δ2 = (−1,0) and these directions
generate the sets Qδ1 = R

− ×R and Qδ2 = R
+ ×R. One can easily verify that a+ ∈ x +Qδ2

and a− ∈ x + Pδ1 . At the point c (resp. b) we have one feasible direction δ1 (resp. δ2) and
a− ∈ c + Pδ1 (resp. a+ ∈ b + Qδ2 ).

4.5 Computing the efficient sets in the plane

In this section we show how to compute the efficient sets in dimension two. According to
the results of the previous section, we just need to consider the case co(A+) ∩ co(A−) = ∅
for which all the efficient sets SE(A+,A−, E(A+,A−) and WE(A+,A−) coincide.

Theorem 4.6 Assume that A+ ⊂ R
2 and A− ⊂ R

2 are finite sets containing n and m de-
mand points respectively, and that co(A+) ∩ co(A−) = ∅. Then, SE(A+,A−) can be com-
puted in O(nm) + O(n logn) time.

Proof According to Theorem 4.5 we have

SE(A+,A−) = co(A+) + cone[co(B)] with B = A+ − A−.

It is well known that we can compute co(A+) in O(n logn) time. A procedure which pro-
vides a list L containing the extreme points of co(A+) in clockwise order in O(n logn) time
can be found e.g. in De Berg et al. (1998). This procedure needs to test whether a point r

lies left or right of the directed line through two other points p and q . Let p = (px,py),
q = (qx, qy) and r = (rx, ry),. This can be done by testing the sign of the scalar product

�(p,q, r) := 〈u, r〉 with u := (py − qy, qx − px).

Clearly, r lies left of the line when �(p,q, r) > 0 and lies right of the line when
�(p,q, r) > 0. This primitive operation required in most geometrical algorithms will also
be used below.

Consider the computation of the convex cone C := cone[co(B)] generated by the set B .
The sets A+ and A− are compact and we have co(A+) ∩ co(A−) = ∅. Thus C is closed and
pointed. Since we are in dimension two, C is polyhedral. Moreover either C has a nonempty
interior, in which case it has two extreme rays, or C has an empty interior, in which case C

is a half-line and it has only one extreme ray. The problem is then to determine, among the
elements of B a pair of them, say bi and bj , for which the angle ∠bi0bj is maximal. This
can be done by the following procedure described in a style of pseudocode
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Algorithm 1

Input. A set B = {b1, b2, . . . , b�} of � points contained in an open halfplane passing through
the origin.

Output. Two extreme rays r+ and r−.

1. r+ ← b1 and r− ← b1

2. for all points bi , i �= 1
3. do compute �+ := �(0, r+, bi)

4. if �+ > 0 then r+ ← bi

5. do compute �− := �(0, r−, bi)

6. if �+ < 0 then r− ← bi

7. return r+ and r−.

Applying the procedure with B = {e − a−; e ∈ Ext(co(A+)), a− ∈ A−} where
Ext(co(A+)) = {e1, e2, . . . , ek} is the set of k ≤ n extreme points of co(A+) and � = km,
clearly the total time required for computing the extreme rays r+ and r− is O(nm). Once
these rays are obtained it remains to generate the extreme points of SE(A+,A−). The proce-
dure used to compute the extreme rays can be adapted for computing the two extreme points
e(r+) and e(r−) which are adjacent to the two extreme directions {e(r+) + λr+;λ ≥ 0} and
{e(r−) + λr−;λ ≥ 0} of SE(A+,A−). We recall that an extreme direction of a convex set is
a half-line face. We can proceed as follows.

Algorithm 2

Input. The list L = {e1, e2, . . . , ek} of the extreme points of co(A+) in clockwise order and
the two extreme rays r+ and r−.

Output. The list Lwe containing the extreme points of WE(A+,A−).

1. k− ← 1, k+ ← 1, e− ← e1, e+ ← e1.
2. for all points ei ∈ L, i �= 1
3. do compute �+ := �[e+, e+ + r+, ej ]
4. if �+ > 0 then e+ ← ei and k+ ← i

5. do compute �− := �[e−, e− + r−, ej ]
6. if �+ < 0 then e− ← ei and k− ← i

7. return the list Lwe = {ek+
, ek++1, . . . , ek−}.

Clearly the total time required for computing ek+
and ek−

is O(k). Finally the total time
to compute SE(A+,A−) is O(n logn) + O(nm). �

5 Conclusion

In this paper, we have developed sufficient and/or necessary conditions of efficiency for the
problem of locating a facility in presence of attracting and repulsive interactions.

In the absence of constraint, we have completely clarified the case of a norm induced by
a scalar product. The efficient set coincides with the strictly efficient set and/or coincides
with the weakly efficient set. When the convex hull of the attracting demand points does not
meet the convex hull of the repulsive demand points, the three sets coincide. The weakly
efficient set is the whole space iff these convex hulls overlap and a similar result holds for
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the efficient set when we replace the convex hulls by their relative interiors. We also have
shown that, in the plane and with a finite set of demand points, the efficient sets can be
computed in polynomial time.

With closed convex constraints and when an arbitrary norm is used, we have provided
necessary conditions for efficiency in terms of Qδ sets. An open question is clearly to char-
acterize efficiency with an �p norm, the �1 norm, or more generally with a polyhedral norm.
Some results could be expected in the polyhedral case in presence of only one repulsive
demand point.

It may also be possible to derive properties of efficiency via duality arguments as in
Durier and Michelot (1986), Ndiaye and Michelot (1998). All these questions are presently
under investigation.

Acknowledgement We would like to thank the anonymous referees for their remarks and valuable sugges-
tions in reviewing this paper.
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