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Abstract

The main objects here are games in which players mainly compete but nonetheless coll
on some subsidiary activities. Play assumes a two-stage nature in that first-stage moves
coordination of some subsequent tasks. Specifically, we consider instances where seco
coordination amounts to partial cost sharing, anticipated and sustained as a core solution. E
include regional Cournot oligopolies with joint transportation. We define and characterize equ
and inquire about their existence.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

For motivation consider two firms which compete in as many markets, supplying
with one—or maybe several—homogeneous commodities:

firm 1 → market 1
↘
↗

firm 2 → market 2.
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The said firms interact overtwo stages.First, each decides independently how much
produce and bring to every market.Second, having produced their quantities, there a
gains to be had in coordinating the subsequent transportation from factories to mark
fact, cost reductions obtain if each firm, fully or partly, serves the nearest market on
of his rival.

Similar examples include: coordinated distribution of competing newspaper
a common shuttle bus serving rival air companies. More generally, one may
of “noncooperative” producers who maintain shared inventories, or organize in
exchange of scarce resources, or outsource some subsidiary tasks jointly. We ask:ex post,
may such secondary activities be coordinated to mutual advantage? If so, is it possible to
share the associated costs fairly? And ex ante, if players anticipate the subsequent
sharing, can they reach an overall equilibrium?

Indeed, they can. Under broad and natural assumptions all these questions have
and intimately related answers. For illustration Section 2 elaborates on the above
so as to have a running example. Section 3 builds a rather general model, includ
duopoly already depicted, and going well beyond it. It is defined there what is meant
equilibrium.

Since second-stage collaboration constitutes a key part of the overall setting, Se
digresses to studytransferable-cost cooperative games. All our instances concerncost
sharing,and they fit the form of so-calledproduction games(or production economies) in
which technologies, tasks and endowments are pooled (Dubey and Shapley, 1984;
1986; Kalai and Zemel, 1982a, 1982b; Samet and Zemel, 1994; Shapley and Shubik
1972; Sondermann, 1974).

Section 5 brings out some simple, novel properties of cost-sharing games, ext
the results of Owen (1975) to nonlinear instances; see also (Evstigneev and Flåm
and (Sandsmark, 1999). One desirable property is thatinfimal convolutionof convex cost
functions yields a nonemptycore. Another, more useful and practical property is t
Lagrange multipliers constitute a (shadow)price regimethat decentralizes cooperati
planning and defines a core imputation. Using such prices, each agent is charged
second stage, for his “quantity” less a competitive profit, computed as though he
a price-taker.

Section 6 concludes by briefly mentioning how equilibrium could be learne
approached.

2. A regional oligopoly

As running example considera regional oligopoly—already motivated in the intro
duction. Finitely many firmsi ∈ I produce the same homogenous good1 to be shipped
from origins o ∈ O to destinationsd ∈ D. Both setsO,D are finite and—without loss—
regarded as disjoint. Denote by quantityqio the output of firmi at o, and letqid be how
much it delivers atd . We tacitly assume that

∑
o∈O qio = ∑

d∈D qid for everyi. The non-

1 More than one good could easily be accommodated—at the expense of more complex notations.
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negative vectorqi ∈ E := R
O∪D describesi ’s overall plan. Upon ignoring transportatio

expenses for a moment, the profileq = (qi) yields firm i a payoffπi(q) to be fleshed ou
later.

For now, consider the subsequent transportation problem. Suppose transportatio
the routeo → d comes at fixed unit tarifftod � 0. Firms had better meet custome
demand at minimum expense while not exceeding their supply capacities. Since cus
presumably are indifferent about the origins of the goods they receive, firms may
outlays by pooling individual supply and demand. That is, well situated firms may su
nearby customers on behalf of other firms. Formally, given a (first-stage) feasible p
q = (qi), generating an aggregateqI := ∑

i∈I qi, the most efficient (second-stage) over
transportation cost equals

cI (qI ) := min

{ ∑
o∈O,d∈D

todxod

∣∣∣∣ ∀o
∑
d∈D

xod =
∑
i∈I

qio;

∀d
∑
o∈O

xod =
∑
i∈I

qid, ∀xod � 0

}
. (1)

The minimal valuecI (qI ) of this linear program is finite and attained. Can that value
equitably shared? Yes it can! Section 4 spells out thatcI (qI ) can be split to constitute
core solutiondenotedcoi (q), i ∈ I, of a suitably defined, well motivated cooperative gam
So, while anticipating such cost sharing, firmi faces overall profitπi(q) − coi (q).

3. The game

Consider henceforth a finite setI of economic agents (decision makers) who inter
over two stages.First, each individuali ∈ I makes, without cooperation, a choiceqi

within some nonempty convex subsetQi of an Euclidean spaceE (the same space fo
all players).2 That choiceqi , and the profileq−i := (qj )j �=i implemented by his rivals
determinesi ’s first-stagepayoff πi(q) = πi(qi, q−i ) ∈ R ∪ {−∞}. For interpretation one
may construe the vectorsqi, i ∈ I, as quantity bundles, each comprising specified amo
of various commodities.

At the secondstage, after having committedqi , playeri faces a potentialcostci(qi) ∈
R ∪ {+∞} to be deducted from his preceding payoff.3 However, instead of incurring tha

2 All vector spaces mentioned in the sequel are Euclidean. Generalizations to infinite-dimensional
spaces are possible; see (Evstigneev and Flåm, 2001).

3 Infinite valuesπi(q) = −∞ or ci (qi ) = +∞ are used here as “death penalties” for violating impl
constraints. This modelling device focuses on essentials and saves repeated mention of (evident) re
(e.g., nonnegativity).
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(supposedly substantial) cost right away, he may rather join acoalition S ⊆ I which, if
formed,4 would paystand-alone cost

cS(qS) := inf

{∑
i∈S

ci(xi)

∣∣∣∣
∑
i∈S

xi =
∑
i∈S

qi =: qS

}
. (2)

Infimal convolution (2) models exchange of perfectly divisible goods, freely transfe
among the concerned parties,qi being the production plan that memberi brings to the joint
enterprise.5 It is tacitly assumed here that no individuali misrepresents his cost functio
ci to own advantage. Thus, at the second stage emerges a cooperative game wit
set I, characteristic functionS �→ cS(qS), and side-payments. For such games we le
efficiency and stability be encapsulated bycoresolutions (Peleg, 1992): acost allocation
co= (coi ) ∈ R

I , wherei payscoi , belongs to thecore, and we writeco∈ core(q), iff it
entails

Pareto efficiency:
∑
i∈I

coi = cI (qI ), and

social stability:
∑
i∈S

coi � cS(qS) for all coalitionsS ⊂ I. (3)

Social stability means that no singleton or setS ⊂ I of players could improve their outcom
by splitting away from the society. Clearly, stability can be achieved by charging so
costs that

∑
i∈S coi � cS(qS),∀S ⊆ I. Therefore, the biting requirement is that total cost

Pareto efficient. Now, do core allocations exist? And if so, can such an allocation be f
Assuming convex cost functions, Section 3 provides positive, constructive answers
simply posit a well defined mappingq �→ co(q) = [coi (q)] ∈ core(q), which specifies
how the aggregate efficient cost should be split. Then the overall solution concept
customary one:

Definition 1 (Equilibrium). Given a core-compatible rule for cost allocationq �→ co(q) =
[coi (q)]i∈I ∈ core(q) the vectorq = (qi) ∈ E

I constitutes aNash equilibriumiff

qi ∈ argmax
{
πi(· , q−i ) − coi (· , q−i )

}
for all i ∈ I. (4)

As usual, equilibrium must be upheld individual incentives—and be confirme
correct beliefs. Clearly, each requirement is rather demanding. So, Definition 1 begs
questions: can second-stage, efficient costs be equitably shared? Does equilibrium
Can it be implemented or reached by repeated play? We shall address all these qu
beginning with the first one in the next section. Before that we return briefly to our run
example:

4 Whenever we speak about a coalitionS of players, it is tacitly understood thatS be nonempty. Alternatively
one may use the convention that any empty sum equals 0.

5 Equal convexci = c, i ∈ S, yields cS(qS) = |S|c(qS/|S|), with uniform distribution of the aggregat
quantityqS . If a common cost functionc also is 1-homogeneous, thencS(qS) = c(qS).
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3.1. The regional oligopoly continued

On the right-hand side of (1) replace
∑

i∈I by
∑

i∈S to obtain thereby the stand-alo
costcS(qS) of coalitionS ⊂ I as the optimal value of a linear (transportation) program
whichS have aggregate supply-demand scheduleqS := ∑

i∈S qi. As noted earlier, the cos
cS(qS) is finite and attained. We proceed to elaborate on the payoff functionsπi(qi, q−i ).

Following Cournot let

πi(qi, q−i ) :=
∑
d∈D

Pd(Sd)qid −
∑
o∈O

fio(qio). (5)

Here theinverse demand curvePd(Sd) states the unit price at which demand at destina
d equalssupplySd := ∑

i∈I qid there. The functionfio(qio) accounts for the productio
cost incurred byi at siteo.

4. Cost-sharing games

Given stand-alone cost (2) of each coalitionS, we ask here:will the core of the resulting
(production) game be nonempty? The following result underscores the convenience
having convex costs.

Proposition 1 (Nonempty core (Sandsmark, 1999)).Suppose that all functionsci, i ∈ I,

are convex and thatcI (qI ) is finite-valued. Then the cost-sharing game has a none
core.

When moreover, allcS(qS), S ⊆ I, are finite, Proposition 1 shows that cost-shar
is a totally balanced game, meaning that all subgames have nonempty cores. Parti
instances, calledadditivegames, emerge if each functionci(·) assumes a constant fini
value on some convex set, and+∞ elsewhere. Shapley and Shubik (1969) showed
totally balanced games can be generated by so-called market (exchange) game6 The
present construction completely parallels theirs. Kalai and Zemel (1982a, 1982b) r
such games to flow problems in (generalized) networks where various arcs are ow
different individuals. They also observed that aprofit-sharing gamewill be totally balanced
if its characteristic function equals the minimum of corresponding functions stem
from finitely many additive games. The cost-sharing games considered here can si
be seen as the upper envelope of finitely many additive games.

Our task is to find a core element—not merely ensure existence. To that end writexy for
the standard inner product between two vectorsx, y ∈ E and letf ∗(p) := supx{px−f (x)}
denote theFenchel conjugate(Rockafellar, 1970) of any functionf :E → R ∪ {±∞}.
Given a profileq ∈ E

I , introduce

LS(x,p) :=
∑
i∈S

[
ci(xi) + p(qi − xi)

]

6 The idea of modeling exchange as coalitional games stems from von Neumann and Morgenstern
pp. 583–584).
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as the standard LagrangianLS :ES × E → R ∪ {+∞} of coalitionS. Note that

inf
x

LS(x,p) =
∑
i∈S

[
pqi − c∗

i (p)
]
.

We declarep ∈ E a Lagrange multiplier or a shadow priceiff cI (qI ) � infx LI (x,p).

Theorem 1 (Lagrange multipliers yield core solutions).Givenq ∈ E
I , any shadow price

p generates a cost allocation

co(q) := [
pqi − c∗

i (p)
]
i∈I

∈ core(q). (6)

Proof. Social stability obtains because∑
i∈S

coi (q) = inf
x

LS(x,p) � sup
p′

inf
x

LS(x,p
′) � inf

x
sup
p′

LS(x,p
′) = cS(qS)

for all S ⊆ I. The second inequality in this string is calledweak duality. The assumption
cI (qI ) � infx LI (x,p) takes care ofstrong duality. To wit,∑

i∈I

coi (q) = inf
x

LI (x,p) � cI (qI ).

Since we already know that
∑

i∈I coi (q) � cI (qI ), Pareto efficiency now follows.✷
Core element (6) has a nice and natural interpretation: each agenti pays the price time

his quantity less the profitc∗
i (p) he could contribute as price-taker. Clearly, agents w

relatively low marginal cost are at advantage; they will produce on behalf of other
be reimbursed. The arrangement is decentralized and voluntary in that every indivi
freely minimizes his modified costci(xi) + p(qi − xi). If cI (qI ) is attained by productio
patternx; that is, if

∑
i[xi, ci(xi)] = [qI , cI (qI )], thencoi (q) = ci(xi) + p(qi − xi).

For illustration of Theorem 1 suppose that individual cost is a marginal fun
ci(qi) := infyi Ci(qi, yi), stemming from a bivariate proper objectiveCi. Then

cS(qS) = inf
x,y

{∑
i∈S

Ci(xi, yi)

∣∣∣∣
∑
i∈S

xi = qS

}
.

Let hereLS(x, y,p) := ∑
i∈S[Ci(xi, yi) + p(qi − xi)] and note that infx,y LS(x, y,p) =∑

i∈S[pqi − C∗
i (p,0)]. In the proof of Theorem 1 replacex with (x, y) and correspond

ingly infx with infx,y to obtain:

Proposition 2 (Core solutions for inf-convolutions of marginal functions (Evstigneev
Flåm, 2001)).SupposecI (qI ) � infx,y LI (x, y,p) for some shadow pricep. Then

co(q) := [
pqi − C∗

i (p,0)
]
i∈I

∈ core(q).

Example 1 (An assignment game). Assume that each playeri ∈ I, not collaborating at the
second stage, must “dump” allqi at oneparticular destination, “owned” by him, that si
also being baptizedi. Thenci(qi) = Cii(qi) whereas if he could bring his entire produ
to some other destinationj ∈ I, he would incur costCij (qi). Since coalitionS owns
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the destinationsS, its stand-alone costcS(qS) equals the optimal value of the followin
assignment problem:

min

{ ∑
i∈S, j∈S

Cij (xi)yij

∣∣∣∣
∑
j∈S

yij =
∑
i∈S

yij = 1 ∀i, j ∈ S,
∑
i∈S

xi = qS, andy � 0

}
.

For each fixedx this problem has integer solutionsy.

Example 2 (Assignment games continued). Another scenario, more fitting to (Crawfo
and Knoer, 1981; Kaneko, 1982; Shapley and Shubik, 1972), is the following. A
second stage enters another finite setP of new players. It is assumed that each agent
sign an exclusive, bilateral contract with at most one agent of the other type, each
contracting partiesi,p then enjoying profit−cip(qi) � 0. Suppose|I | � |P |. The potential
second-stage profit of coalitionS ⊆ I equals

max
x,p

{
−

∑
i∈S

cip(i)(xi)

∣∣∣∣
∑
i∈S

xi = qS

}

where p denotes an injective mapping fromI to P, associating to individuali a
partnerp(i). WhenS = I , the overall profit equals the negative of the optimal value
the problem

min

{ ∑
i∈I,p∈P

cip(xi)yip

∣∣∣∣
∑
p∈P

yip � 1 ∀i,
∑
i∈I

yip � 1 ∀p,
∑
i∈I

xi = qI andy � 0

}
.

For each fixedx this problem has integer solutionsy.

For additional illustration of Theorem 1 consider reduced cost functions

ci(qi) := inf
{
fi(yi)

∣∣ qi + gi(yi) ∈ K
}

(7)

with K ⊂ E closed under addition, 0∈ K, andfi , gi mapping some Euclidean spaceEi

into R andE, respectively. Note thatK is common to all players. CoalitionS could now
incur stand-alone cost

cS(qS) = inf
y

{∑
i∈S

fi(yi)

∣∣∣∣ qS +
∑
i∈S

gi(yi) ∈ K

}
.

Let hereLS(y,p) := ∑
i∈S[fi(yi) + p(qi + gi(yi))] and note that

inf
y

LS(y,p) =
∑
i∈S

[
pqi − (fi + pgi)

∗(0)
]
.

In the proof of Theorem 1, after replacingx by y one gets:

Proposition 3 (Core solutions for inf-convoluted programs (Evstigneev and Flåm, 20
SupposecI (qI ) � infy LI (y,p) for some shadow pricep belonging to the cone

K∗ := {p ∈ E :px � 0 for all x ∈ K}.
Then co(q) := [pqi − (fi + pgi)

∗(0)] ∈ core(q).
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Example 3. Linear production games(Granot, 1986; Kalai and Zemel, 1982a, 198
Samet and Zemel, 1994; Owen, 1975) fit (7) and deserve special mention. After
generalization these assume the following canonical form:ci(qi) := inf{ciyi | Aiyi = qi,

yi � 0}. Hereci ∈ R
ni is the only row vector,qi ∈ R

m, and the matrixAi is of sizem×ni .
Then coalitionS also faces a linear program

cS(qS) := inf

{∑
i∈S

ciyi

∣∣∣∣
∑
i∈S

Aiyi = qS, all yi � 0

}
.

If cI (qI ) is finite, it equals the optimal value of the associated dual:

max{pqI | ci � pAi for all i}.
For any dual optimal solutionp ∈ R

m, the allocationcoi(q) := pqi, i ∈ I, belong to
the core. On a purely technical note, this example illustrates that one should hes
assumingci(qi) smooth (differentiable).

4.1. The regional oligopoly continued

In Example 3 letci := t and Ai := A be independent ofi. Then clearlycI (qI ) =
min{tx | Ax = qI , x � 0}. Obvious specification ofA yields the transportation in
stance (1). Thus any optimal solutionp to the corresponding dual problem max{pqI |
t � pA} produces a core solutioncoi (q) := pqi, i ∈ I, for the joint undertaking of re
gional transport. Inside the brackets of (1) one may safely replace the first equalit
with �, and the second with�, so as to obtain the more customary formatcoi (q) =∑

d∈D pdqid − ∑
o∈O poqio for an optimal dual solutionp � 0.

The above results depend on the additive separability of objectives and cons
Otherwise efficient, stable outcomes can hardly be implemented by linear price
(Moulin, 1990, 1996) and (Young, 1985) and references therein. Note that n
Theorem 1 nor Propositions 2, 3 required convexity. These results hinge however, onstrong
duality; that is, on the equality

v := sup
p

inf
x

LI (x,p) = inf
x

sup
p

LI (x,p) =: v̄

and on the existence of adual optimal solutionp which realizes valuev. Generally,
a nonnegativeduality gapd := v̄ − v prevails. Any dual optimalp defines a cost allocatio
pqi − c∗

i (p), i ∈ I, which is socially stable, but possibly does not pay the entire bill: it m
leave an uncovereddeficitd � 0 because

∑
i∈I {pqi − c∗

i (p)} = cI (qI )−d. For estimation
of this deficit see (Evstigneev and Flåm, 2001).

The Lagrangian approach circumvents troublesome computation ofcS(qS), S ⊆ I,

sometimes needed to solve (3). Instead, by invoking dual optimal solutions, and pres
no duality gap, it rather displays core elements directly. But clearly, conditions are
for which ensure existence of shadow prices (alias Lagrange multipliers). For that pu
we shall invoke the (quite reasonable)constraint qualificationthat

QI :=
∑

Qi ⊂ int

{∑
domci

}
, (8)
i∈I i∈I
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where domci := c−1
i (R) = {xi : ci(xi) ∈ R}. Clearly, (8) holds ifQi ⊂ int domci for at

least onei, andQi ⊆ domci for all other indices. In other words: it suffices for (8) th
each cost functionci be finite-valued onQi and at least one also slightly beyond that s
The following result is derived from Theorem 4.1 in (Ekeland and Temam, 1974).

Proposition 4 (Existence of shadow prices).Let all ci be convex and suppose(8) holds.
Then, providedqI ∈ QI , there exists a shadow price.

Alternatively, whenever{x = (xi): xi ∈ ri domci and
∑

i xi = qI } is nonempty and
qI ∈ QI , existence of a shadow price follows from Fenchel’s duality theorem
Rockafellar (1970, Theorem 31.1)). It is informative to relate multipliers to marg
costs. Let∂ denote the subdifferential operator of convex analysis (Rockafellar, 1970
mentioned above (see Example 3), it is natural and important to accommodate non
functions.

Proposition 5 (Subgradients yield core solutions).Let all ci be convex. Thenp is a shadow
price if and only if it is a subgradientp ∈ ∂cI (qI ). Givenp ∈ ∂cI (qI ), every profilex,
satisfying

∑
i∈I xi = qI and

∑
i∈I ci (xi) = cI (qI ), yields equal marginal costs in the sen

thatp ∈ ∂ci(xi) for all i.

Proof. Note thatcI (·) is convex. Letp be a shadow price. This means that

cI (qI ) = sup
p′

inf
x

LI (x,p
′) = sup

p′

{
p′qI −

∑
i∈I

c∗
i (p

′)
}

= pqI −
∑
i∈I

c∗
i (p),

andp ∈ ∂cI (qI ) now follows from Danskin’s envelope theorem. Conversely, pick anyp ∈
∂cI (qI ). Thenc∗

I (p)+ cI (qI ) = pqI . SincecI is an inf-convolution, we getc∗
I = ∑

i∈I c∗
i ;

see (Laurent, 1972). Combining the last two equations we obtain

cI (qI ) = pqI − c∗
I (p) = pqI −

∑
i∈I

c∗
i (p) = inf

x
LI (x,p).

This shows that the subgradientp is a Lagrange multiplier of the desired sort. For the
assertion of the proposition observe that∑

i∈I

[
ci(xi) + c∗

i (p)
] = cI (qI ) + c∗

I (p) = pqI =
∑
i∈I

pxi.

In generalci(xi) + c∗
i (p) � pxi . Thus, to preserve equality throughout the last string,

must haveci(xi) + c∗
i (p) = pxi whencep ∈ ∂ci(xi) for all i. ✷

To interpret Proposition 5 supposecI (qI ) is attained; that is, suppose+∞ > cI (qI ) =∑
i∈I ci(xi) with qI = ∑

i∈I xi . Care is taken then that marginal cost be uniform ac
players:p ∈ ∂ci(xi) for all i. Otherwise production should reallocated away from mar
ally inefficient agents. If moreover, allci are convex, two things hold:first, if some function
ci is strictly convex, the corresponding componentxi becomes unique;second,if all ci are
continuous atxi, except maybe one, thencI becomes continuous whence subdifferentia
atqI .
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Cost sharing may presume specific agreement on how production should be
mented. Reflecting this concern we record:

Proposition 6 (On attainment of second-stage cost (Evstigneev and Flåm, 2001)).Let all
ci be lower semicontinuous proper, and suppose{

x ∈ E
I

∣∣∣∣
∑
i∈I

xi ∈K,
∑
i∈I

ci(xi) � r

}
is compact (9)

for every compactK ⊂ E andr ∈ R. ThencI also becomes lower semicontinuous prop
and the valuecI (qI ) will be attained by somex. If moreover,

∑
i∈I ci(xi) is upper

semicontinuous at the saidx, thencI becomes continuous atqI .

5. Characterization and existence of equilibrium

Suppose, just for the argument (not as a description of play), that agenti were the last
to join the grand coalition. Hypothetically he would then

maximizeπi(qi, q−i ) − [
cI (qi + qI\i) − cI\i (qI i)

]
with respect toqi,

the justification being that upon joining the others with his production task, he must
the resulting cost increment. This scenario admittedly suffers from an asymmetry
role assigned toi, but it facilitates discussion of existence. Suppose henceforth that
set Qi is nonempty convex compact, and thatπi(qi, q−i ) is concave inqi and jointly
continuous overQ := ∏

i Qi .

Proposition 7 (Concerning existence of equilibrium).Suppose thatcI (qI ) is convex
continuous onQI = ∑

i Qi . Then there exists at least one profileq which satisfies

qi ∈ Bi(q−i ) := arg max
Qi

{
πi(·, q−i ) − [

cI (· + qI\i) − cI\i (qI\i)
]}

for everyi. (10)

Proof. Observe, under the standing assumption, that each best responseBi(q−i )—whence
the productB(q) := (Bi(q−i ))i∈I —is nonempty convex whenq ∈ Q. Moreover, the
presumed continuity ensures that the correspondenceB :Q ❀ Q has closed graph.
follows from Kakutani’s theorem (Aubin and Frankowska, 1990) thatB admits a fixed
pointq ∈ B(q). ✷

Note thatq satisfies (10) iff

0 ∈ argmax
di

{
πi(qi + di, q−i ) − [

cI (di + qI ) − cI (qI )
] ∣∣ qi + di ∈ Qi

} ∀i ∈ I.

(11)

Interpret di here as a feasibledeviation, undertaken unilaterally byi, that generate
additional cost$cI (qI ) = cI (qI + di) − cI (qI ) to be fully born by him. (11) says tha
no player wants to deviate. This observation points to the convenience of desc
equilibrium in terms of marginal payoffs and costs. To simplify the statement we pos
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πi(q) = −∞ wheneverqi /∈ Qi. We assume that the partial superdifferential(∂/∂qi)πi(q)

is nonempty onQ.

Theorem 2 (Existence and characterization of equilibrium).Suppose all cost functionsci
are convex and thatcI (qI ) is continuous at anyqI ∈ QI = ∑

i Qi . Then there exists a
least one Nash equilibrium. Moreover, any such profileq is characterized by all margina
payoffs “being equal.” More precisely, there exists a subgradientp ∈ ∂cI (qI ) such that

p ∈ ∂

∂qi

πi(q) for everyi. (12)

If the second-stage cost is realized byx; that is, if
∑

i[xi, ci(xi)] = [qI , cI (qI )], then
p ∈ ∂ci(xi) for all i.

Proof. Since allci are convex, so is the functioncI . The continuity assumption on th
latter guarantees its subdifferentiability. That is,∂cI (qI ) is nonempty wheneverqI ∈ QI .

A standard result in convex analysis (Ekeland and Temam, 1974) says that anyp ∈ ∂cI (qI )

entails absence of duality gap; that is

cI (qI ) = inf
x

∑
i∈I

[
ci(xi) + p(qi − xi)

]
provided allqi ∈ Qi and

∑
i∈I

qi = qI .

In other words, the subgradientp is indeed a shadow price associated toqI . So, by
Theorem 1 any feasible first-stage profileq ∈ Q gives rise to a second stage coopera
game in which cost is split according to the core-compatible rule (6). Under
conditions the profileq is Nash iff

0 ∈ ∂

∂qi

{
πi(qi, q−i ) − coi (q)

}
for everyi,

or equivalently iff (12) holds. The question which remains is whether system (12) c
solved? In fact, it can: take any solutionq to fixed point system (10). Such a solution exi
by Proposition 7. Note that (10) can be restated on the compact form

q ∈ argmax
∑
i∈I

(
πi(· , q−i ) − [

cI (· + qI\i) − cI\i (qI\i)
])

.

Take the total differential of the last sum to get the desired conclusion. The final ass
repeats part of Proposition 6.✷

Condition (12) emphasizes a most natural principle, namely: there should alwaysone
marginal cost in the cooperative business. To wit, when (12) cannot be satisfied, a
two agents might improve their outcomes by trading. It is illuminating that in equilibr
each agent acts as though he pays the aggregate marginal cost:

Proposition 8 (Equilibrium conditions).In any equilibriumq it holds that

0 ∈ ∂

∂qi

{
πi(· , q−i ) − cI

(
· +

∑
qj

)}
(qi) for all i. (13)
j �=i
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In particular, this happens when0 ∈ (∂/∂qi)πi(q) − ∂cI (qI ) ∀i, and a fortiori when there
exists a common subgradientp ∈ ∂cI (qI ) verifying (12). Conversely, if each functio
πi(qi, q−i ) − cI (qi + ∑

j �=i qj ) is concave inqi , then under(13) the profileq must be
an equilibrium.

5.1. The regional oligopoly continued

In (5) the functionfio(qio) accounts for the production cost incurred byi at siteo.

Such cost typically increases at the margin; that is,fio is convex. For conditions ensurin
concavity of Pd(Sd )qid in qid see (Murphy et al., 1982). A particularly convenie
instance has eachPd affine and sloping downwards. Provided each firmi has bounded
production capacitȳqio � 0 at every origino, posit q̄id := ∑

o∈O q̄io for each destination
d and setQi := ∏

o∈O[0, q̄io] × ∏
d∈d [0, q̄id]. Existence of equilibrium now follows from

Theorem 2.

6. Conclusion

Game theory currently undergoes some re-orientation, away from strategic-form
shot interaction between hyper-rational, omniscient players. Many recent studies
repeated play of the same game and accommodate agents with bounded rati
competence, or knowledge. A most natural question emerges then:will the concerned
parties learn Nash equilibrium over time? That question seems particularly pressing in
setting. To complicate further, suppose no individuali knows, or gets to know, the payo
functionsπj of his co-playersj �= i. Then:how can these noninformed agents ultimat
come to solve system(12)? Concerning that issue the following mode of repeated
appears promising.

Let {sk} be a sequence of nonnegative stepsizessk ↘ 0 such that
∑

sk = ∞. Start
with a feasible strategy profileq0 determined by history or accident. Iteratively, at sta
k = 0,1, . . . , select an updated profileqk+1 by the rule

qk+1
i = PQi

[
qk
i + sk

{
∂πi(q

k)

∂qi

− pk

}]
for all i. (14)

Here PQi denotes the orthogonal projection ontoQi, and pk ∈ ∂cI (q
k
I ) is a common

marginal cost. The decomposed, decentralized nature of (14) makes it a natur
attractive candidate for moving towards a solution of (12). Process (14) demands m
that each agent forms a local perspective (as well as a linear approximation
persistently moves in direction of (projected) payoff ascent. By approximation th
as described in (Benaim, 1996, Proposition 3.1) convergence is likely to obtain
(Flåm, 1996, 1998, 1999). For the regional oligopoly, when inverse demand is affin
mappingq �→ [(∂/∂qi)πi(q)]i∈I becomes maximal monotone, a property most condu
to stability and computation of equilibrium (Aubin and Frankowska, 1990; Rockafella
Wets, 1998). To explore possible convergence of (14) is left for a subsequent study.
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