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Abstract

It is common to tolerate that a system’s performance be unsustain-
able during an interim period. To live long however, its state must
eventually satisfy various constraints. In this regard we design here
differential inclusions that generate, in one generic format, two dis-
tinct phases of system dynamics. The first ensures feasibility in finite
time; the second maintains that property forever after.
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1 Introduction

To make sense, or simply to survive, a constrained system must, sooner or
later, evolve within some, maybe moving subset of the ambient state space.
In other words: the dynamics had better become sustainable and the system
itself viable. Concerns with viability have spurred substantial development
in system theory.

Set-valued analysis has thereby acquired a key role. Notably, set-valued
differentials turn out useful for control and design of processes geared at
feasibility, optimality, or stability.1 Important examples include subgradient
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projection and adaptive play among noncooperative agents. Continuous-
time, deterministic versions of such processes often assume the generic form

ẋ(t) ∈M(t, x(t))− P (t, x(t)). (1)

Here M(t, x(t)) and P (t, x(t)) are subsets of a real Banach space X. Typically,
M is the major moving force, and often monotone, while P is a penalty term
appended to ensure or eventually maintain feasibility.

By a solution to (1) is understood an absolutely continuous profile t ∈
[0, T [ 7→ x(t) ∈ X, which starts at a specified initial point x(0), extends up
to possibly maximal time T ∈ ]0,+∞], and satisfies (1) almost everywhere
(a.e.). Several studies address existence and uniqueness of solutions; see [2],
[4], [5], [7], [17], [22]. Such issues are however, not discussed here. In fact, we
shall, in the main, simply presume existence, ignore uniqueness, and rather
explore the following problem:

Suppose x(t) must hit a nonempty closed set S(t) ⊂ X within a prescribed
time limit, and follow S(t) forever after. It may well happen that x(0) /∈
S(0). Then, can some proper choice P (t, x(t)) forces x(t) permanently into
S(t) within critical time?

Put differently: beyond some deadline the state should perfectly track a
moving set or state space S(t). For brevity declare x(t) feasible if x(t) ∈ S(t).
Our chief purpose is to bring out constructive procedures that eventually
make the state feasible. Not surprisingly, the distance

dS(x) := d(x, S) := inf {‖x− s‖ : s ∈ S}

from x = x(t) to S = S(t) will be instrumental. That entity is already
remarkable in several ways. Besides being central in nonsmooth analysis it
facilitates analysis and design of exact penalty methods in optimization. Fur-
ther, it relates to the geometry of closed sets and defines topologies on such
[6]. Seemingly less known however, is its applicability in system dynamics
that cannot violate feasibility for long time.

Because the distance and other auxiliary functions are nonsmooth, gen-
eralized subdifferentials must here take the place of gradients. However, to
make the paper accessible, little knowledge or review of nonsmooth analysis
is required. This fits the very simple and basic idea, namely: Estimates of
the time to absorption could derive from steadily reducing the distance to
feasibility. Such reduction is achievable in various ways. Sections 3&4 use
anti-gradients of dS(t)(x); Section 5 invokes flows that aim at feasibility, and
Section 6, upon presuming that S(t) = S = {f ≤ 0} for some lsc function
f : X→ R ∪ {±∞} , employs steepest-descent like methods.
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After preliminary observations, following shortly, Section 3 handles in-
stances with possibly non-regular subsets S(t). Section 4 presumes regular
sets. Sections 5 considers convex-like cases, and, as said, Section 6 deals with
stationary sublevel sets of the form {f ≤ 0} .

2 Preliminaries

Intuition tells that some part P (t, x(t)) of a normal cone NS(t)(x(t)) to S(t)
at x(t) may serve well if already x(t) ∈ S(t).2 But outside S(t) another force
must be put to work. That force should there reduce the distance

D(t) := dS(t)(x(t))

from x(t) to feasibility. On that account we shall be guided by the follow-
ing auxiliary result. To simplify its statement, and to avoid repetitions, let
henceforth δ : [0, T [ → R+ be Lebesgue integrable with limt↗T

∫ t
0
δ > D(0),

and define a deadline t̄ = t̄(D(0), δ) implicitly by

t̄ := inf

{
t : D(0) ≤

∫ t

0

δ

}
. (2)

Lemma 1. (On finite time absorption) Let t ⇒ S(t) be outer continuous
on [0, T [. Suppose D(·) is absolutely continuous along a solution x(·) of (1)
with Ḋ(t) ≤ −δ(t) almost whenever x(t) /∈ S(t). Then, if the state is feasible
at some instant, it remains so thereafter. Moreover, the state will become
feasible no later than time t̄. On no proper interval is Ḋ > 0 a.e.

Proof. Suppose x(t) /∈ S(t) at time t > 0, but the state was already
feasible at some prior time τ ∈ [0, t[. On that assumption let

t− := sup {τ ∈ [0, t] : x(τ) ∈ S(τ)} .

Given S(·) outer continuous and x(·) continuous, it follows that t− < t. This
yield the absurdity

0 < D(t) = D(t−) +

∫ t

t−
Ḋ ≤ D(t−)−

∫ t

t−
δ ≤ D(t−) = 0.

Similarly, if x(τ) /∈ S(τ) for all τ ∈ [0, t], then

0 < D(t) = D(0) +

∫ t

0

Ḋ ≤ D(0)−
∫ t

0

δ,

2When M(t, x(t)) = {0} and P (t, x(t)) is the Clarke normal cone to S(t), we get a
so-called sweeping process studied by [7], [12], [24], [25], [26], [30] and others.
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this implying
∫ t

0
δ < D(0), whence t < t̄. If Ḋ > 0 on some proper interval

[t−, t+] ⊂ [0, T [, we can take x(t−) feasible to get D(t+) > 0 and thereby
contradict the feasibility of x(t+). �

In short, what imports is to have D(·) absolutely continuous and Ḋ(·) al-
most always sufficiently negative while x(t) /∈ S(t). For the sake of absolute
continuity henceforth suppose S(t) moves so smoothly that∣∣dS(τ)(x)− dS(t)(x)

∣∣ ≤ |ϑ(τ , x)− ϑ(t, x)| (3)

when τ , t ≥ 0, and x ∈ X. Here, by assumption, ϑ : R+×X→ R satisfies

lim
τ→t

ϑ(τ , x(τ))− ϑ(t, x(τ))

τ − t
=

∂

∂t
ϑ(t, x) (4)

whenever t ≥ 0, and an absolute continuous x(τ) converges to x as 0 ≤ τ → t.
Further, to have Ḋ(t) almost always sufficiently negative while x(t) /∈

S(t), just here, for simplicity in argument, assume X finite-dimensional. Then
the antigradient −∇dS(t)(·), if any, would serve well because it points in
direction of steepest distance descent. The trouble is that ∇dS(t)(·) often
fails to exist. Gradient methods have great appeal though. They tempt us
to replace ∇ by a subdifferential ∂ and posit

P (t, x) := µ(t, x)∂dS(t)(x), (5)

where µ(t, x) ≥ 0 is a speed or scale factor, and ∂ a suitable subdifferential.
In terms of geometry and projection

ΠS(t)(x) :=
{
s ∈ S(t) : ‖x− s‖ = dS(t)(x)

}
,

with X is finite-dimensional and ∂ the Fréchet or Mordukhovich subdifferen-
tial,

∂dS(t)(x) =
x− ΠS(t)(x)

dS(t)(x)
for x /∈ S(t); (6)

see Proposition 2.1 in [21] and Example 8.53 in [28].
Equation (6) tells three things. First, each anti-subgradient, belonging to

−∂dS(t)(x) at x /∈ S(t), has unit length, and it points from x towards a best
approximation in S(t). Second, regular subdifferentiability of dS(t)(·) obtains
at x /∈ S(t) when ΠS(t)(x) reduces to a singleton. Third, outside S(t) the
Clarke subdifferential

∂CdS(t)(x) =
conv

{
x− ΠS(t)(x)

}
dS(t)(x)
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may often appear somewhat ”vague” by including vectors that do not point
”perpendicularly” towards S(t).

In finite dimensions these observations lead us to employ (5) as a major
vehicle - and to favor application of the Fréchet or Mordukhovich ∂. Further,
they speak for µ(t, x) being large enough in (5) to majorize

‖M(t, x)‖ := sup {‖m‖ : m ∈M(t, x)}

plus
∣∣ ∂
∂t
ϑ(t, x)

∣∣ if S(t) moves, and still provide reduced distance. In sum,
along a solution x(·) of (1), while x = x(t) /∈ S(t), we shall require that

µ(t, x)d2(0, ∂dS(t)(x)) ≥
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ δ(t) + ‖M(t, x)‖ a.e. (7)

Broadly (7) requires that µ(t, x) offsets drift of S(t), accounts for the desired
rate of distance decay δ(t), and, in addition, dominates all outward oriented
forces in M(t, x) if any. When δ(t) > 0, inequality (7) couldn’t possibly hold
if 0 ∈ ∂dS(t)(x) for some x /∈ S(t). It is paramount therefore, that dS(t)(x)
has a non-zero ”slope” at each non-feasible x; see Lemmata 2&3 and (11).

One may let δ(t) depend on the state x(t) as well. The important require-

ment remains though, that
∫ T−

0
δ(t, x(t))dt > D(0). Clearly, a specification

of that last sort makes it harder to estimate the absorption time t̄.
There are good reasons to push beyond finite-dimensional settings. Then

any ∂ maps into the dual space X∗. Accordingly, to make ∂dS(t)(·) part of a
primal force, it must be brought back via a duality mapping

Dx∗ :=
{
x ∈ X : 〈x∗, x〉 = ‖x∗‖∗2 = ‖x‖2}

from X∗ into its predual X. This done, D∂dS(t) is apt to work well. So, apart
from Sections 5 & 6, we let (1) assume the form

ẋ ∈M(t, x)− µ(t, x)D∂dS(t)(x). (8)

With X reflexive and ‖·‖ strictly convex, D becomes most amiable, being
then single-valued and globally defined. And clearly, if X is Hilbert, one can
dispense with D. We find the greater generality of Banach spaces worthwhile
though, to see precisely where some key arguments must be qualified. As one
might expect, differentiability properties of the norm will become crucial.

The penalty term P (t, x) = µ(t, x)D∂dS(t)(x) separates, in multiplicative
manner, the direction ∈ D∂dS(t)(x) from the speed µ(t, x) along that line.
There is of course considerable latitude in choosing the latter, but taken
together these offer a closed loop, feed-back control that aims at permanent
feasibility.

5



3 Tracking Non-Regular Sets

For system (8) to aim at feasibility, the selection from D∂dS(t)(x) would do
well by being ”perpendicular” or almost normal to S(t) at some best feasible
approximation. With X finite-dimensional and a Fréchet or Mordukhovich
∂, formula (6) already displays that property. To pursue and extend this
geometric perspective, we fix S for a while and refer, for any ε ≥ 0, to

NF
ε (x, S) :=

{
x∗ ∈ X∗ : lim supx′∈S→x

〈x∗, x′ − x〉
‖x′ − x‖

≤ ε

}
as the set of (Fréchet) ε-normals to S at x ∈ S. When the parameter ε is
nil, it requires no mention, and elements of NF (x, S) := NF

0 (x, S) are simply
called Fréchet normals. The Mordukhovich (basic or limiting) normal cone
N [22] emerges via a weak∗ sequential outer limit as

N(x, S) :=
{
x∗ ∈ X∗ : ∃xk ∈ S → x, x∗k ∈ NF

εk
(x, S)→w∗ x∗, and εk → 0+

}
.

Derived from that cone N is a Mordukhovich subdifferential ∂M that operates
on functions f : X → R∪{±∞} and points x ∈ domf := f−1(R). As usual,
it is defined in terms of the epigraph epif := {(x, r) ∈ X× R : f(x) ≤ r} by

∂Mf(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N((x, f(x)), epif)} .

Much simpler is the definition of the Dini subdifferential :

∂Df(x) :=

{
x∗ ∈ X∗ : lim infh→0+

f(x+ hv)− f(x)

h
≥ 〈x∗, v〉 ∀v

}
.

And so is that of the Fréchet subdifferential :

∂Ff(x) :=
{
x∗ ∈ X∗ : lim infx′→x

f(x′)−f(x)−〈x∗,x′−x〉
‖x′−x‖ ≥ 0

}
=
{
x∗ ∈ X∗ : (x∗,−1) ∈ NF ((x, f(x)), epif)

}
.

f is declared Mordukhovich regular at x ∈ domf if ∂Mf(x) = ∂Ff(x) and
Clarke regular there if ∂Cf(x) = ∂Df(x).

Of chief interest here is regularity of the distance function. In finite
dimensions, Clarke regularity of that particular function coincides with Mor-
dukhovich regularity, and it amounts to the requirement that the Euclidean
projection on the set at hand be a singleton. With infinite dimensions, Clarke
regularity of the distance function does not imply its Fréchet-normal reg-
ularity. In the reflexive case, the Fréchet normality is equivalent to the
Mordukhovich one of the distance function; see [10] and references therein.
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Important characterizations for the Hilbert setting are given in [27].

To abbreviate some repeated statements, for any subdifferential ∂, we write
∂ ⊆ ∂C to signal that ∂l(x) ⊆ ∂C l(x) whenever l : X→ R∪{±∞} is finite-
valued and locally Lipschitz near x.3 Further, it is tacitly assumed that ∂
coincides with the customary subdifferential of convex analysis when oper-
ating on a convex function f : X→ R∪{+∞} .

Theorem 1. (Finite time absorption) Choose any subdifferential ∂ ⊆ ∂C .
Suppose x(·) solves (8) on [0, T [ . Also suppose −dS(t)(·) is Clarke regular
outside S(t). Then, under condition (7), x(t) ∈ S(t) for each t ≥ t̄.

The proof derives directly from Lemma 1 after invoking two auxiliary re-
sults, the following being of independent interest.

Lemma 2. (Derivative of the distance in anti-subgradient direction) Fix
here a nonempty closed stationary S ⊂ X, and choose any ∂ ⊆ ∂C. Suppose
v ∈ D∂dS(x), and that −dS(·) is Clarke regular at x. Then ‖v‖ ≤ 1, and

−‖v‖ ≤ lim
h→0+

dS(x− hv)− dS(x)

h
≤ −‖v‖2 . (9)

If moreover, v 6= 0, then x /∈ S.

Proof. Let dCS (x; v) denote the Clarke directional derivative of dS(·) at x in
direction v. Choose a subgradient g ∈ ∂dS(x) such that v ∈ Dg. Because
∂dS(x) ⊆ ∂CdS(x) we get ‖v‖2 = 〈g, v〉 ≤

dCS (x; v) = sup
v∗∈∂CdS(x)

〈v∗, v〉 = sup
v∗∈∂C(−dS(x))

〈v∗,−v〉 = sup
v∗∈∂D(−dS(x))

〈v∗,−v〉

≤ lim infh→0+

−dS(x− hv) + dS(x)

h
= − lim suph→0+

dS(x− hv)− dS(x)

h
.

Consequently,

lim suph→0+

dS(x− hv)− dS(x)

h
≤ −‖v‖2 .

Also, because dS(x) ≤ dS(x− hv) + h ‖v‖ ,

lim suph→0+

−dS(x− hv) + dS(x)

h
≤ ‖v‖ .

3What we need is merely that ∂dS(x) ⊆ ∂CdS(x) whenever S ⊆ X is closed and x ∈ X.
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Invoking once again the Clarke regularity of −dS(·) at x, all the lim inf and
lim sup in this proof are customary limits. Thus (9) follows and thereby
‖v‖ ≤ 1. Moreover, because dS ≥ 0, if v 6= 0, the rightmost inequality in (9)
implies x /∈ S. �

With X finite-dimensional and ∂ ∈
{
∂F , ∂M

}
, equation (6) already told

that ‖v‖ = 1 when v ∈ D∂dS(x) and x /∈ S. When ∂ = ∂F the same property
holds in any Banach space; see Theorem 1.99 in [22]. It is also valid with X
Asplund and ∂ = ∂D.

Still with X Asplund, ∂C ⊆ clconv∂M, and it would suffice in Lemma 2
that −dS(·) be Mordukhovich regular at x.

Lemma 3. (Monotone approach to feasibility) Choose any subdifferential
∂ ⊆ ∂C. Consider a solution x(·) to (8) at a time t ≥ 0 and non-feasible
state x = x(t) where −dS(t)(·) is Clarke regular, all time derivatives Ḋ(t),
∂
∂t
ϑ(t, x), ẋ = ẋ(t) exist, and (7) applies. Then Ḋ(t) ≤ −δ(t).

Proof. For τ > t and h := τ − t the differentiability of x(·) at x = x(t)
yields

x(τ) = x+ ẋh+ ε(h)B

where B denotes the closed unit ball in X, and ε(h)/h→ 0 as h→ 0. Further,
because dS(t)(·) is Lipschitz with modulus 1,

D(τ)−D(t)

τ − t
=
{
dS(τ)(x(τ))− dS(t)(x(τ)) + dS(t)(x(τ))− dS(t)(x(t))

}
/h

≤ 1

τ − t
|ϑ(τ , x(τ))− v(t, x(τ))|+ 1

h
[dS(t)(x+ hẋ)− dS(t)(x) + ε(h)].

By the said Lipschitz continuity

dS(t)(x+ hẋ) ≤ dS(t)(x+ h(ẋ−m)) + h ‖m‖ .

Here ẋ−m = −µv with m ∈M(t, x), v ∈ D∂dS(x) and µ ≥ 0. Consequently,
Lemma 2 gives

lim
h→0+

dS(t)(x− hµv)− dS(t)(x)

h
≤ −µ ‖v‖2 ≤ −µd2(0, ∂dS(t)(x))

hence, because x /∈ S(t) and (7) applies,

Ḋ(t) ≤
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣− µd2(0, ∂dS(t)(x)) + ‖m‖ ≤ −δ(t). �
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A Banach space is declared uniformly Gâteaux smooth if its norm is uni-
formly Gâteaux differentiable on the unit sphere.

Theorem 2. Suppose X is uniformly Gâteaux smooth. Choose any subdif-
ferential ∂ ⊆ ∂C. Suppose x(·) solves (8) on [0, T [ . Then, under condition
(7), x(t) ∈ S(t) for each t ≥ t̄.

Proof. In this case −dS(·) has a Gâteaux derivative that coincides with
(−dS)C(x; ) whenever x /∈ S; see [9]. �

Note that (7) came into play while the state still stayed infeasible. By con-
trast, for the purpose of maintained feasibility it suffices that

µ(t, x) ≥
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ ‖M(t, x)‖ almost whenever x ∈ S(t). (10)

Under this proviso, once x(t) becomes feasible, it will remain so with δ = 0
from that moment onwards. So, the dynamics have two phases: a first and
transient period, if any, is followed by a subsequent viable regime [5]. In
many settings, ∂dS(x) is part of the unit sphere when x /∈ S; see e.g. (6) or
Theorem 1.99 in [22]. On such occasions (7) amounts of course to

µ(t, x) ≥
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ δ(t) + ‖M(t, x)‖ almost whenever x /∈ S(t).

In any case, a larger δ brings about earlier absorption. Further, if x(0) /∈
S(0), equation (2) already tells that δ must be positive during some transient
time lapse. To see the same thing differently, let for example, S be stationary
convex in a Hilbert space, M = ∂dS, and

µ(t, x)d2(0, ∂dS(t)(x)) = µ(t, x) = δ(t) + ‖M(x)‖ = δ(t) + 1

for x /∈ S. Then, ẋ(t) = 0 if δ(t) = 0 while x(t) /∈ S, to the effect that
absorption never happens.

It makes, of course, a difference which ∂ operates in (8). For example,
let M = {0} , fix S = {x ∈ R2 : x2 ≥ − |x1|} , and posit µ = 1, to have the
inclusion ẋ ∈ −∂dS(x). With x(0) = (−

√
2, 0) the subdifferential ∂M brings

the state to hit bdS where |x1| = 1 at time 1. Alternatively, if ∂C is at the
steering wheel, the state may encounter bdS any place where |x1| ≤ 1 at a
time t ∈

[
1, 1 +

√
2
]
. This S isn’t regular at the origin.

Fairly often, and quite naturally, ∂M is small but non-convex. As a result,
(8) generates several trajectories. To illustrate, fix S as a finite union of
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disjoint closed sets in a Hilbert space. Posit M = {0} , µ = 1, and x(0) /∈ S.
Then, with ∂ = ∂M (8) reads ẋ ∈ −∂MdS(x), an inclusion that generates
precisely as many trajectories (each rectilinear) as x(0) has closest feasible
points.

4 Pursuing Regular Sets

This section specializes in two ways. For one, the space X is now real Hilbert
with inner product 〈·, ·〉 . For the other, sets S(t) are here presumed regular.

Operating in such a setting brings several advantages: First, the duality
mapping D can be dispensed with. Second, any x(·) which is absolutely
continuous on an interval [τ , t] satisfies x(t) = x(τ) +

∫ t
τ
ẋ. Third, proofs

becomes simpler and more direct.
When ∂Ff(x) coincides with the Clarke subdifferential ∂Cf(x), we say

that f is subdifferentially regular at x. Such regularity of the extended in-
dicator IS amounts to have the Fréchet normal cone NF

S (x) coincide with
the Clarke normal cone NC

S (x) at x ∈ S. When so happens, we declare S
normally regular at its member x. Bounkhel and Thibault [10] show that this
property is equivalent to the subdifferential regularity of the distance func-
tion dS(·) at x ∈ S. When normal regularity prevails at each of its points, we
simply say that S is normally regular.

Recently, Clarke, Stern and Wolenski [15] characterized closed subsets S
of X for which dS(·) is continuously differentiable on S + βB for some posi-
tive β, B being the closed unit ball. Local versions of such differentiability
outside S have later been studied by Poliquin, Rockafellar and Thibault [27].
Their results are useful for proving the next:

Theorem 3. (Finite time absorption into a moving, maybe non-convex
set) Suppose dS(t)(·) is subdifferentially regular along a solution x(·) to (8)
with ∂ ⊆ ∂C . Then (7) entails that x(t) ∈ S(t) for all t ≥ t̄.

Proof. Assumption (3) ensures that D(·) is absolutely continuous. Fix
any time t ≥ 0 at which x := x(t) /∈ S(t). Suppose Ḋ(t), ∂

∂t
ϑ(t, x) and ẋ(t)

all exist. Then, for τ > t we have

D(τ)−D(t) = dS(τ)(x(τ))− dS(t)(x)

= dS(τ)(x(τ))− dS(t)(x(τ)) + dS(t)(x(τ))− dS(t)(x)

≤ |ϑ(τ , x(τ))− ϑ(t, x(τ))|+ dS(t)(x(τ))− dS(t)(x).

From Poliquin, Rockafellar, and Thibault [27] we know that dS(t)(·) has a
Fréchet derivative x∗ at x with ‖x∗‖ = 1. Divide the preceding inequality by
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τ − t and let τ → t+ to obtain

Ḋ(t) ≤
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ 〈x∗, ẋ(t)〉

≤
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ ‖M(t, x)‖ − µ(t, x) ≤ −δ(t).

The conclusion now follows from Lemma 1. �

We remark that Theorem 3 holds beyond the Hilbert setting. Indeed, it
follows from Proposition 1.5 in [20] that for any normed vector space X and
closed set S ⊂ X and x /∈ X we have

∂FdS(x) ⊂ {x∗ ∈ X∗ : ‖x∗‖ = 1}. (11)

So, Theorem 3 remains valid in uniformly Gâteaux smooth spaces upon re-
placing condition (7) by

µ(t, x) ≥
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ δ(t) + ‖M(t, x)‖ a.e.

Once feasibility obtains, to preserve it, condition (10) suffices. To the same
end, one might posit P = NC in (1), but doing so offers no advantages:

Proposition 1. (Coincidence of trajectories and viability4) In (1) let P (t, ·) =
NC
S(t)(·) be the Clarke normal cone to S(t) and suppose x(·) solves (8) with

x(0) ∈ S(0). Also suppose that dS(t)(·) is subdifferentially regular along the
solution trajectory, and ẋ = m− n with

m ∈M(t, x), n ∈ NC
S(t)(x) and 〈m,n〉 ≤ 0 a.e.

Then the same x(·) also solves

ẋ ∈M(t, x)−
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣ ∂FdS(t)(x).

Proof. We shall argue as Thibault [30]. Fix any time t > 0 at which x = x(t)
and ϑ(·, x) are differentiable with n = n(t) 6= 0. The regularity of S(t) at x
tells that

n

‖n‖
∈ NF

S(t)(x) ∩ {x∗ : ‖x∗‖ = 1} ⊂ NF
S(t)(x) ∩ {x∗ : ‖x∗‖ ≤ 1} = ∂FdS(t)(x).

4For more on equivalent viable systems see [11].
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Consequently, for any positive ε and time τ < t sufficiently close to t we have〈
n

‖n‖
, x(τ)− x(t)

〉
≤ dS(t)(x(τ))− dS(t)(x(t)) + ε ‖x(τ)− x(t)‖

= dS(t)(x(τ))− dS(τ)(x(τ)) + ε ‖x(τ)− x(t)‖
≤ |ϑ(t, x(τ))− ϑ(τ , x(τ))|+ ε ‖x(τ)− x(t)‖ .

Thus〈
− n

‖n‖
,
x(τ)− x(t)

τ − t

〉
≤
∣∣∣∣ϑ(t, x(τ))− ϑ(τ , x(τ))

t− τ

∣∣∣∣+ ε

∥∥∥∥x(τ)− x(t)

τ − t

∥∥∥∥ .
Letting τ ↗ t we obtain〈

− n

‖n‖
, ẋ(t)

〉
≤
∣∣∣∣∂ϑ(t, x)

∂t

∣∣∣∣+ ε ‖ẋ(t)‖ .

Since ε > 0 was arbitrary, and because 〈m,n〉 ≤ 0, we get from ẋ(t) = m−n
that

‖n‖ ≤
∣∣∣∣∂ϑ(t, x(t))

∂t

∣∣∣∣ ,
whence n ∈

∣∣∣∂ϑ(t,x)
∂t

∣∣∣ ∂FdS(t)(x), and the conclusion follows. �

When sets are convex, simpler arguments apply, and some special features
merit mention. To divorce separate arguments, first suppose S station-
ary convex. While x /∈ S, it holds that ∂dS(x) = {x− x̄} / ‖x− x̄‖ with
x̄ := ΠS(x). So, omitting repeated mention of time,

DḊ =
d

dt

[
D2/2

]
= 〈x− x̄, ẋ〉 ∈

〈
x− x̄,M(x)− µ(x)

x− x̄
‖x− x̄‖

〉
= 〈x− x̄,M(x)〉 − µ(x) ‖x− x̄‖
≤ {‖M(x)‖ − µ(x)} ‖x− x̄‖ ≤ −δ ‖x− x̄‖ = −δD.

Consequently, Ḋ ≤ −δ as long as x /∈ S.
Returning to the setting where S(·) moves, but still is convex, fix t ≥ 0,

posit x = x(t), and let τ > t. By the above argument

lim
τ→t+

dS(t)(x(τ))− dS(t)(x)

τ − t
≤ ‖M(t, x)‖ − µ(t, x),

and one may conclude as in the proof of Theorem 3.
A result of Moreau [23] says that every vector m ∈ M(t, x) admits a

unique, orthogonal decomposition m = mtan + mnor with mtan belonging to
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the standard tangent cone of S(t) at ΠS(t)(x). Closer inspection of the pre-
ceding argument reveals that outside S(t) one may contend with the smaller
modulus µ(t, x(t)) ≥ δ(t) + ‖Mnor(t, x(t))‖ .

If M ≡ {0} , S is stationary, and x(0) /∈ S, then, prior to absorption, sys-
tem (8) proceeds along the fixed anti-normal vector ΠS(x(0))− x(0). Specif-
ically, provided µ be integrable,

x(t) = x(0) +
ΠS(x(0))− x(0)

D(0)

∫ t

0

µ(τ , x(τ))dτ , (12)

and x(t) will eventually hit S at the orthogonal projection ΠS(x(0)) of the
initial point.

Elaborating on the last instance, still with M = {0} and S stationary,
the particular choice µ = δ fits (7) to the effect that x(t) /∈ S while t < t̄.
Thus the time estimate t̄ cannot generally be improved.

We conclude this section with a brief mention of prox-regular instances.
Recall that x∗ is called a proximal subgradient to f : X→ R∪{±∞} at
x ∈ domf, and we write x∗ ∈ ∂Pf(x), iff there exist positive numbers ρ and
σ such that

f(x′) ≥ f(x) + 〈x∗, x′ − x〉 − σ ‖x′ − x‖2
whenever ‖x′ − x‖ ≤ ρ.

For the particular instance f = dS it holds at any x /∈ S where ∂PdS(x) 6= ∅,
that the Fréchet derivative d′S(x) exists. Moreover, the projection ΠS(x) is
then a singleton, and

∂PdS(x) = d′S(x) =
x− ΠS(x)

‖x− ΠS(x)‖
;

see Theorem 6.1 in Clarke et al. (1998). Consequently, upon employing
∂ = ∂P in (8), Theorems 1-3 still hold.

5 Convex-like Cases

The query remains that dS(·) often fails to be regular. In this section let the
space X be finite-dimensional Euclidean. We first explore whether a more
abstract system

ẋ ∈ V (t, x), (13)

with V (t, x) nonempty closed convex, leads towards a stationary S. We say
that a set-valued vector field x ⇒ V (t, x) ⊂ X aims towards S ⊂ X with
velocity ≥ δ at x /∈ S if

sup
v∈V (t,x)

inf
s∈ΠS(x)

〈v, x− s〉 ≤ −δ. (14)
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When S is closed, (14) holds iff there exists s̄ ∈ convΠS(x) such that

sup
v∈V (t,x)

〈v, x− s̄〉 ≤ −δ.

To see this, note that the projection ΠS(x) is nonempty compact whence so
is its convex hull convΠS(x). Thus, for any given v ∈ V (t, x) we have

min
s∈ΠS(x)

〈v, x− s〉 = min
s∈convΠS(x)

〈v, x− s〉 .

Let s̄ be any point in convΠS(x) which minimizes the lower semicontinuous
function s 7→ supv∈V (t,x) 〈v, x− s〉 on that set. Since V (t, x) is closed convex,
we get by the lop-sided minimax theorem [3] that

sup
v∈V (t,x)

〈v, x− s̄〉 = min
s∈convΠS(x)

sup
v∈V (t,x)

〈v, x− s〉

= sup
v∈V (t,x)

min
s∈convΠS(x)

〈v, x− s〉 = sup
v∈V (t,x)

inf
s∈ΠS(x)

〈v, x− s〉

≤ −δ.

Recall that an Euler arc 0 ≤ t 7→ x(t) is the uniform limit of a polygonal
curves (i.e. piecewise linear curves), the maximal ”mesh sizes” of which tend
to zero. Following the arguments in Clarke et al.(1998), Chap.4.2 one may
prove the following:

Proposition 2. (Finite-time absorption using an aiming field) Suppose
a closed convex-valued vector field V (t, x) 6= ∅, with at most linear growth,
aims at a fixed closed S ⊂ X with velocity ≥ δ(t, x)dS(x). Then, if δ(·, ·) is
continuous, any Euler arc which solves (13) on

[
t, t̃
]

must satisfy

d2
S(x(t̃))− d2

S(x(t)) ≤ −2

∫ t̃

t

δ(τ , x(τ))dS(x(τ))dτ

whence Ḋ(t) ≤ −δ(t, x(t)) a.e. Consequently, x(t) ∈ S for all t ≥ t̄. �

The preceding arguments underscore the convenience of dealing with sets
which are convex-like somehow. Reflecting on that feature, this section con-
cludes by considering a temporarily fixed, nonempty closed set S that is
”not too far from convex”. The Asplund function ϕS :=

{
‖·‖2 − d2

S

}
/2

now becomes a good instrument.5 Because ∂C(d2
S/2) = I − ∂CϕS and

5It is already prominent in the study of Chebyshev sets; see [1], [18] and references
therein.
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∂CϕS(x) = convΠS(x), we get ∂C(d2
S/2) = conv {x− ΠS(x)} . So, for any

x /∈ S, it follows that ∂CdS(x) =

∂C
√
d2
S(x) =

∂Cd2
S(x)/2

dS(x)
= conv {x− ΠS(x)} /dS(x) = conv

{
x− ΠS(x)

‖x− ΠS(x)‖

}
.

In particular, when x /∈ S, the subdifferential ∂CdS(x) is contained in the
unit ball. Define a convexity modulus κS : Sc → R of S by

κS(x) := inf {〈x− x̄, x− x̂〉 : x̄, x̂ ∈ ΠS(x)} /d2
S(x) when x /∈ S.

Plainly, κS assumes values in [−1, 1] . And each convex set S has κS(·) ≡ 1 all
across the complement Sc of S. Thus, having κS close to 1 loosely indicates
that S isn’t very far from convex. For simplicity let’s declare S convex-like if
κS(x) > 0 whenever x /∈ S. Anyway, while x = x(t) /∈ S, dynamics (8), with
∂ ⊆ ∂C , yields

ḋS(x) ∈
〈
conv

{
x− ΠS(x)

dS(x)

}
,M(t, x)− µ(t, x)conv

{
x− ΠS(x)

dS(x)

}〉
≤ ‖M(t, x)‖ − µ(t, x) inf {〈x− x̄, x− x̂〉 : x̄, x̂ ∈ ΠSx} /d2

S(x)

= ‖M(t, x)‖ − µ(t, x)κS(x) a.e.

Collecting these observations, and letting S(t) move, we straightforwardly get

Theorem 4. (Reaching convex-like sets in finite time) Let ∂ ⊆ ∂C . Suppose
S(t) is convex-like with modulus κS(t)(·). Provided

κS(t)(x) · µ(t, x) ≥
∣∣∣∣ ∂∂tϑ(t, x)

∣∣∣∣+ δ(t) + ‖M(t, x)‖

almost whenever x = x(t) /∈ S(t), then system (8) reaches S(t) no later than
time t̄ and stays in that set forever after. �

6 Reaching a Sublevel Set

Fix here a nonempty, stationary sublevel set S := {f ≤ 0}, featuring a
lower semicontinuous (lsc) function f that maps an Euclidean space X into
R∪{+∞}. Clearly, f isn’t unique. For any continuous function ϕ : R→ R
such that ϕ(r) > 0⇔ r > 0, the representation S = {ϕ ◦ f ≤ 0} would fit as
well. Also, S = {dS ≤ 0} . We assume though that f is easier to differentiate
than dS.

15



As before, we seek to steer the state from a known, initial position x(0)
towards S. Or, if x(0) ∈ S already, then one should keep x(t) ∈ S for all
t > 0. But now, instead of using the cumbersome distance dS, we rather want
to work with f itself.

To such ends we invoke an abstract subdifferential ∂ that associates to
any lsc function f : X→ R∪{+∞} and point x ∈ X a closed subset ∂f(x)
of X∗ = X. To that set ∂f(x) is associated an abstract directional derivative
f ′(x; ·) presumed to satisfy

f ′(x; v) ≤ sup 〈∂f(x), v〉 for all vectors v,

with the convention sup ∅ = +∞. For any function ϕ : X → R ∪ {±∞} its
outer Lebesgue integral is defined by∫̂

ϕ := inf

{∫
ϕ̂ : ϕ ≤ ϕ̂ a.e. and ϕ̂ Lebesgue integrable

}
.

Suppose that along any absolutely continuous trajectory x(·) that stays out-
side S on an interval [τ , t] , the function f satisfies

f(x(t))− f(x(τ)) ≤
∫̂

[τ ,t]

f ′(x; ẋ). (15)

Let f+ := max {f, 0} and posit P (t, x) := µ(t, x)∂f+(x), with µ(t, x) ≥ 0, to
have (1) assume the form

ẋ(t) ∈M(t, x(t))− µ(t, x(t))∂f+(x(t)). (16)

We must however, be more specific as to which subgradients g ∈ ∂f+(x)
will apply. Again motivated by steepest descent methods we insist that
while x stays infeasible any selection g ∈ ∂f(x) must maximize the function
g 7→ sup 〈∂f(x), g〉 whenever the maximum is attained. Further, for the ef-
ficiency of (16) we need to underestimate ∂f(x) while x remains infeasible.
Finally, for simpler statement, let 〈A,B〉 := sup{〈a, b〉 : a ∈ A, b ∈ B}.

Theorem 5. (Absorption in finite time and viability of sublevel sets) With
X Euclidean, suppose f : X→ R∪{+∞} is lsc and S := {f ≤ 0} nonempty.

Also suppose f(x(0)) <
∫ T−

0
δ for some T− ∈]0, T [. Any solution x(·) to (16)

on [0, T [ , such that f(x(0)) > 0, and

〈∂f(x),M(t, x)− µ(t, x)∂f(x)〉 ≤ −δ (17)
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almost whenever x = x(t) /∈ S, becomes permanently feasible no later than
time

t̂ := inf

{
t > 0 : f(x(0)) ≤

∫ t

0

δ

}
.

Proof. x(·) stays infeasible during for some time interval [0, t]. While τ ∈
[0, t], using simplified notations x = x(τ), µ = µ(τ , x), ẋ = ẋ(τ) = m − µg
with m ∈M(τ , x) and g ∈ ∂f(x), we get

f ′(x; ẋ) ≤ sup 〈∂f(x), ẋ〉
≤ sup 〈∂f(x),M(x)− µ∂f(x)〉 ≤ −δ.

Now invoke (15) to get f(x(0)) >
∫ t

0
δ, and the desired estimate obtains. If

the sejour in S were transient, there would exist times τ > t > 0 for which
0 < f(x(t)) < f(x(τ)) (since x(·) solves (16), f(x(τ)) < +∞). But along
the arc x(·) that stretches from x(t) forwards to x(τ), the inequality above
implies the contradiction

0 < f(x(τ))− f(x(t)) ≤ −
∫ τ

t

δ ≤ 0. �

It suffices for (17) to have

µ(t, x)d2
∂f(x)(0) ≥ δ(t) + 〈∂f(x),M(t, x)〉 when x /∈ S.
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17



[6] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic
Publishers, Dordrecht (1993).

[7] H. Benabdellah, Existence of solutions to the nonconvex sweeping process, J.
Differential Equations 164, 286-295 (2000).

[8] J. M. Borwein, S. P. Fitzpatrick and J. R. Giles, The differentiability of real
functions on normed linear spaces using generalized subgradients, J. Math.
Analysis Applications 128, 512-534 (1987).

[9] J. M. Borwein and S. P. Fitzpatrick, Existence of nearest points in Banach
space, Canadian Journal of Mathematics 41 (4) 702-720 (1989).

[10] M. Bounkhel and L. Thibault, On various notions of regularity of sets in
nonsmooth analysis, Nonlinear Anal. Th. Math. Applic. 48, 223-246 (2002).

[11] B. Brogliato, A. Daniilidis, C. Maréchal and V. Acary, On the equivalence
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