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Abstract

The main objects here are games in which players mainly compete but nonetheless collaborate
on some subsidiary activities. Play assumes a two-stage nature in that first-stage moves presume
coordination of some subsequent tasks. Specifically, we consider instances where second-stage
coordination amounts to partial cost sharing, anticipated and sustained as a core solution. Examples
include regional Cournot oligopolies with joint transportation. We define and characterize equilibria,
and inquire about their existence.
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1. Introduction

For motivation consider two firms which compete in as many markets, supplying these
with one—or maybe several—homogeneous commodities:

firm1l — market1

N
/

firm 2 — market 2
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The said firms interact ovewo stagesFirst, each decides independently how much to
produce and bring to every mark&econd having produced their quantities, there are
gains to be had in coordinating the subsequent transportation from factories to markets. In
fact, cost reductions obtain if each firm, fully or partly, serves the nearest market on behalf
of his rival.

Similar examples include: coordinated distribution of competing newspapers, or
a common shuttle bus serving rival air companies. More generally, one may think
of “noncooperative” producers who maintain shared inventories, or organize internal
exchange of scarce resources, or outsource some subsidiary tasks jointly. \&e @kt
may such secondary activities be coordinated to mutual advantége, is it possible to
share the associated costs falAnd ex ante, if players anticipate the subsequent cost
sharing, can they reach an overall equilibri®m

Indeed, they can. Under broad and natural assumptions all these questions have positive
and intimately related answers. For illustration Section 2 elaborates on the above figure
SO as to have a running example. Section 3 builds a rather general model, including the
duopoly already depicted, and going well beyond it. It is defined there what is meant by an
equilibrium.

Since second-stage collaboration constitutes a key part of the overall setting, Section 4
digresses to studyransferable-cost cooperative gamed| our instances concernost
sharing,and they fit the form of so-callggroduction gamegor production economigsn
which technologies, tasks and endowments are pooled (Dubey and Shapley, 1984; Granot,
1986; Kalai and Zemel, 1982a, 1982b; Samet and Zemel, 1994; Shapley and Shubik, 1969,
1972; Sondermann, 1974).

Section 5 brings out some simple, novel properties of cost-sharing games, extending
the results of Owen (1975) to nonlinear instances; see also (Evstigneev and Flam, 2001)
and (Sandsmark, 1999). One desirable property isitifiatal convolutiorof convex cost
functions yields a nonemptgore. Another, more useful and practical property is that
Lagrange multipliers constitute a (shadoprjce regimethat decentralizes cooperative
planning and defines a core imputation. Using such prices, each agent is charged, at the
second stage, for his “quantity” less a competitive profit, computed as though he were
a price-taker.

Section 6 concludes by briefly mentioning how equilibrium could be learned or
approached.

2. A regional oligopoly

As running example considex regional oligopoly—already motivated in the intro-
duction. Finitely many firms € I produce the same homogenous gbtal be shipped
from origins o € O to destinations/ € D. Both setsO, D are finite and—without loss—
regarded as disjoint. Denote by quantjty the output of firmi ato, and letg;; be how
much it delivers atl. We tacitly assume that_ ., gio = )4 p gia fOr everyi. The non-

1 More than one good could easily be accommodated—at the expense of more complex notations.
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negative vectog; € E := ROYP describes’s overall plan. Upon ignoring transportation
expenses for a moment, the profile= (¢;) yields firmi a payoffz;(¢) to be fleshed out
later.

For now, consider the subsequent transportation problem. Suppose transportation along
the routeo — d comes at fixed unit tariff,; > 0. Firms had better meet customers’
demand at minimum expense while not exceeding their supply capacities. Since customers
presumably are indifferent about the origins of the goods they receive, firms may save
outlays by pooling individual supply and demand. That is, well situated firms may supply
nearby customers on behalf of other firms. Formally, given a (first-stage) feasible profile
g = (¢i), generating an aggregaje:= » ;. ¢i, the most efficient (second-stage) overall
transportation cost equals

cr(qn) == min{ D lodod

Yo Zxod = qu;

0€0,deD deD iel
VA toa =Y i, Yoa > o}. ®
0e0 iel

The minimal valuer;(g;) of this linear program is finite and attained. Can that value be
equitably shared? Yes it can! Section 4 spells out thé&j;) can be split to constitute a
core solutiordenotecto; (¢), i € I, of a suitably defined, well motivated cooperative game.
So, while anticipating such cost sharing, fitrfaces overall profitr; (¢) — co; (g).

3. Thegame

Consider henceforth a finite sétof economic agents (decision makers) who interact
over two stages.First, each individuali € I makes, without cooperation, a choige
within some nonempty convex subs@t of an Euclidean spacg (the same space for
all players)? That choicey;, and the profileg_; := (g)) j= implemented by his rivals,
determines’s first-stagepayoff 7; (¢) = 7;(qi, g—i) € R U {—o0}. For interpretation one
may construe the vectogs, i € I, as quantity bundles, each comprising specified amounts
of various commodities.

At the secondstage, after having committegl, playeri faces a potentiatostc; (¢;) €
R U {+o0} to be deducted from his preceding paybfflowever, instead of incurring that

2 All vector spaces mentioned in the sequel are Euclidean. Generalizations to infinite-dimensional Banach
spaces are possible; see (Evstigneev and Flam, 2001).

3 Infinite valuesr;(q) = —oo or ¢j(g;) = +oo are used here as “death penalties” for violating implicit
constraints. This modelling device focuses on essentials and saves repeated mention of (evident) restrictions
(e.g., nonnegativity).
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(supposedly substantial) cost right away, he may rather jaioadition S C I which, if
formed? would paystand-alone cost

Y oxi=) ai =iqs}~ (2)

ieS ieS

cs(gs) = inf{Zc,» (xi)

ieS

Infimal convolution (2) models exchange of perfectly divisible goods, freely transferable
among the concerned partigs being the production plan that memldarings to the joint
enterpris€. It is tacitly assumed here that no individuamnisrepresents his cost function

¢; to own advantage. Thus, at the second stage emerges a cooperative game with player
set I, characteristic functionS — cs(gs), and side-paymentsFor such games we let
efficiency and stability be encapsulateddnyre solutions (Peleg, 1992): @st allocation

co= (cq) € R!, wherei paysco;, belongs to theore, and we writeco € core(q), iff it

entails

Pareto efficiency Z co =cy(gr), and
iel
social stability Z co; < cs(gs) forall coalitionsS c 1. 3
ieS

Social stability means that no singleton orSet I of players could improve their outcome
by splitting away from the society. Clearly, stability can be achieved by charging so small
coststhad ;g Cco < cs(gs), VS C 1. Therefore, the biting requirement is that total cost be
Pareto efficient. Now, do core allocations exist? And if so, can such an allocation be found?
Assuming convex cost functions, Section 3 provides positive, constructive answers. Here
simply posit a well defined mapping — co(g) = [c0;(g)] € core(g), which specifies
how the aggregate efficient cost should be split. Then the overall solution concept is the
customary one:

Definition 1 (Equilibrium). Given a core-compatible rule for cost allocatipr> co(q) =
[co;(q)]icr € cOre(q) the vectoly = (g;) € E! constitutes aNash equilibriuniff

qi € argma>{n,»(-,q_,~) — CO,'(',(I—[)} foralli eI. 4)

As usual, equilibrium must be upheld individual incentives—and be confirmed by
correct beliefs. Clearly, each requirement is rather demanding. So, Definition 1 begs many
guestions: can second-stage, efficient costs be equitably shared? Does equilibrium exist?
Can it be implemented or reached by repeated play? We shall address all these questions,
beginning with the first one in the next section. Before that we return briefly to our running
example:

4 Whenever we speak about a coaliti§iof players, it is tacitly understood th&toe nonempty. Alternatively,
one may use the convention that any empty sum equals 0

5 Equal convexc; = c,i € S, vields cg(gs) = |S|c(gs/ISD), with uniform distribution of the aggregate
quantitygs. If a common cost functior also is 1-homogeneous, thegf(gs) = c(gs)-
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3.1. The regional oligopoly continued

On the right-hand side of (1) replad€;.; by ), ¢ to obtain thereby the stand-alone
costcs(gs) of coalition S C I as the optimal value of a linear (transportation) program in
which S have aggregate supply-demand scheggle= ", _ g;. As noted earlier, the cost
cs(gs) is finite and attained. We proceed to elaborate on the payoff functidgs, g—;).
Following Cournot let

7i(ging-i) =Y Pa(Sa)qia — Y fio(dio)- (5)
deD 0e0
Here theinverse demand curvi,; (S,) states the unit price at which demand at destination
d equalssupplyS; := Y ;. gia there. The functiory;,(gi,) accounts for the production
cost incurred by at siteo.

4, Cost-sharing games

Given stand-alone cost (2) of each coalitigrwe ask herewill the core of the resulting
(productior) game be nonemp?yThe following result underscores the convenience of
having convex costs.

Proposition 1 (Nonempty core (Sandsmark, 1999%uppose that all functions,i € I,
are convex and that;(q;) is finite-valued. Then the cost-sharing game has a nonempty
core.

When moreover, alts(gs), S C I, are finite, Proposition 1 shows that cost-sharing
is atotally balanced gamemeaning that all subgames have nonempty cores. Particular
instances, calleddditivegames, emerge if each functiop(-) assumes a constant finite
value on some convex set, arebo elsewhere. Shapley and Shubik (1969) showed that
totally balanced games can be generated by so-called market (exchange)®gEmees.
present construction completely parallels theirs. Kalai and Zemel (1982a, 1982b) related
such games to flow problems in (generalized) networks where various arcs are owned by
differentindividuals. They also observed tharafit-sharing gamevill be totally balanced
if its characteristic function equals the minimum of corresponding functions stemming
from finitely many additive games. The cost-sharing games considered here can similarly
be seen as the upper envelope of finitely many additive games.

Ourtask is to find a core element—not merely ensure existence. To that end wfidte
the standard inner product between two vectors e E and letf*(p) := sup,{px — f (x)}
denote theFenchel conjugat€éRockafellar, 1970) of any functiorf :E — R U {£o00}.
Given a profileg € E/, introduce

Ls(x, p):= Z[Ci (xi) + pgi — xi)]

ieS

6 The idea of modeling exchange as coalitional games stems from von Neumann and Morgenstern (1944,
pp. 583-584).
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as the standard Lagrangian : ES x E — R U {400} of coalition S. Note that

infLs(x, p) = Z[P‘Ii - (p)].
ieS
We declarep € E a Lagrange multiplier or a shadow prid# c¢;(g;) <inf, L;(x, p).

Theorem 1 (Lagrange multipliers yield core solutiongiveng € E!, any shadow price
p generates a cost allocation

co(q) :=[pqi — ¢{ (p)];, € core(q). (6)
Proof. Social stability obtains because

> coi(g) =inf Ls(x, p) < supinf Ls(x, p) <infsupLs(x, p) = cs(gs)
ieS g rt T
for all S C I. The second inequality in this string is callegtak duality The assumption
cr(gp) <infy L;(x, p) takes care o$trong duality To wit,

> _coilq)=infLi(x. p) > cr(qn).
iel

Since we already know that; _; coi(¢) < c¢;(qr), Pareto efficiency now follows. O

Core element (6) has a nice and natural interpretation: each agaws the price times
his quantity less the profit*(p) he could contribute as price-taker. Clearly, agents with
relatively low marginal cost are at advantage; they will produce on behalf of others and
be reimbursed. The arrangement is decentralized and voluntary in that every individual
freely minimizes his modified cost (x;) + p(g; — x;). If c;(qr) is attained by production
patternx; thatis, if ), [x;, ci (x))] = [g1. c1(g1)], thenco; (¢) = ci (xi) + p(gi — xi).

For illustration of Theorem 1 suppose that individual cost is a marginal function
¢i(gi) :=infy, Ci(q;, y;), stemming from a bivariate proper objectife. Then

Zx,:qs}.

ieS

cs(gs) = L”;‘{Zci (xi. 1)
“lies
LethereLs(x,y, p) := ) ;cs[Ci(xi, yi) + p(g: — x;)] and note thatinf, Ls(x, y, p) =
Y ieslpai — C#(p, 0)]. In the proof of Theorem 1 replacewith (x, y) and correspond-
ingly inf, with inf, , to obtain:

Proposition 2 (Core solutions for inf-convolutions of marginal functions (Evstigneev and
Flam, 2001))Suppose; (¢;) < inf,y L;(x, y, p) for some shadow price. Then

co(q) :=[pqi — C/(p. 0)],_, € core(q).

Example 1 (An assignment gameAssume that each playée 1, notcollaborating at the
second stage, must “dump” aj] at oneparticular destination, “owned” by him, that site
also being baptizefl Thenc;(¢;) = C;;(¢;) whereas if he could bring his entire produce
to some other destinatiop € 7, he would incur cosiC;;(g;). Since coalitionS owns
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the destinations, its stand-alone costs(gs) equals the optimal value of the following
assignment problem:

min{ Z Cij (x)yij

i€S, jes

Zyz'j :Z)’ij =1Vi,jes, in =gs, andy>0}.

jes ieS ieS

For each fixed: this problem has integer solutions

Example 2 (Assignment games continued\nother scenario, more fitting to (Crawford

and Knoer, 1981; Kaneko, 1982; Shapley and Shubik, 1972), is the following. At the
second stage enters another finite Bedf new players. It is assumed that each agent can
sign an exclusive, bilateral contract with at most one agent of the other type, each of the
contracting parties p then enjoying profit-c;,(g;) > 0. Supposg!| < | P|. The potential
second-stage profit of coalitioh< I equals

rp’apx{— Zcip(i)(xi) sz' = t]s}
ieS ieS
where p denotes an injective mapping fromh to P, associating to individual a

partnerp(i). When S = I, the overall profit equals the negative of the optimal value of
the problem

mm{ Z Cip(xi))’ip

iel,peP

Zyip <1Vi, Zy,'p <1Vp, in =gq; andy 20}.

peP iel iel

For each fixed: this problem has integer solutioms

For additional illustration of Theorem 1 consider reduced cost functions
ci(gi) :=inf{ i (y) | gi + g (i) € K} 7)

with K C E closed under addition, € K, and f;, gi mapping some Euclidean spaEge
into R andE, respectively. Note thak is common to all players. Coalitio§i could now
incur stand-alone cost

cs(gs) = inf{z fiyi)
Y ieS
LethereLs(y, p) :== Y ;cs[fi(3i) + p(gi + gi(yi))] and note that

ir;fLs(y, p)= Z[pqi — (fi + peg)*(0)].
ieS

as+Y g€ K}.

ieS

In the proof of Theorem 1, after replacingoy y one gets:

Proposition 3 (Core solutions for inf-convoluted programs (Evstigneev and Flam, 2001)).

Suppose; (¢7) <infy L;(y, p) for some shadow pricge belonging to the cone
K*:={pekE:px <O0forall x € K}.

Then cag) :=[pqi — (fi + pgi)*(0)] € core(q).
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Example 3. Linear production gameg¢Granot, 1986; Kalai and Zemel, 1982a, 1982b;
Samet and Zemel, 1994; Owen, 1975) fit (7) and deserve special mention. After slight
generalization these assume the following canonical fefg;) := inf{c; y; | A;yi = q;,

y; = 0}. Herec; € R"™ is the only row vectorg; € R, and the matrix4; is of sizem x n;.

Then coalitionS also faces a linear program

cs(gs) = inf{zci}’i

Y Aivi=gs, ally; > 0}-
i€s

ieS

If ¢;(gy) is finite, it equals the optimal value of the associated dual:
max pq; | c; > pA; forall i}.

For any dual optimal solutiop € R™, the allocationco;(q) := pgq;,i € I, belong to
the core. On a purely technical note, this example illustrates that one should hesitate in
assuming; (¢;) smooth (differentiable).

4.1. The regional oligopoly continued

In Example 3 letc; :=t and A; := A be independent of. Then clearlyc;(g;) =
min{tx | Ax = g5, x > 0}. Obvious specification ofA yields the transportation in-
stance (1). Thus any optimal solutignto the corresponding dual problem nfay; |
t > pA} produces a core solutioto; (q) := pgi,i € I, for the joint undertaking of re-
gional transport. Inside the brackets of (1) one may safely replace the first equality sign
with <, and the second with>, so as to obtain the more customary forneat(q) =
Y dep Pddid — Yoo Podio fOr an optimal dual solutiop > 0.

The above results depend on the additive separability of objectives and constraints.
Otherwise efficient, stable outcomes can hardly be implemented by linear prices; see
(Moulin, 1990, 1996) and (Young, 1985) and references therein. Note that neither
Theorem 1 nor Propositions 2, 3 required convexity. These results hinge howestoran
duality; that is, on the equality

v:=supinf L;(x, p) =infsupL;(x, p) =: v
p * X op

and on the existence of @ual optimal solutionp which realizes value. Generally,

a nonnegativduality gapd := v — v prevails. Any dual optimap defines a cost allocation
pqi —c;(p),i € I, which is socially stable, but possibly does not pay the entire bill: it may
leave an uncoveredkficitd > 0 becaus® ;. ;{pg; — ¢} (p)} = c1(qr) —d. For estimation

of this deficit see (Evstigneev and Flam, 2001).

The Lagrangian approach circumvents troublesome computatian (gf), S C 1,
sometimes needed to solve (3). Instead, by invoking dual optimal solutions, and presuming
no duality gap, it rather displays core elements directly. But clearly, conditions are called
for which ensure existence of shadow prices (alias Lagrange multipliers). For that purpose
we shall invoke the (quite reasonabdenstraint qualificatiorthat

Q=Y 0iC int{Zdomci } (8)

iel iel
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where dom; := cfl(R) = {x;: ¢;(x;) € R}. Clearly, (8) holds ifQ; C intdomc; for at
least one, and Q; € domc; for all other indices. In other words: it suffices for (8) that
each cost function; be finite-valued orQ; and at least one also slightly beyond that set.
The following result is derived from Theorem 4.1 in (Ekeland and Temam, 1974).

Proposition 4 (Existence of shadow priced)et all ¢; be convex and suppo$&) holds.
Then, provided; € Q;, there exists a shadow price.

Alternatively, whenevefx = (x;): x; € ridome; and ), x; = g7} is nonempty and
qr € Qy, existence of a shadow price follows from Fenchel’'s duality theorem (see
Rockafellar (1970, Theorem 31.1)). It is informative to relate multipliers to marginal
costs. Let denote the subdifferential operator of convex analysis (Rockafellar, 1970). As
mentioned above (see Example 3), it is natural and important to accommodate nonsmooth
functions.

Proposition 5 (Subgradients yield core solutionkgt all ¢; be convex. Thep is a shadow
price if and only if it is a subgradienp € dc;(q;). Givenp € dcy(q), every profilex,
satisfying) ;.; xi =q; and)_;_, ci(x;) = c;(qr), yields equal marginal costs in the sense
that p € dc; (x;) for all i.

Proof. Note thatc; () is convex. Letp be a shadow price. This means that

cr(qr) =supinf Ly (x, p') = SUD{p’qz - Zc;"(p’)} =par— Y _ci(p),
4 4 iel iel
andp € dcy(gr) now follows from Danskin’s envelope theorem. Conversely, pick gy
dcr(qr). Thency(p) +c1(qr) = pq:. Sincec; is an inf-convolution, we get; =) ;. ¢
see (Laurent, 1972). Combining the last two equations we obtain

c1(qr) = par — ¢j(p) = par — ) ¢i (p) =inf L (x, p).
iel
This shows that the subgradiemis a Lagrange multiplier of the desired sort. For the last
assertion of the proposition observe that

> e +cf(p)] =cilan) +cj(p) = par =Y _ pxi.

iel iel
In generak; (x;) + ¢ (p) > px;. Thus, to preserve equality throughout the last string, we
must haver; (x;) + ¢/ (p) = px; whencep € dc;(x;) foralli. O

To interpret Proposition 5 supposg(q;) is attained; that is, supposex > ¢;(q;) =
Y ies ci(xi) with g7 = )", ; x;. Care is taken then that marginal cost be uniform across
players:p € dc; (x;) for all i. Otherwise production should reallocated away from margin-
ally inefficient agents. If moreover, all are convex, two things holdirst, if some function
¢; is strictly convex, the corresponding componenibecomes uniquesecondif all ¢; are
continuous at;, except maybe one, thep becomes continuous whence subdifferentiable
atqy.
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Cost sharing may presume specific agreement on how production should be imple-
mented. Reflecting this concern we record:

Proposition 6 (On attainment of second-stage cost (Evstigneev and Flam, 20@t Bl
¢; be lower semicontinuous proper, and suppose

{erl

in ek, ZC" (x;) < r} is compact 9)

iel iel

for every compackC C E andr € R. Thenc; also becomes lower semicontinuous proper,
and the valuec;(g;) will be attained by some. If moreover,) ., c¢i(x;) is upper
semicontinuous at the said thenc; becomes continuous af.

iel

5. Characterization and existence of equilibrium

Suppose, just for the argument (not as a description of play), that agesre the last
to join the grand coalition. Hypothetically he would then

maximizer; (qi, q—i) — [c1(qi +q1\i) — cni(gri)]  with respect tay;,

the justification being that upon joining the others with his production task, he must cover
the resulting cost increment. This scenario admittedly suffers from an asymmetry in the
role assigned to, but it facilitates discussion of existence. Suppose henceforth that each
set Q; is nonempty convex compact, and thatg;,g—;) is concave ing; and jointly
continuous oveQ =[], O;.

Proposition 7 (Concerning existence of equilibriumBuppose that;(g;) is convex
continuous on?; =Y, Q;. Then there exists at least one profjlevhich satisfies

qi € Bi(q—;) :==argmaXni(-,q—;) — [c1(- +qni) —cni(gni)]} foreveryi. (10)

i

Proof. Observe, under the standing assumption, that each best redhopsg—whence

the productB(q) := (Bi(g—i))ie;—iS honempty convex wheg € Q. Moreover, the

presumed continuity ensures that the correspondéha@ ~ Q has closed graph. It
follows from Kakutani's theorem (Aubin and Frankowska, 1990) tBaadmits a fixed

pointg € B(g). O

Note thatg satisfies (10) iff
Oearg rg@{?fi(qz' +di,q-i) = [c1(di+qn) —ci(qn] | qi +di € Qi} Viel
(11)

Interpretd; here as a feasibldeviation undertaken unilaterally by, that generates
additional costAc;(qr) = c¢;(g; + d;) — ci(qr) to be fully born by him. (11) says that
no player wants to deviate. This observation points to the convenience of describing
equilibrium in terms of marginal payoffs and costs. To simplify the statement we posit that
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i (q) = —oo Whenevey; ¢ Q;. We assume that the partial superdifferentialog; ); (¢)
is nonempty orp.

Theorem 2 (Existence and characterization of equilibriuf@uppose all cost functiong
are convex and that;(¢;) is continuous at any; € Q; = ), Q;. Then there exists at
least one Nash equilibrium. Moreover, any such prafiis characterized by all marginal
payoffs “being equal.” More precisely, there exists a subgradjertdc;(¢;) such that

d
pE a—m (g) foreveryi. (12)
qi

If the second-stage cost is realized by that is, if > ;[x;, ¢;(x;)] = [g1.c1(¢1)], then
p €dci(x;) forall i.

Proof. Since allc; are convex, so is the functiary. The continuity assumption on the
latter guarantees its subdifferentiability. Thatds; (¢;) is nonempty whenevey; € Q;.

A standard result in convex analysis (Ekeland and Temam, 1974) says thataivy (¢;)
entails absence of duality gap; that is

cr(qn) = iQfZ[Ci () + p(qi —x»)] providedallg; € ; and ) " gi =qr.
iel iel
In other words, the subgradiempt is indeed a shadow price associatedgto So, by
Theorem 1 any feasible first-stage profjle Q gives rise to a second stage cooperative
game in which cost is split according to the core-compatible rule (6). Under these
conditions the profilg is Nash iff

a
Oe a_q_{”i (qi,q-i) —coi(q)} foreveryi,
l

or equivalently iff (12) holds. The question which remains is whether system (12) can be
solved? In fact, it can: take any solutigrio fixed point system (10). Such a solution exists
by Proposition 7. Note that (10) can be restated on the compact form

q €arg maXZ(ﬂi(' q-i) —[c1¢+qnd) —ceni(@nd])-
iel
Take the total differential of the last sum to get the desired conclusion. The final assertion
repeats part of Proposition 6.0

Condition (12) emphasizes a most natural principle, namely: there should alwaygse be
marginal cost in the cooperative business. To wit, when (12) cannot be satisfied, at least
two agents might improve their outcomes by trading. It is illuminating that in equilibrium
each agent acts as though he pays the aggregate marginal cost:

Proposition 8 (Equilibrium conditions)In any equilibriumg it holds that

Oe aiq{m(.,q—i) —cq < + Zq,')}(qi) for all i. (13)
l J#i
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In particular, this happens whebe (3/0¢;)m; (q) — dci(qr) Vi, and a fortiori when there

exists a common subgradiepte dc;(g;) verifying (12). Conversely, if each function
wi(qi,q—i) — ci(qi + Z#i g;) is concave iry;, then under(13) the profileqg must be

an equilibrium.

5.1. The regional oligopoly continued

In (5) the functionf;,(gi,) accounts for the production cost incurred bt siteo.
Such cost typically increases at the margin; thafis,is convex. For conditions ensuring
concavity of P;(Sz)gia in q;q see (Murphy et al.,, 1982). A particularly convenient
instance has each; affine and sloping downwards. Provided each firfmas bounded
production capacity;, > 0 at every origiro, positg;q :=_,. gio for each destination
d and setQ; :=[],c0l0, Giol x [[4c4[0. gial. Existence of equilibrium now follows from
Theorem 2.

6. Conclusion

Game theory currently undergoes some re-orientation, away from strategic-form, one-
shot interaction between hyper-rational, omniscient players. Many recent studies allow
repeated play of the same game and accommodate agents with bounded rationality,
competence, or knowledge. A most natural question emerges Wikrihe concerned
parties learn Nash equilibrium over tifd@ hat question seems particularly pressing in our
setting. To complicate further, suppose no individulhows, or gets to know, the payoff
functionsz; of his co-playersi # i. Then:how can these noninformed agents ultimately
come to solve syste(i2)? Concerning that issue the following mode of repeated play
appears promising.

Let {sx} be a sequence of nonnegative stepsiges, 0 such that)_ sy = co. Start
with a feasible strategy profilg® determined by history or accident. Iteratively, at stage
k=0,1,..., select an updated profilg**1 by the rule

omi(q")

qurl = Py, |:qlk + sk{T pk” for all i. (14)
14

Here Py, denotes the orthogonal projection onfy, and p* e 8c;(q’,‘) is a common
marginal cost. The decomposed, decentralized nature of (14) makes it a natural and
attractive candidate for moving towards a solution of (12). Process (14) demands merely
that each agent forms a local perspective (as well as a linear approximation) and
persistently moves in direction of (projected) payoff ascent. By approximation theory,
as described in (Benaim, 1996, Proposition 3.1) convergence is likely to obtain; see
(Flam, 1996, 1998, 1999). For the regional oligopoly, when inverse demand is affine, the
mappingg — [(9/9q;)m;(q)]ic; becomes maximal monotone, a property most conducive

to stability and computation of equilibrium (Aubin and Frankowska, 1990; Rockafellar and
Wets, 1998). To explore possible convergence of (14) is left for a subsequent study.
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