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Abstract

In a vector space endowed with a uniformly Gâteaux differentiable norm, it is proved that the Moreau
envelope enjoys many remarkable differential properties and that its subdifferential can be completely de-
scribed through a certain approximate proximal mapping. This description shows in particular that the
Moreau envelope is essentially directionally smooth. New differential properties are derived for the dis-
tance function associated with a closed set. Moreover, the analysis, when applied to the investigation of the
convexity of Tchebyshev sets, allows us to recover several known results in the literature and to provide
some new ones.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In 1963 J.J. Moreau associated with two extended real-valued functions f , g, defined on
a vector space X, the inf-convolution (also called infimal convolution) function f �g defined by
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f � g(x) := inf
y∈X

[
f (y) + g(x − y)

]
for all x ∈ X,

see [44] for the original definition and for a list of algebraic properties of the inf-convolution
operation. In fact, the case of the function g = 1

2‖ · ‖2, where ‖ · ‖ is the norm associated with
the inner product of a Hilbert space H , had already been considered by Moreau in his earlier
note [43] in 1962 dealing with the particular inf-convolution f � 1

2‖ · ‖2, that is,

x �→ inf
y∈H

[
f (y) + 1

2
‖x − y‖2

]
. (1.1)

In the short note [43] and in the paper [45], Moreau showed that the latter function was of class C1

whenever the function f was assumed to be proper, convex, and lower semicontinuous on the
Hilbert space H . In those papers [43,45], the set-valued mapping (called the “prox” mapping
therein and proximal mapping in [51])

Pf (x) :=
{
z ∈ H : f (z) + 1

2
‖x − z‖2 =

(
f � 1

2
‖ · ‖2

)
(x)

}
for all x ∈ H,

was shown to be single-valued and locally Lipschitz continuous on H , under the same assump-
tions of properness, convexity, and lower semicontinuity of f . Another particular remarkable
property, for f fulfilling the assumptions above, is that (see [45])

Pf (x) + Pf ∗(x) = x for all x ∈ H,

where f ∗ denotes the Legendre–Fenchel conjugate of f , that is,

f ∗(u) := sup
y∈H

[〈u,y〉 − f (y)
]

for all u ∈ H ;

this brought to light an extension to the mapping Pf of an old well-known property of the metric
projection on a closed subspace of a Hilbert space.

Some years later, H. Brézis [10,11] revealed the interest for each λ > 0 to consider the inf-
convolution f � 1

2λ
‖ · ‖2, that is, the use of the Hilbert norm 1√

λ
‖ · ‖ in H in place of the

initial Hilbert norm ‖ · ‖ in (1.1). Indeed, for a proper lower semicontinuous convex function
f : H → R ∪ {+∞} with subdifferential ∂f and the differential inclusion (modelizing con-
strained parabolic PDE)

⎧⎨
⎩

du

dt
(t) + ∂f

(
u(t)

) � 0,

u(0) = u0 ∈ cl(domf ),

(1.2)

Brézis [10, Theorem 1] and [11] showed the interest for u0 in the closure of the effective domain
of f to study regularizing properties of the semigroup of the differential inclusion above through
the ordinary differential equation

⎧⎨
⎩

duλ

dt
(t) +

(
∇f � 1

2λ
‖ · ‖2

)(
uλ(t)

) = 0,
(1.3)
uλ(0) = u0 ∈ cl(domf ),
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in establishing, via the convergence f � 1
2λ

‖ · ‖2(x) → f (x) as λ ↓ 0 (see [10, Proposition 10]),
that the solution {uλ}λ of (1.3) converges to a mapping u which is a solution of (1.2) in a strong
sense. H. Attouch [2] and [3, see Theorems 3.24 and 3.66] established in the setting of a reflexive
Banach space a general convergence result from which one deduces the Painlevé–Kuratowski ap-
proximation of subgradients of a proper lower semicontinuous convex function f by the Fréchet
derivative of f � 1

2λ
‖ ·‖2, namely: The graph of ∇(f � 1

2λ
‖ ·‖2) Painlevé–Kuratowski converges

in X × X∗ endowed with the strong topology to the graph of f as λ ↓ 0. Hence in particular any
subgradient of f at x is the strong limit of ∇(f � 1

2λn
‖ · ‖2)(xn) for some xn → x and λn ↓ 0,

that is,

∂f (x) = lim sup
λ↓0; u→x

{
∇

(
f � 1

2λ
‖ · ‖2

)
(u)

}
. (1.4)

We refer to Section 5 for the related definitions and to [3] for several results concerning differen-
tial properties of f � 1

2λ
‖ · ‖2 for convex functions f ; for potential tools allowing to extend (1.4)

to weakly compactly generated Banach spaces we refer to [62,60,61]. Following R.T. Rockafel-
lar and R.J.-B. Wets (see [51]) we will call f � 1

2λ
‖ · ‖2 the Moreau envelope of f of index λ

and we will denote it as eλf , that is,

eλf (x) :=
(

f � 1

2λ
‖ · ‖2

)
(x).

The properties mentioned above show the relevance of the Moreau envelope in Convex Analysis
and the need for investigating results on properties of the envelope outside the reflexive Banach
space setting.

The Moreau envelope is also relevant for nonconvex nonsmooth functions. The study of the
Moreau envelope and proximal mapping of nonconvex functions f started with [9,20,46] in the
very particular case when f is convex up to a square, that is, f = ϕ − c‖ · ‖2 for some real c � 0
and some proper convex lower semicontinuous function ϕ : H → R ∪ {+∞}, and those papers
provided applications to Morse theory and trajectories of Hamiltonian systems. Some properties
of the Moreau envelope in the more general class of primal lower nice functions are established
by L. Thibault and D. Zagrodny in [53] where it is shown: Given a function f from a Hilbert
space H into R ∪ {+∞} which is primal lower nice at x̄ (see [47,53] for the definition) with
f (x̄) < +∞, there exists some λ0 > 0 and some closed convex neighborhood U of x̄ such that,
for fU(x) = f (x) if x ∈ U and fU(x) = +∞ if x /∈ U , the function eλfU(·)+ 1

2λ
‖ · ‖2 is convex

on U for any 0 < λ < λ0; this property, combined with the fact that 1
2λ

‖ · ‖2 − eλfU(·) is always
convex on the Hilbert space H , says in particular that eλfU is Fréchet differentiable on the inte-
rior of U since those convexity properties along with the Fréchet differentiability of ‖ · ‖2 ensure
that both functions eλfU and −eλfU (·) are Fréchet subdifferentiable at any point in intU . The
convexity property of eλfU(·) + 1

2λ
‖ · ‖2 is used in [53] to show that primal lower nice functions

on an open convex set U of H are subdifferentially determined on U , that is, two such func-
tions with the same subdifferential on U are equal up to an additive constant. For another more
general class of the so-called prox-regular functions, R.A. Poliquin and R.T. Rockafellar [48]
proved a regularity property of the Moreau envelope in establishing the following: For a lower
semicontinuous function f on R

N which is prox-regular at x̄ for v̄ in the Mordukhovich sub-
differential of f at x̄ and which is minorized by a quadratic function, there exists λ0 > 0 such
that for each 0 < λ < λ0 there is a neighborhood Uλ of x̄ + λv̄ such that eλf is of class C1,1
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on Uλ (that is, differentiable on Uλ with the derivative locally Lipschitz continuous on Uλ). This
property has been extended to Hilbert spaces in [6] by F. Bernard and L. Thibault. We refer
to [48,6] for the definition of prox-regular functions and to Section 2 for other notions. This
property of eλf is exploited on one hand in [48,51] to develop a second order theory for nons-
mooth prox-regular functions, and on the other hand in [15,38] to study the differential evolution
inclusion (1.2) when the function f is supposed to be merely primal lower nice (instead of being
convex).

Recently, important additional properties of the Moreau envelope have been highlighted for
any minorized lower semicontinuous function on a Banach space X. Assuming that the norm ‖ ·‖
of the Banach space X is locally uniformly convex, R. Cibulka and M. Fabian [12] studied, as an
extension of results of S. Dutta [19] related to the distance function dS from a nonconvex set S,
the strong attainment and the differentiability of the Moreau envelope of a certain nonconvex
function f at generically many points. If the norm ‖ · ‖ is assumed to be uniformly Gâteaux
differentiable (instead of being locally uniformly convex) and if M ⊂ DomPf is dense in a
neighborhood of a point x ∈ X, then the paper [12] also established a description of the Clarke
subdifferential of e1f at x in terms of weak∗ limits of DG( 1

2‖ · ‖2)(xn − zn) for M � xn → x

and zn ∈ Pf (xn), extending in this way earlier results of J.M. Borwein, S.P. Fitzpatrick and
J.R. Giles [8] for the distance function; where DG( 1

2‖ · ‖2) stands for the Gâteaux derivative,
see (2.13) below.

Our aim in this paper is threefold. In a first step, under the uniform Gâteaux differentiability
of the norm ‖ · ‖ we establish a directional subregularity property of the Moreau envelope eλf ,
see (3.11); we also provide a description of the Clarke subdifferential of eλf for extended real-
valued lower semicontinuous functions f minorized by negative quadratic functions for which
the domain of the proximal mapping Pf may be empty, see (3.13). This description allows us to
show that the directional subregularity of the Moreau envelope is in fact equivalent to the uniform
Gâteaux differentiability of the norm ‖ · ‖, and to unify different approaches to the differentia-
bility of the Moreau envelope in this general setup. We also show through this description that
the Moreau envelope eλf is a ∂-essentially smooth function (see the definition in Section 2 and
Theorem 3.7) for any subdifferential included in the Clarke subdifferential. In view of results
from [54,34] this essential smoothness property says, in particular, that the Moreau envelope be-
longs to the class of functions determined (or integrable) by the Clarke subdifferential (up to an
additive constant). In fact, in several cases, a knowledge on a selection of the subdifferential on
some dense subset is sufficient for this determination, that is, we do not need the knowledge on
the whole subdifferential but only a single subgradient is enough for this integration property. It
is also shown that for every λ > 0 and every nonconvex weakly closed subset S ⊂ X the function
−eλψS is ∂C -eds (see the meaning in Definition 2.1 in the next section) but it is not the Moreau
envelope of any function, see Corollary 4.7(e), where ψS stands for the indicator function of a
set S and ∂C for the Clarke subdifferential.

In a second step, we apply the results on the Moreau envelope to the investigation of new
differential properties of the distance function and we provide new characterizations of convex
sets, see for example Theorem 4.3. Using such differential properties of the distance function
we derive that weakly closed Tchebyshev subsets of a reflexive Banach space whose norm is
uniformly Gâteaux differentiable are convex (see [5,36,55,56] for other results in this line).

As the third step, we establish under the assumption of Asplund property of (X,‖·‖) a descrip-
tion of the Mordukhovich limiting subdifferential ∂Lf (x) in terms of the Fréchet subgradients of
the Moreau envelope, providing in this way a partial extension of (1.4) (for other results in this
line, we refer to [33,4]).
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Differential properties of Moreau upper envelopes on uniformly Gâteaux differentiable Ba-
nach spaces will be studied in our forthcoming paper [35].

2. Preliminaries

In this section we collect several facts on generalized derivatives which are used throughout
the paper.

Let (X,‖ · ‖) be a normed vector space. For every nonempty set S ⊂ X the distance function
from the set S is denoted by dS(·) and is defined as

dS(x) = inf
u∈S

‖u − x‖, ∀x ∈ X.

The projection mapping on S is defined by

PS(x) := {
s ∈ S: dS(x) = ‖x − s‖}, ∀x ∈ X. (2.1)

For every real r > 0 and every x ∈ X we denote by B(x, r) (resp. B[x, r]) the open (resp. closed)
ball centered at x and of radius r .

The topological dual space of X is denoted by X∗, its dual norm by ‖ · ‖∗, that is,

∥∥x∗∥∥∗ := sup
‖u‖�1

〈
x∗, u

〉
, ∀x∗ ∈ X∗,

where 〈·,·〉 is the duality pairing between X and X∗. When there is no risk of confusion, we
will write ‖x∗‖ in place of ‖x∗‖∗. The closed unit ball centered at the origin of X∗ (resp. X) is
denoted by BX∗ (resp. BX).

For a function f and a set S, we write u
f−→ x and u

S−→ x to express u → x with f (u) →
f (x), and u → x with u ∈ S, respectively.

Let f be an extended real-valued function on X. The Mordukhovich limiting subdifferential
of f at x is the set

∂Lf (x) = w∗-Lim sup
u

f−→x, ε↓0

∂F,εf (u), (2.2)

where w∗-Lim sup stands for the weak∗ sequential outer (upper) limit of ∂F,εf (u) as u →f x,
that is, the set of all possible w∗-limits limi u

∗
i of sequences {u∗

i }i∈N such that u∗
i ∈ ∂F,εi

f (ui)

and ui →f x and εi ↓ 0. Above, for ε � 0

∂F,εf (u) =
{
x∗ ∈ X∗: lim inf

h→0

f (u + h) − f (u) − 〈x∗, h〉
‖ h ‖ � −ε

}

is the Fréchet ε-subdifferential of f at any u for which f (u) is finite. We adopt the conven-
tion ∂F,εf (u) = ∅ when |f (u)| = +∞. We also put ∂F f (u) = ∂F,0f (u). If f is the indicator
function ψS of a set S ⊂ X, that is, ψS(u) = 0 if u ∈ S and ψS(u) = +∞ otherwise, the set

NF,ε(S,u) := ∂F,εψS(u)
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is called the ε-Fréchet normal set of S at u, and this set is obviously a cone when ε = 0. The
Mordukhovich limiting normal cone NL(S, x) of S at x being defined by

NL(S, x) := ∂LψS(x),

one has the equality

NL(S, x) = w∗-Lim sup
u S−→x, ε↓0

NF,ε(S,u).

If S is the epigraph of the function f , that is, S = epif := {(u, r) ∈ X × R: f (u) � r}, the
subdifferentials ∂F f (x) and ∂Lf (x) are related to the epigraph of f through the equalities

∂F f (x) = {
x∗ ∈ X∗:

(
x∗,−1

) ∈ NF (S, ζ )
}
,

∂Lf (x) = {
x∗ ∈ X∗:

(
x∗,−1

) ∈ NL(S, ζ )
}
, (2.3)

for x ∈ X with |f (x)| < +∞, and ζ := (x, f (x)).
In the setting of Asplund space, that is, when X is a Banach space such that the topological

dual of any separable subspace of X is separable, Mordukhovich and Shao [42] established the
following characterization of the Mordukhovich limiting subdifferential

∂Lf (x) = w∗-Lim sup
u

f−→x

∂F f (u) (2.4)

whenever the function f is lower semicontinuous near x.
It is known, see for example [41, Theorem 1.97] that for a closed set S of the Banach space X

and x ∈ S one has

NL(S, x) =R+∂LdS(x), (2.5)

where dS denotes the distance function to the set S. It is also worth pointing out that

∂LdS(x) = w∗-Lim sup
u S−→x, ε↓0

∂F,εdS(u) (2.6)

whenever the space X is Asplund. This means that one may for f = ψS in (2.2) require u to
belong to the closed set S as u → x.

When the space X is Asplund, f is finite at x and lower semicontinuous on an open neigh-
borhood U of x and g is finite and Lipschitz continuous on U , then for any ε > 0 and x′ ∈ U and
for any x∗ ∈ ∂F,ε(f + g)(x′) (see, for example, [41, Theorem 2.3]) there are u,v ∈ B(x′, ε) ∩ U

with |f (u) − f (x′)| < ε such that

x∗ ∈ ∂F f (u) + ∂F g(v) + 2εBX∗ , (2.7)

so that

∂L(f + g)(x) ⊂ ∂Lf (x) + ∂Lg(x). (2.8)

The theory of Fréchet and limiting subdifferentials is developed in Mordukhovich’s book [41].
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One of the best ways to introduce the Clarke subdifferential (called also the Clarke general-
ized gradient) is to define it first for locally Lipschitz continuous functions via the generalized
directional derivative. Recall that, for a locally Lipschitz continuous function f : U → R on an
open set U of a normed vector space X, its Clarke generalized directional derivative (see [13])
is defined for x ∈ U by

f o(x;h) := lim sup
u→x; t↓0

t−1[f (u + th) − f (u)
]

and then its Clarke subdifferential at x can be defined similarly to the convex setting by

∂Cf (x) := {
x∗ ∈ X∗:

〈
x∗, h

〉
� f o(x;h), ∀h ∈ X

}
.

It is not difficult to see that for a locally Lipschitz continuous function f we have on one hand

f o(x;−h) = (−f )o(x;h), (2.9)

and on the other hand

f o(x;h) = lim sup
(u,w)→(x,h); t↓0

t−1[f (u + tw) − f (u)
]
,

and the latter equality entails that the function f o(·;·) is upper semicontinuous on U × X, we
refer to [13] for details. We also note that for any h ∈ X and any dense set Q of X the set
{(t, u) ∈ ]0,+∞[ × X: u + th ∈ Q} is dense in ]0,+∞[ × X, so the continuity of f ensures

f o(x;h) = lim sup
u→x; t↓0
u+th∈Q

t−1[f (u + th) − f (u)
]
. (2.10)

It is worth pointing out that, when X is Asplund, the Clarke subdifferential ∂Cf (x) is related
to the Mordukhovich limiting subdifferential ∂Lf (x) through the equality

∂Cf (x) = co∗(∂Lf (x)
)
, (2.11)

where co∗ denotes the w∗-closed convex hull, we refer to [41, Theorem 3.57] for details.
The Clarke subdifferential obeys to the following sum rule (see, for example, [13, Corollary 1,

p. 105]):

∂C(f + g)(x) ⊂ ∂Cf (x) + ∂Cg(x) (2.12)

provided that one of the two functions f,g : X → R ∪ {+∞} is locally Lipschitz continuous
around x.

We know that the Clarke subdifferential of a locally Lipschitz continuous function on a
normed space X is a nonempty weak∗ compact set of X∗ and that the limiting subdifferential
of a locally Lipschitz continuous function is also a nonempty (but it can be neither convex nor
weak∗ closed) set provided that the space X is Asplund.
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We recall that the function f : X → R is Gâteaux (resp. Hadamard) differentiable at the
point x of the normed space X provided there exists a continuous linear functional A :=
DGf (x) ∈ X∗ (resp. A =: DH f (x)) such that

lim
t↓0

t−1[f (x + th) − f (x)
] = 〈A,h〉 (2.13)

(resp. and provided the convergence is uniform for h in compact sets). If the convergence
in (2.13) is uniform on every bounded subset, then we say that f is Fréchet differentiable and
the derivative is denoted by DF f (x) in place of A. When in place of (2.13), one has

lim
u→x
t↓0

t−1[f (u + th) − f (u)
] = 〈A,h〉 (2.14)

with uniform convergence for h in compact sets of X, one says that G is strictly Hadamard differ-
entiable at x and one puts A =: Ds

H G(x). If the convergence in (2.14) is uniform for h in bounded
sets of X, then f is said to be strictly Fréchet differentiable at x and one sets A =: Ds

F G(x).
The lower Dini directional derivative of f at u ∈ domf is given by

d−f (u;h) := lim inf
w→h; t↓0

t−1[f (u + tw) − f (u)
]

and when f is Lipschitz continuous near u we obviously have for all h ∈ X

d−f (u;h) = lim inf
t↓0

t−1[f (u + th) − f (u)
]
.

The Dini subdifferential of f at x is the set

∂−f (x) = {
x∗ ∈ X∗:

〈
x∗, h

〉
� d−f (x;h), ∀h ∈ X

}

for x ∈ domf and ∂−f (x) = ∅ if x /∈ domf , where domf := {x ∈ X: |f (x)| < +∞} denotes
the effective domain of f .

When f is Lipschitz continuous near u and

f o(u; ·) = d−f (u; ·)
the function f is said to be Clarke directionally subregular at the point u. This is easily seen to
be equivalent to the existence of the (usual) directional derivative f ′(u; ·) and to the equality

f o(u; ·) = f ′(u; ·),
where

f ′(u;h) := lim
t↓0

t−1[f (u + th) − f (u)
]
.

It is easy to see, for a closed set S of the normed space X and x ∈ X, that the directional
derivatives of dS and d2

S are linked as

(
d2)◦

(x;h) = 2dS(x)d◦(x;h), d−d2(x;h) = 2dS(x)d−dS(x;h), ∀h ∈ X. (2.15)
S S S
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As we see above, whenever nonconvex functions are considered, there are several ways to
define their subdifferential. It is then natural to work with an abstract general concept of subd-
ifferential allowing us to state many results in a general unified framework. Such a generality is
achieved through the concept of presubdifferential. Following [53,54] a presubdifferential on a
normed vector space X is an operator ∂ which assigns to any function f : X → R ∪ {+∞} and
any x ∈ X a subset ∂f (x) of X∗ and which satisfies the following properties:

(P1) ∂f (x) ⊂ X∗ and ∂f (x) = ∅ if x /∈ domf ;
(P2) ∂f (x) = ∂g(x) whenever f and g coincide on a neighborhood of x;
(P3) ∂f (x) is equal to the subdifferential in the sense of Convex Analysis whenever f is convex

and lower semicontinuous;
(P4) if f is lower semicontinuous near x ∈ domf , g is (finite) convex continuous near x, and x

is a local minimum point of f + g, then one has

0 ∈ w∗-Lim sup
u

f−→x

∂f (u) + ∂g(x),

where u
f−→ x means (u,f (u)) → (x, f (x)) and w∗-Lim sup

u
f−→x

∂f (u) denotes the weak∗
sequential outer (upper) limit of ∂f (u) as defined in (2.2).

The graph of the presubdifferential set-valued mapping ∂f is the set

gph ∂f := {(
x, x∗) ∈ X × X∗: x∗ ∈ ∂f (x)

}
.

When f : U → R ∪ {+∞} is defined on a subset U of X its presubdifferential ∂f (x) is defined
as the presubdifferential of the extension of f to X with the value +∞ outside of the set U .
We mention that other abstract subdifferentials have been used in [30] in the study of sufficient
conditions for the metric regularity of set-valued mappings.

We say that ∂ is a subdifferential with exact inclusion sum rule when (P1)–(P3) hold and
instead of (P4) one requires:

(P4′) for any function g finite and locally Lipschitz continuous near x

∂(f + g)(x) ⊂ ∂f (x) + ∂g(x)

and 0 ∈ ∂f (x) whenever x ∈ domf is a local minimum of f .

The above mentioned (Clarke, Fréchet, Mordukhovich) subdifferentials are presubdifferen-
tials in appropriate spaces. It is known that the presubdifferential of a function does not determine
the function up to a constant. In order to have this integration property we have to distinguish a
proper class of functions. The largest class of functions was given in [54], see also [34]. Before
recalling the definition, we denote, by ϕ′(t;1) the right derivative of a function ϕ at t defined on
an interval of R, whenever it exists, that is,

ϕ′(t;1) := lim
τ↓0

ϕ(t + τ) − ϕ(t)

τ
.
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Definition 2.1. (See [54].) Let U be a nonempty open convex subset of a Banach space X and
g : X → R ∪ {+∞} be a lower semicontinuous function on U with U ∩ domg �= ∅ and μ > 0
be fixed. Let D be a subset of X with Dom ∂g ⊂ D ⊂ domg. We say that the function g is
essentially ∂,μ-directionally smooth (∂,μ-eds, for short) on U relative to D provided that for
each u ∈ U ∩ Dom ∂g:

(i) for each v ∈ U ∩ domg the function gu,v(t) := g(u + t (v − u)) is finite and continuous on
[0,1];

(ii) for each v ∈ U ∩ D there are real numbers 0 = t0 < · · · < tp = 1 such that the function t �→
gu,v(t) is absolutely continuous on each closed interval included in [0,1] \ {t0, t1, . . . , tp};

(iii) for each v ∈ U ∩ D with v �= u there exists a subset T ⊂ [0,1] of full Lebesgue measure
(that is, of Lebesgue measure 1) such that for every t ∈ T and every sequence {(xi, x

∗
i )}i∈N

in gph ∂g with xi → x(t) := u + t (v − u), there is some w ∈ ]x(t), v] for which

lim sup
i→∞

〈
x∗
i ,w − xi

〉
�

∥∥w − x(t)
∥∥(‖v − u‖−1g′

u,v(t;1) + μ
)
.

When the above properties hold for all μ > 0, one says that g is ∂-eds on U relative to D. If
D = domg, one merely says that g is ∂-eds on U .

Let U be a nonempty open convex subset of a Banach space X and let f : U → R ∪ {+∞}
be a lower semicontinuous function which is not identically equal to +∞. Then each one of the
following conditions ensures (see [54]) that f is ∂-eds on U with respect to D = domf :

(a) f is convex on U ;
(b) f is locally Lipschitz continuous on U and segment-wise essentially smooth on U , and the

presubdifferential ∂f is included in the Clarke subdifferential of f (we recall that if for each
(u, v) ∈ U × U and for x(t) = u + t (v − u) the set

{
t ∈ ]0,1[: f o

(
x(t);−x′(t)

) �= −f o
(
x(t);x′(t)

)}

has null Lebesgue measure, then the function f is said to be segment-wise essentially smooth
on U );

(c) f is locally Lipschitz continuous on U and directionally subregular on U , and the presubd-
ifferential ∂f is included in the Clarke subdifferential of f ;

(d) ∂ is a subdifferential included in the Clarke subdifferential with exact subdifferential sum
rule (P4′) and f is locally DC on U , that is, for any u ∈ U there exist an open convex
neighborhood U ′ ⊂ U of u, a lower semicontinuous convex function f1 : U ′ → R ∪ {+∞}
and a continuous convex function f2 : U ′ → R such that f (x) = f1(x) − f2(x) for all
x ∈ U ′.

Further, f is ∂-eds on U relative to D := Dom ∂f whenever ∂ is included in the Clarke
subdifferential and f is approximate convex on U in the sense that for every u ∈ U and every
ε > 0 there exists some convex neighborhood U ′ ⊂ U of u such that for all x, x′ ∈ U ′ and all
t ∈ ]0,1[ one has

f
(
tx + (1 − t)x′) � tf (x) + (1 − t)f

(
x′) + εt (1 − t)

∥∥x′ − x
∥∥.
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3. Subregularity properties of the Moreau envelope

When we deal with functions which are not sufficiently smooth then we face with several diffi-
culties, for example: exploring monotonicity properties by means of “derivative” needs advanced
knowledge from nonsmooth analysis, identification of functions (up to an additive constant) by
its “derivative” needs distinguishing a proper class of functions for which it is possible, we re-
fer to [54] for recent achievements in that direction. However, approximation techniques allow
us to look for a close function with some better properties, for example some convex functions
can be identified by means of the Moreau envelope, see for example [59]. Below, under the as-
sumption that X is a Banach space with uniformly Gâteaux differentiable norm (this property is
enjoyed by: Hilbert space, separable space – it has an equivalent norm with this property, Lp with
1 < p < ∞, super-reflexive space), see [21–23,31,32,52], we prove that the Moreau envelope of
a function is a ∂-eds function on X with respect to the whole space. In other words, under the
additional assumptions that the function is lower semicontinuous and bounded from below by a
negative quadratic function, see Definition 3.1 below, this result guarantees that there is a func-
tion from the class of functions with integrable subdifferential, which is close to f in some sense,
since for such a function f the equality

epif =
⋂
λ>0

epi eλf

holds true, keep also in mind that the inclusion epif ⊂ epi eλf holds true for every λ > 0 and
the reverse inclusion “almost” holds true on bounded sets, see (3.8) below for details.

Let X be a normed vector space and Q ⊂ X be a dense subset. For any function f : X →
R∪ {+∞}, any λ > 0 and any ε � 0, let us put

eλf (x) := inf
z∈X

f (z) + 1

2λ
‖z − x‖2,

Pλf (x) := arg minz∈X

{
f (z) + 1

2λ
‖z − x‖2

}
,

Eλ,ε,Qf (x) :=
{
z ∈ X: ∃y ∈ Q s.t. eλf (x) + ε � f (z) + 1

2λ
‖z − y‖2 and ‖x − y‖ � ε

}

(3.1)

and

A(f,x,λ, ε,Q) :=
{
y∗ ∈ X∗: ∃y ∈ Q, ∃z ∈ X s.t. y∗ ∈ ∂

(
(2λ)−1‖ · ‖2)(y − z),

eλf (x) + ε � f (z) + 1

2λ
‖z − y‖2 and ‖x − y‖ � ε

}

and

Eλ,Qf (x) :=
⋂
ε>0

clw∗ A(f,x,λ, ε,Q),

where clw∗ stands for the weak∗ closure the closure of the set with respect to the weak∗ topology.
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The set A(f,x,λ, ε,Q) above involves the subdifferential of the convex function 1
2‖ · ‖2. It is

known (and easily seen) that for all x in the normed vector space X

∂

(
1

2
‖ · ‖2

)
(x) = {

x∗ ∈ X∗:
〈
x∗, x

〉 = ‖x‖2,
∥∥x∗∥∥ = ‖x‖}, (3.2)

and the graph of this set-valued mapping is ‖ · ‖ × w(X∗,X) closed in X × X∗. Further, the set
∂( 1

2‖ · ‖2)(x) is a singleton for all x ∈ X if and only if the norm ‖ · ‖ is Gâteaux differentiable
outside zero, and in such a case writing ∂( 1

2‖ · ‖2)(x) = {J (x)} the mapping

J : X → X∗ is norm-to-weak∗ continuous, (3.3)

that is, the mapping J (usually called the duality (single-valued) mapping) is continuous with
respect to the norm topology on X and the weak∗ topology on X∗. Obviously, one has

J (tx) = tJ (x) for all t ∈R, x ∈ X. (3.4)

When the Moreau envelope is Gâteaux differentiable, its Gâteaux derivative is easily seen
to be connected with the duality mapping as it is shown in Proposition 3.1. Of course, a similar
statement also holds true for the Dini subdifferential (and others) when eλf is not Gâteaux differ-
entiable, see, for example, [12,14]. Before stating the result, recall that an extended real-valued
function f on X is proper whenever f is finite at some point of X and does not take on the
value −∞ at any point of X.

Proposition 3.1. Let (X,‖ · ‖) be a normed space whose norm ‖ · ‖ is Gâteaux differentiable
outside zero and f : X → R ∪ {+∞} be a proper function. Let a real λ > 0 be given. Assume
that x ∈ X is such that the Gâteaux derivative DGeλf (x) exists and Pλf (x) �= ∅. Then

∀z ∈ Pλf (x), DGeλf (x) = 1

λ
J (x − z) and

〈
DGeλf (x), x − z

〉 = 1

λ
‖x − z‖2.

Proof. Let x ∈ X be such that the Gâteaux derivative DGeλf (x) exists and Pλf (x) �= ∅. We
have

〈
DGeλf (x),h

〉 = lim
t↓0

eλf (x) − eλf (x − th)

t

� lim
t↓0

f (z) + 1
2λ

‖x − z‖2 − f (z) − 1
2λ

‖x − th − z‖2

t
=

〈
1

λ
J (x − z),h

〉

for every h ∈ X, z ∈ Pλf (x), which combined with (3.2) implies the statement. �
It is easy to observe that for any λ > 0, ε > 0 and x ∈ X, the sets A(f,x,λ, ε,Q) are

nonempty whenever eλf (x) is finite. It is also interesting to know whether there are x ∈ X such
that the functions f (·) + 1

2λ
‖ · −x‖2 attain their infimum, that is, when Pλf (x) �= ∅. Of course

in the finite-dimensional setting Pλf (x) �= ∅ for every x ∈ X and λ sufficiently small, when-
ever f is lower semicontinuous and bounded from below by some negative quadratic function.
On the contrary, when X is a general infinite-dimensional normed space, we do not expect that
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Pλf (x) �= ∅ for every x ∈ X. Moreover, it may even happen for some function f that Pλf (x) = ∅
for every x ∈ X, whenever X is not reflexive. This is a consequence of the proposition below,
where it is shown that the space X is reflexive whenever for any x∗ ∈ X∗ taken in place of f there
exists some x ∈ X such that the infimum in the definition of e1x

∗(x) is attained. This shows the
need for some functions f not to consider, in the definition of sets A(f,x,λ, ε,Q), only those y

for which infima of f (·) + 1
2λ

‖ · −y‖2 are attained.

Proposition 3.2. Assume that (X,‖ · ‖) is a Banach space such that for every x∗ ∈ X∗ there is
x ∈ X such that for some z ∈ X we have

e1x
∗(x) = 〈

x∗, z
〉 + 1

2
‖z − x‖2.

Then X is a reflexive Banach space.

Proof. In order to prove the reflexivity it is enough to show that the closed unit ball BX is weakly
compact, see [29, Section 16] for example. For this reason we use the theorem of James, see [29,
Section 19]. Let us fix x∗ ∈ X∗ \ {0}, x ∈ X and z ∈ X such that

inf
u∈X

〈
x∗, u

〉 + 1

2
‖u − x‖2 = 〈

x∗, z
〉 + 1

2
‖z − x‖2.

By a simple subdifferential calculus we obtain −x∗ ∈ ∂( 1
2‖ · −x‖2)(z), which yields by (3.2)

〈−x∗, z − x
〉 = ‖z − x‖2 and

∥∥x∗∥∥ = ‖z − x‖.
Hence

〈
x∗,‖x − z‖−1(x − z)

〉 = ‖z − x‖,

so x∗ attains its maximum on BX at ‖x − z‖−1(x − z). Thus every continuous linear functional
attains its maximum on the closed ball BX , so the ball is weakly compact and the space is reflex-
ive. �

The following definition is needed for guaranteeing the local Lipschitzness of eλf as well as
the boundedness of Eλ,Qf (x).

Definition 3.1. We say that f is bounded from below by a negative quadratic function if there
exist γ ∈R, β � 0, and α � 0 such that

f (x) � −α‖x‖2 − β‖x‖ + γ, ∀x ∈ X. (3.5)

We may easily see that this definition is equivalent to say that there exists α0 � 0 such that

f (x) � −α0
(‖x‖2 + 1

)
, ∀x ∈ X. (3.6)

Consider a proper convex function f : X → R ∪ {+∞} bounded from below by a quadratic
function q(·). Then the lower semicontinuous hull f̄ of f is bounded from below by q(·) and
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hence it is a proper lower semicontinuous convex function. Consequently f̄ is bounded from
below by a continuous affine function. So

f is bounded from below by a quadratic function

if and only if it is bounded from below by a continuous affine function. (3.7)

We establish now the boundedness of Eλ,Qf (x) and the local Lipschitz property of eλf .
An earlier result concerning the Lipschitz property of eλf over a ball rBX can be found in [3,
Theorem 2.64] with different constants. An Attouch–Wets convergence property is also proved.

Proposition 3.3. Let (X,‖ · ‖) be a normed vector space and f : X → R ∪ {+∞} be a proper
function bounded from below by a negative quadratic function, and Q ⊂ X be a given dense
subset. Then the following hold:

(a) The sets Eλ,ε,Qf (x) are nonempty and bounded, and the sets clw∗ A(f,x,λ, ε,Q) and
Eλ,Qf (x) are nonempty and weak∗ compact for all x ∈ X and λ ∈ ]0, 1

2α
[, where α is as in

relation (3.5) (with the convention 1
2α

= +∞ for α = 0).
(b) For each real λ ∈ ]0, 1

2α
[ the function eλf is Lipschitz continuous on each ball rBX of X

with a Lipschitz constant therein L � r
λ

.
(c) For each c > 0 and ε > 0 there is η > 0 such that for all λ ∈ ]0, η[ the following inclusion

epi eλf ∩ B[0, c] ⊂ epif + B(0, ε) (3.8)

holds true; and this combined with the inclusion epif ⊂ epi eλf (due to the inequality
ελf � f ) ensures the Attouch–Wets (see [51]) convergence of {eλf }λ to f as λ ↓ 0.

Proof. Let us fix λ ∈ ]0, 1
2α

[ and x ∈ X. First observe that eλf (x) is finite, due to the rela-
tion (3.5) and the properness of f . Now fix ε > 0 and take y ∈ B[x, ε]. Observe that if

eλf (x) + ε � f (z) + 1

2λ
‖z − y‖2

then, by (3.5), we get

eλf (x) + ε � −α‖z‖2 − β‖z‖ + γ + 1

2λ
‖z − y‖2.

So

eλf (x) + ε − γ � −α‖z‖2 − β‖z‖ + 1

2λ
‖z‖2 + 1

2λ
‖y‖2 − 1

λ
‖z‖‖y‖. (3.9)

Thus

eλf (x) + ε − γ �
(

1

2λ
− α

)
‖z‖2 −

(
β + ‖x‖ + ε

λ

)
‖z‖,

which implies the existence of M1 > 0, not depending on y, such that if y ∈ B[x, ε] and eλf (x)+
ε � f (z) + 1 ‖z − y‖2 then
2λ
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z ∈ B(0,M1),

in other words

Eλ,ε,Qf (x) ⊂ Eλ,ε,Xf (x) ⊂ B(0,M1).

Finally, there exists M2 > 0 such that if y∗ ∈ ∂((2λ)−1‖ · ‖2)(y − z) and eλf (x) + ε � f (z) +
1

2λ
‖z−y‖2, with ‖x −y‖ � ε, then y∗ ∈ B(0,M2). So for all ε′ ∈ ]0, ε] the sets A(f,x,λ, ε′,Q)

are bounded since they are included in B(0,M2). The nonemptiness of all of them follows from
the fact that for y = x there exists z′ ∈ X such that

eλf (x) + ε > f
(
z′) + 1

2λ

∥∥z′ − y
∥∥2

,

so by the density of Q we get

eλf (x) + ε > f
(
z′) + 1

2λ

∥∥z′ − q
∥∥2

for some q ∈ Q. Hence the sets clw∗ A(f,x,λ, ε,Q) are weak∗ compact and thus the intersection⋂
0<ε′�ε clw∗ A(f,x,λ, ε,Q) is nonempty and weak∗ compact, which asserts that Eλ,Qf (x) is

nonempty and weak∗ compact. The assertion (a) is established.
Concerning (b) fix a point z0 ∈ X where f is finite and a real r > 0. For ε > 0, x ∈ rBX , and

z ∈ X such that eλf (x) + ε � f (z) + 1
2λ

‖x − z‖2, writing

f (z0) + 1

λ

(
r2 + ‖z0‖2) � f (z0) + 1

2λ
‖x − z0‖2 � eλf (x)

and choosing y = x in (3.9) yields

f (z0) + 1

λ

(
r2 + ‖z0‖2) + ε − γ �

(
1

2λ
− α

)
‖z‖2 −

(
β + r

λ

)
‖z‖,

which gives some real M > 0 depending only on λ and r such that ‖z‖ � M . This ensures that
eλf (x) = infz∈MBX

[f (z) + 1
2λ

‖x − z‖2] for all x ∈ rBX . Observing for each z ∈ MBX that
the function 1

2λ
‖ · −z‖2 is Lipschitz continuous on rBX with 1

λ
(r + M) as Lipschitz constant

therein the latter inequality for eλf (x) guarantees |eλf (x) − eλf (x′)| � 1
λ
(r + M)‖x − x′‖ for

all x, x′ ∈ rBX .
In order to prove (c) we can endow X × R with the norm ‖(u, r)‖ := max{‖u‖, |r|}. Let

α0 > 0 be as in relation (3.6) and let c > 0 and ε > 0 be arbitrary. Let λ > 0 and (x′, r) ∈
epi eλf ∩ B[0, c]. Then there exists u ∈ X such that

f (u) + 1

2λ

∥∥u − x′∥∥2 � eλf
(
x′) + λ � r + λ � c + λ. (3.10)

As

‖u‖2 � 2
∥∥u − x′∥∥2 + 2

∥∥x′∥∥2 � 2
∥∥u − x′∥∥2 + 2c2
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we obtain, by using relations (3.6) and (3.10),

−2
∥∥u − x′∥∥2 � −‖u‖2 + 2c2 � 1 + 1

α0
f (u) + 2c2

� 1 + 1

α0

[
c + λ − 1

2λ

∥∥u − x′∥∥2
]

+ 2c2.

Thus ‖u − x′‖2( 1
2λα0

− 2) � 1 + 2c2 + c+λ
α0

, which, for 0 < λ < 1/(4α0), is equivalent to

∥∥u − x′∥∥2 �
(
α0 + 2α0c

2 + c + λ
) 2λ

1 − 4α0λ
.

Choose a positive real η < min( 1
4α0

, ε) such that (α0 + 2α0c
2 + c + λ) 2λ

1−4α0λ
< ε2 for all 0 <

λ < η. Then, for any fixed number λ ∈ ]0, η[, we have ‖u − x′‖2 � ε2. So, (x′, r) ∈ (u, r + ε) +
B[0, ε], with (u, r + ε) ∈ epif (by relation (3.10)). Consequently

epi eλf ∩ B[0, c] ⊂ epif + B[0, ε], ∀λ ∈ ]0, η[. �
Remark 3.1. Let X be a normed vector space and f : X → R ∪ {+∞} be a proper lower semi-
continuous function. For all x ∈ domf there is δx > 0 such that the function (f + ψB[x,δx ])(·)
is bounded from below (if the function f is bounded from below then we put δx := ∞,
B[x,∞] := X), where we recall that

ψS(y) :=
{

0 if y ∈ S,

+∞ if y /∈ S.

Hence the function (f + ψB[x,δx ])(·) satisfies the assumptions of the above proposition. In par-
ticular for all nonempty subsets S ⊂ X we have

eλψS(x) = d2
S(x)

2λ
= infs∈S ‖x − s‖2

2λ
.

Of course if f is the sum of a Lipschitz continuous function on X and a proper convex and lower
semicontinuous function, then the assumptions of the above proposition are also satisfied.

Let us recall that a norm ‖·‖ on a vector space X is said to be uniformly Gâteaux differentiable
(off zero) in a direction h ∈ X if for any ε > 0, there exists a real δ(h, ε) > 0 such that for every
u ∈ X with ‖u‖ = 1, there is a continuous linear functional fu on X for which

∣∣∣∣‖u + th‖ − ‖u‖
t

− fu(h)

∣∣∣∣ < ε

for all t ∈ ]0, δ(h, ε)[ or equivalently (see [17, Definition 1.1, Definition 6.5 and Lemma 6.6])

lim
t↓0

sup
u∈X, ‖u‖=1

t−1(‖u − th‖ + ‖u + th‖ − 2
) = 0 for all h ∈ X.

Of course, in such a case fu(h) = 〈J (u),h〉.
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Remark 3.2. Usually when we want to apply the above equality we are not in the unit sphere.
Moreover it is often more convenient to use the norm squared instead of the norm itself. Under
the assumption that the norm ‖ · ‖ on the vector space X is uniformly Gâteaux differentiable (off
zero) in a direction h ∈ X, for all reals 0 < ρ < r we have

lim
t↓0

sup
y∈X, ρ�‖y‖�r

t−1(‖y + th‖2 − ‖y‖2 − 2
〈
J (y), th

〉) = 0.

Indeed, for 0 < t < 1, putting u := ‖y‖−1y and s := s(t, y) := ‖y‖−1t (depending on both t

and ‖y‖) we have

t−1(‖y + th‖2 − ‖y‖2 − 2t
〈
J (y),h

〉)
= ‖y‖{s−1(‖u + sh‖2 − ‖u‖2 − 2s

〈
J (u),h

〉)}
= ‖y‖{s−1(‖u + sh‖ − ‖u‖ − s

〈
J (u),h

〉)(‖u + sh‖ + ‖u‖)
+ (‖u + sh‖ + ‖u‖ − 2

)〈
J (u),h

〉}
= ‖y‖{s−1(‖u + sh‖ − ‖u‖ − s

〈
J (u),h

〉)(‖u + sh‖ + ‖u‖)
+ (‖u + sh‖ − ‖u‖)〈J (u),h

〉}
� ‖y‖(2 + s‖h‖)s−1(‖u + sh‖ − ‖u‖ − s

〈
J (u),h

〉) + ‖y‖s‖h‖∣∣〈J (u),h
〉∣∣

�
(
2r + ‖h‖)s−1(‖u + sh‖ − ‖u‖ − s

〈
J (u),h

〉) + t‖h‖∣∣〈J (u),h
〉∣∣.

Since

sup
v∈X, ‖v‖=1

τ−1(‖v + τh‖ − ‖v‖ − τ
〈
J (v),h

〉) → 0 as τ ↓ 0

and since supy∈X, ρ�‖y‖�r s(t, y) → 0 as t ↓ 0, we deduce that

lim
t↓0

sup
y∈X, ρ�‖y‖�r

t−1(‖y + th‖2 − ‖y‖2 − 2t
〈
J (y),h

〉) = 0

(because we know that t−1(‖y + th‖2 − ‖y‖2 − 2t〈J (y),h〉) � 0 for all t > 0). This justifies the
desired equality.

More generally, the above arguments show the following: For any family (Yt )0<t<1 of subsets
of a fixed ball rBX such that infy∈Yt (‖y‖−1t) → 0 as t ↓ 0, the property

lim
t↓0

sup
y∈Yt

t−1(‖y + th‖2 − ‖y‖2 − 2t
〈
J (y),h

〉) = 0

is satisfied.

The norm is uniformly Gâteaux differentiable when it is uniformly Gâteaux differentiable
in each direction h ∈ X. An equivalent characterization for the norm of a Banach space to be
uniformly Gâteaux differentiable in a direction h, by means of the directional derivative of the
distance function, was given by L. Zajiček, see [63, Theorem 3].
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Theorem 3.1. Let (X,‖ · ‖) be a Banach space and h ∈ X. Then the following conditions are
equivalent:

(i) The norm ‖ · ‖ of X is uniformly Gâteaux differentiable in the direction h ∈ X.
(ii) For any nonempty closed subset S ⊂ X and any x /∈ S the directional derivative

limt↓0
dS(x+th)−dS(x)

t
exists.

It is shown in the theorem below that whenever the norm of the vector space X is uniformly
Gâteaux differentiable, then the Moreau envelope enjoys remarkable properties as regards its
directional derivatives. In the theorem a general formula for the Clarke directional derivative
is also established in the case when the proximal mapping Pλf (x) may be empty, see (3.11)
below. As it will be observed in Remark 3.3 the formula yields the lower semicontinuity of
the lower Dini directional derivative of the Moreau envelope, that is, the lower semicontinuity
of d−(eλf )(·;·). It is worth pointing out that our method for obtaining the properties of di-
rectional derivatives of the Moreau envelope does not require any semicontinuity assumption
on f .

Theorem 3.2. Let (X,‖ · ‖) be a normed vector space whose norm ‖ · ‖ is uniformly Gâteaux
differentiable and f : X → R ∪ {+∞} be a proper function (i.e. domf �= ∅). Suppose that f is
bounded from below by a negative quadratic function, where α is as in relation (3.5) (with the
convention 1

2α
= +∞ for α = 0). Let a positive λ ∈ ]0, 1

2α
[ be given. Then for every dense subset

Q ⊂ X the following hold:
The function eλf is locally Lipschitz continuous and for all x,h ∈ X

d−(−eλf )(x;−h) = lim
t↑0

eλf (x + th) − eλf (x)

t
= (eλf )o(x;h)

= max
u∗∈Eλ,Xf (x)

〈
u∗, h

〉 = max
u∗∈Eλ,Qf (x)

〈
u∗, h

〉
, (3.11)

lim
t↓0

eλf (x + th) − eλf (x)

t
= min

u∗∈Eλ,Xf (x)

〈
u∗, h

〉 = min
u∗∈Eλ,Qf (x)

〈
u∗, h

〉
(3.12)

and

∂C(eλf )(x) = co∗(Eλ,Xf (x)
) = co∗(Eλ,Qf (x)

) = −∂−(−eλf )(x), (3.13)

where co∗(·) denotes the weak∗ closed convex hull.

Proof. The assertion (b) of Proposition 3.3 ensures that eλf (·) is locally Lipschitz continuous
on X. Fix h,x ∈ X and a dense subset Q ⊂ X. By Proposition 3.3 the set Eλ,Qf (x) is nonempty
and weak∗ compact in X∗. First, we remark that

lim inf
t↑0

t−1[eλf (x + th) − eλf (x)
] = lim inf

t↓0
t−1[eλf (x) − eλf (x − th)

]

= d−(−eλf )(x;−h)

and the following inequalities hold true
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lim inf
t↓0

t−1[eλf (x) − eλf (x − th)
]
� lim sup

t↓0
t−1[eλf (x) − eλf (x − th)

]

� lim sup
t↓0

t−1[eλf
(
z(t) + th

) − eλf
(
z(t)

)]

� (eλf )o(x;h) (3.14)

where z(t) = x − th. To get (3.11) it remains to prove that

lim inf
t↓0

t−1[eλf (x) − eλf (x − th)
]
� max

u∗∈Eλ,Qf (x)
〈u,h〉 � (eλf )o(x;h).

Indeed, if the last one is true then

lim inf
t↑0

t−1[eλf (x + th) − eλf (x)
]
� (eλf )o(x;h) � lim sup

t↑0
t−1[eλf (x + th) − eλf (x)

]

and this ensures that limt↑0 t−1[eλf (x + th) − eλf (x)] exists.
Fix any real r > lim inft↓0 t−1[eλf (x)− eλf (x − th)]. There exist ti ∈ ]0,1] such that ti → 0

and

r > t−1
i

[
eλf (x) − eλf (x − tih)

]
.

Let u∗ ∈ Eλ,Xf (x). Then for every ε > 0

〈
u∗, h

〉 ∈ clR

{〈
y∗, h

〉
: ∃y, z ∈ X s.t. y∗ ∈ ∂

(
(2λ)−1‖ · ‖2)(y − z),

eλf (x) + ε � f (z) + 1

2λ
‖z − y‖2 and ‖x − y‖ � ε

}
.

So, there exist sequences {yi}i∈N, {zi}i∈N in X and {u∗
i }i∈N in X∗ such that 〈u∗

i , h〉 → 〈u∗, h〉
and such that for all i ∈ N

eλf (x) + t2
i � f (zi) + 1

2λ
‖zi − yi‖2,

‖yi − x‖ � t2
i and u∗

i ∈ ∂
(
(2λ)−1‖ · ‖2)(yi − zi). (3.15)

Since ti ∈ ]0,1] we have {zi}i∈N ⊂ Eλ,1,Xf (x) (see (3.1)) and hence, by Proposition 3.3, there
exists M > 1 (not depending on ti ) such that max{‖yi − zi‖2,‖yi − zi − tih‖2} � M for all i. So
for all i

r > t−1
i

[
−t2

i + f (zi) + 1

2λ
‖zi − yi‖2 − f (zi) − 1

2λ
‖zi − x + tih‖2

]

= t−1
i

[
−t2

i + 1

2λ
‖zi − yi‖2 − 1

2λ
‖zi − x + tih‖2

]

= −ti + t−1
i

[
1 ‖zi − yi‖2 − 1 ∥∥(zi − yi + tih) + yi − x

∥∥2
]

2λ 2λ



JID:YJFAN AID:6816 /FLA [m1+; v 1.179; Prn:3/12/2013; 11:58] P.20 (1-53)

20 A. Jourani et al. / Journal of Functional Analysis ••• (••••) •••–•••
� −ti + t−1
i

[
1

2λ

(‖yi − zi‖2 − ‖yi − zi − tih‖2)] − ti
2M

λ

= −ti + 〈
u∗

i , h
〉 + t−1

i

[
1

2λ

(
2‖yi − zi‖2 − ‖yi − zi − tih‖2 − ‖yi − zi + tih‖2)]

+ t−1
i

[
1

2λ

(‖yi − zi + tih‖2 − ‖yi − zi‖2) − 〈
u∗

i , tih
〉] − ti

2M

λ
.

Since 1
2λ

(‖yi − zi + tih‖2 − ‖yi − zi‖2) − 〈u∗
i , tih〉 � 0 because u∗

i ∈ ∂((2λ)−1‖ · ‖2)(yi − zi),
we deduce

r � −ti + 〈
u∗

i , h
〉 + t−1

i

[
1

2λ

(
2‖yi − zi‖2 − ‖yi − zi − tih‖2 − ‖yi − zi + tih‖2)]

− ti
2M

λ
. (3.16)

Observing that

t−1
i

(
2‖yi − zi‖2 − ‖yi − zi − tih‖2 − ‖yi − zi + tih‖2) � −4‖h‖‖yi − zi‖ − 2ti‖h‖2,

we see that, if there is a subsequence of the sequence {yi − zi}i∈N converging to 0, then we get

r �
〈
u∗, h

〉
.

Let us consider the case lim infi→∞ ‖yi − zi‖ > 0. Put ui := ‖yi − zi‖−1(yi − zi) and si :=
‖yi − zi‖−1ti for all i ∈ N. Note that si → 0 and write

Ai := t−1
i

(
2‖yi − zi‖2 − ‖yi − zi − tih‖2 − ‖yi − zi + tih‖2)

= (‖yi − zi‖
)
s−1
i

(
2 − ‖ui − sih‖2 − ‖ui + sih‖2).

Remark 3.2 ensures that s−1
i (2 − ‖ui − sih‖2 − ‖ui + sih‖2) → 0, hence Ai → 0 according to

the boundedness of {‖yi − zi‖}i . It then follows from (3.16) that

r �
〈
u∗, h

〉
.

This establishes the inequality

lim inf
t↓0

t−1[eλf (x) − eλf (x − th)
]
� max

u∗∈Eλ,Xf (x)

〈
u∗, h

〉
. (3.17)

Now, we will show that

(eλf )o(x;h) � max
u∈Eλ,Qf (x)

〈
u∗, h

〉
. (3.18)

So let us choose by (2.10) sequences {ti}i∈N ⊂ ]0,∞[, {xi}i∈N ⊂ X such that ti → 0, xi + tih ∈ Q

for every i ∈ N, xi → x and

(eλf )o(x;h) = lim t−1
i

[
eλf (xi + tih) − eλf (xi)

]
.

i→∞
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For every i ∈N take according to the definition of eλf (xi) some zi ∈ X such that

eλf (xi) + t2
i � f (zi) + 1

2λ
‖xi − zi‖2. (3.19)

Denoting by γ a Lipschitz constant of eλf on some neighborhood U of x, we may suppose
(without loss of generality) that xi ∈ U for all integers i, and hence we have

eλf (xi) + t2
i � eλf (x) + t2

i + γ ‖xi − x‖.
Putting

εi := t2
i + max{1, γ }‖xi − x‖ + ti

λ
‖h‖‖xi − zi‖ + 1

2λ
t2
i ‖h‖2 + ti‖h‖

and using (3.19) we see that

f (zi) + 1

2λ
‖xi + tih − zi‖2 � f (zi) + 1

2λ
‖xi − zi‖2 + ti

λ
‖h‖‖xi − zi‖ + 1

2λ
t2
i ‖h‖2

� eλf (x) + εi .

Further, on one hand εi → 0 since {xi − zi}i∈N is bounded according to (3.19) and to the mi-
norization of f by a quadratic function, and on the other hand

‖xi + tih − x‖ � ‖xi − x‖ + ti‖h‖ � εi .

Consequently, for u∗
i = DG((2λ)−1‖ · ‖2)(xi − zi + tih), we obtain that u∗

i ∈ A(f,x,λ, εi,Q).
Denoting (see Proposition 3.3) by u∗

0 a weak∗ cluster point of {u∗
i }i∈N, we have u∗

0 ∈ Eλ,Qf (x)

(because εi → 0), and by (3.19) and Remark 3.2

(eλf )o(x;h) = lim
i→∞

1

ti

[
eλf (xi + tih) − eλf (xi)

]

� lim inf
i→∞

1

ti

[
t2
i + 1

2λ
‖xi − zi + tih‖2 − 1

2λ
‖xi − zi‖2

]

� lim inf
i→∞

〈
u∗

i , h
〉
�

〈
u∗

0, h
〉
� max

u∗∈Eλ,Qf (x)

〈
u∗, h

〉
,

that is, (3.18) holds true.
The equalities maxu∗∈Eλ,Qf (x)〈u∗, h〉 = maxu∗∈Eλ,Xf (x)〈u∗, h〉 and

(eλf )o(x;h) = lim
t↑0

eλf (x + th) − eλf (x)

t
= max

u∗∈Eλ,Xf (x)

〈
u∗, h

〉

follow from relations (3.14), (3.17) and (3.18). Changing h into −h yields

lim
t↑0

eλf (x − th) − eλf (x)

t
= max

u∗∈Eλ,Qf (x)

〈
u∗,−h

〉 = − min
u∗∈Eλ,Qf (x)

〈
u∗, h

〉
,

which translates (3.12).
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Finally, observing that

max
{〈

u∗, h
〉
: u∗ ∈ co∗(Eλ,Qf (x)

)} = max
{〈

u∗, h
〉
: u∗ ∈ Eλ,Qf (x)

}
= max

{〈
u∗, h

〉
: u∗ ∈ Eλ,Xf (x)

}
= max

{〈
u∗, h

〉
: u∗ ∈ co∗(Eλ,Xf (x)

)}
,

and keeping in mind (3.11) we deduce the equality

−∂−(−eλf )(x) = ∂C(eλf )(x) = co∗(Eλ,Xf (x)
) = co∗(Eλ,Qf (x)

)
,

which completes the proof. �
It has been observed by R.T. Rockafellar and R.J.-B. Wets (see book [51, Example 10.32])

that the opposite of the Moreau envelope is a lower-C2 function, whenever the space (X,‖ ‖) is
a finite-dimensional Euclidean space. Their arguments use the local compactness of the space and
the Rademacher theorem to express (3.11) and (3.12) in terms of Pλf (x), which is a nonempty
set in this case; we refer to [51, Theorem 9.61, Theorem 10.31, Example 10.32] for details. The
nonemptiness of the sets Pλf (x) for x in some dense subset of X, has been also used recently by
R. Cibulka and M. Fabian (see [12]) to obtain a description of the Clarke subdifferential of eλf

for a function f fulfilling the property (3.20) below in a Banach space with uniformly Gâteaux
differentiable norm. In order to discuss their result and compare it with Theorem 3.2 above let us
recall their statement.

Theorem 3.3. Let X be a Banach space whose norm is uniformly Gâteaux differentiable, let
f : X → R ∪ {+∞} be either Lipschitzian on X, or be proper, bounded from below, and lower
semicontinuous and such that the set

Af := {
y ∈ X

∣∣ arg minf (·) + ‖ · −y‖2 �= ∅}
(3.20)

is dense in X, and let x ∈ X. Consider any subset M ⊂ Af that is dense in a neighborhood
of x and denote by Df,x,M the set of possible weak∗ limits of all sequences ∂(‖ · ‖2)(xi − zi),
where {xi}i∈N ⊂ M is converging to x and {zi}i∈N is such that the minimum of the function
f (·) + ‖ · −xi‖2 is attained at zi for each i ∈ N.

(i) If e 1
2
f (x) < f (x), then ∂Ce 1

2
f (x) = co∗ Df,x,M .

(ii) If e 1
2
f (x) = f (x), then ∂Ce 1

2
f (x) = co∗({0} ∪ Df,x,M).

It follows from Proposition 3.2 that for every nonreflexive Banach space with uniformly
Gâteaux differentiable norm there exists x∗ ∈ X∗ such that the set Ax∗ is empty. Because of that,
if the Banach space X is not reflexive, there are even smooth functions for which Theorem 3.3
cannot be applied, while Theorem 3.2 can be applied to any Lipschitz continuous function or
any proper, bounded from below one, whenever the norm ‖ · ‖ of the normed vector space is
uniformly Gâteaux differentiable. However, if all the assumptions of Theorem 3.3 are satisfied
we infer by (3.11), (3.12) and (3.13) that for any dense set Q of X we have:
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(i′) If e 1
2
f (x) < f (x), then ∂Ce 1

2
f (x) = co∗ Df,x,M = co∗ E 1

2 ,Q
f (x).

(ii′) If e 1
2
f (x) = f (x), then ∂Ce 1

2
f (x) = co∗({0} ∪ Df,x,M) = co∗ E 1

2 ,Q
f (x).

Using Zajiček’s result in Theorem 3.1, we know that, in the case of Banach space, Theo-
rem 3.2 cannot be extended to spaces where the norm is not uniformly Gâteaux differentiable.
This is stated in the theorem below.

Theorem 3.4. For a normed vector space (X,‖ · ‖) consider the following properties:

(a) the norm ‖ · ‖ of X is uniformly Gâteaux differentiable;
(b) for each proper lower semicontinuous function f : X → R∪ {+∞}, which is bounded from

below by a negative quadratic function, the opposite of its Moreau envelope eλf is Clarke
directionally subregular for all λ ∈ ]0, 1

2α
[, where α is as in relation (3.5).

Then the implication (a) ⇒ (b) holds true, and this implication is an equivalence whenever the
space (X,‖ · ‖) is a Banach space.

Proof. (a) ⇒ (b) Theorem 3.2 asserts that for x,h ∈ X

lim
t↑0

eλf (x − th) − eλf (x)

t
= (eλf )o(x;−h).

Now invoking the known fact that (−eλf )o(x;h) = (eλf )o(x;−h), see (2.9), we get

lim
t↓0

(−eλf )(x + th) − (−eλf )(x)

t
= (eλf )o(x;−h) = (−eλf )o(x;h).

(b) ⇒ (a) It follows from Theorem 3.1 that if for every closed subset S ⊂ X, its distance
function x �→ dS(x) (associated with the norm ‖ · ‖) always has right-hand Gâteaux directional
derivatives at every point off the set, that is, for each x /∈ S,

d ′
S(x,h) := lim

t↓0

dS(x + th) − dS(x)

t

exists for all h ∈ X, then the norm ‖ · ‖ is uniformly Gâteaux differentiable.
To establish our implication, it suffices to show that, for each closed nonempty set S and for

each x /∈ S the function h �→ d ′
S(x,h) is well defined. Indeed, let f be the indicator function

of S, that is, f (x) = 0 if x ∈ S and f (x) = ∞ if x /∈ S, that is, f = ψS . Then for all λ ∈ ]0,∞[
we have

eλf (u) = 1

2λ
d2
S(u), ∀u ∈ X.

By (b) the function −eλf is Clarke directionally subregular, that is,

(eλf )′(x;h) := lim
eλf (x + th) − eλf (x) = −(−eλf )o(x;h), ∀h ∈ X
t↓0 t
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or equivalently

(
d2
S

)′
(x;h) = −(−d2

S

)o
(x;h), ∀h ∈ X. (3.21)

Now invoking the equalities in (2.15), we get that

(
d2
S

)′
(x;h) = 2dS(x)d ′

S(x;h),(−d2
S

)o
(x;h) = (

d2
S

)o
(x;−h) = 2dS(x)do

S(x;−h), ∀h ∈ X.

Combining the last equalities with that in (3.21) and taking into account the equality do(x;−h) =
(−d2

S)o(x;h), we get

(−dS)′(x;h) = (−dS)o(x;h)

so the right-hand Gâteaux directional derivative d ′
S(x;h) exists. �

Remark 3.3. Let us observe that under the assumptions of Theorem 3.2, for every λ ∈ ]0, 1
2α

[
(with the convention 1

2α
= +∞ for α = 0), where α is as in relation (3.5), Theorem 3.4 above

ensures that the function −eλf (·) is directionally subregular, so it is ∂-eds on X for any presub-
differential included in the Clarke subdifferential (see the example (c) following Definition 2.1).
In particular for every subset S ⊂ X the function −d2

S(·) is directionally subregular and ∂-eds
on X. In fact, for every x ∈ X, h ∈ X we have

(−eλf )o(x;h) = (eλf )o(x;−h) = d−(−eλf )(x;h), (3.22)

which gives the directional subregularity and consequently the function −eλf (·) is ∂-eds on X.
The directional subregularity of −d2

S(·) is a consequence of the equality e 1
2
ψS(x) = d2

S(x), see

Remark 3.1. Moreover it follows from (3.22) and the upper semicontinuity of (eλf )o(·;·) that
the function d−(eλf )(·;·) is lower semicontinuous on the product X × X. Indeed the equality
between the first and third member in (3.22) guarantees that the usual directional derivative
of −eλf at x exists and hence the equalities

d−(eλf )(x;h) = −d−(−eλf )(x;h) = −(−eλf )o(x;h)

hold true. So, the upper semicontinuity of (−eλf )o(·;·) allows us to conclude.

Now we can use Theorem 3.2 to obtain through the relation (3.11) the following result:

Theorem 3.5. Suppose that all the assumptions of Theorem 3.2 are satisfied and let x ∈ X. The
following properties are equivalent:

(a) ∂−eλf (x) �= ∅;
(b) ∂Ceλf (x) is a singleton;
(c) eλf is strictly Hadamard differentiable at x;
(d) ∂Ceλf (x) = ∂−eλf (x) = {DH eλf (x)};
(e) ∂Ceλf (x) = ∂−eλf (x).
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Suppose in addition that the function f is weakly sequentially lower semicontinuous at each
point of its effective domain, the space (X,‖ · ‖) is Hilbert and Pλf (x) �= ∅. Then each of the
above conditions is equivalent to the following property:

(f) eλf is strictly Fréchet differentiable at x.

Proof. Let x∗ ∈ ∂−eλf (x) �= ∅. Then, by Theorem 3.2, we have

lim inf
t↓0

eλf (x + th) − eλf (x)

t
= min

u∗∈∂Ceλf (x)

〈
u∗, h

〉
, ∀h ∈ X

and hence for all u∗ ∈ ∂Ceλf (x)

〈
x∗, h

〉
� lim inf

t↓0

eλf (x + th) − eλf (x)

t
�

〈
u∗, h

〉
, ∀h ∈ X.

Thus for all u∗ ∈ ∂Ceλf (x)

〈
x∗, h

〉
�

〈
u∗, h

〉
, ∀h ∈ X

or equivalently u∗ = x∗, and hence ∂Ceλf (x) = {x∗}. So the implication (a) ⇒ (b) is established.
The implication (b) ⇒ (c) follows from Proposition 2.2.4 in [13] which says that a locally

Lipschitz continuous function g is strictly Hadamard differentiable at x if and only if ∂Cg(x) is
a singleton. The implications (c) ⇒ (d) and (d) ⇒ (e) are obvious, and the implication (e) ⇒ (a)
is due to the nonemptiness of ∂Ceλf (x) according to the Lipschitz property of eλf near x. The
implication (f) ⇒ (c) is obvious.

It remains to prove the converse implication (c) ⇒ (f) under the additional assumptions of the
theorem. So, suppose that the space X is a Hilbert space and Pλf (x) �= ∅. First observe that it
follows from (3.11) and from item (d) that

Eλ,Xf (x) = {
DGeλf (x)

}
. (3.23)

Consider any sequence {yi}i∈N converging to x and any sequence {zi}i∈N in X such that
eλf (x) = limi→∞ f (zi) + 1

2λ
‖yi − zi‖2. The equality (3.23) and the definition of Eλ,Xf (x)

yield 1
λ
J (yi − zi)

w−→ DGeλf (x) (in the weak topology, which is the same as weak∗ topology
since we are in the case of Hilbert space). Let w ∈ X satisfying J (x − w) = λDGeλf (x). Take
any z ∈ Pλf (x). By Proposition 3.1 we have DGeλf (x) = 1

λ
J (x−z), so 1

λ
J (x−w) = 1

λ
J (x−z)

thus w = z and 1
λ
J (x − zi)

w−→ 1
λ
J (x − w). The weak lower semicontinuity of f and ‖x − ·‖2 at

z ∈ Pλf (x) ⊂ domf , and the equality z = w give

eλf (x) = lim
i→∞f (zi) + 1

2λ
‖yi − zi‖2 � f (w) + 1

2λ
‖x − w‖2 � eλf (x),

hence limi→∞ ‖yi − zi‖ = ‖x − w‖ (according to the weak lower semicontinuity again of f

and ‖ · ‖), so limi→∞ ‖w − zi‖ = 0. Consequently, Pλf (x) = {w} is a singleton and the whole
sequence {zi}i∈N converges strongly to w.

Now take any sequences {xi}i∈N and {hi}i∈N in X such that xi → x and hi → 0 with hi �= 0.
Choose {ai}i∈N and {bi}i∈N in X such that
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eλf (xi) + ‖hi‖2 � f (ai) + 1

2λ
‖xi − ai‖2 � eλf (xi),

eλf (xi + hi) + ‖hi‖2 � f (bi) + 1

2λ
‖xi + hi − bi‖2 � eλf (xi + hi)

for every i ∈ N. On one hand, the latter inequalities imply

eλf (x) = lim
i→∞f (ai) + 1

2λ
‖xi − ai‖2 and eλf (x) = lim

i→∞f (bi) + 1

2λ
‖xi + hi − bi‖2,

which combined with what precedes gives

lim
i→∞‖w − ai‖ = lim

i→∞‖w − bi‖ = 0.

On the other hand, the same inequalities also guarantee that

−‖hi‖ +
〈

1

λ‖hi‖J (xi − bi), hi

〉
�

−‖hi‖2 + 1
2λ

‖xi + hi − bi‖2 − 1
2λ

‖xi − bi‖2

‖hi‖
� eλf (xi + hi) − eλf (xi)

‖hi‖

�
‖hi‖2 + 1

2λ
‖xi + hi − ai‖2 − 1

2λ
‖xi − ai‖2

‖hi‖
� ‖hi‖ +

〈
1

λ‖hi‖J (xi + hi − ai), hi

〉
.

Further, xi + hi − ai → x − w and xi − bi → x − w, hence we have 1
λ
J (xi − bi) → 1

λ
J (x − w)

and 1
λ
J (xi + hi − ai) → 1

λ
J (x − w), and this along with the last inequalities implies

lim
‖h‖↓0, x′→x

eλf (x′ + h) − eλf (x′) − 〈DGeλf (x),h〉
‖h‖ = 0,

which translates the property (f). �
Let us point out that a function can be weakly sequentially lower semicontinuous at each

point of its effective domain but it may fail to be weakly sequentially lower semicontinuous
on X. Indeed, taking any set S of an infinite-dimensional normed space X which is not weakly
sequentially closed, the indicator function ψS is weakly lower semicontinuous on its effective
domain S but it is not weakly sequentially lower semicontinuous on X.

It is known that there are Clarke directionally subregular functions which are not strictly
Hadamard differentiable. However, if we impose suitable assumptions on the space as in The-
orem 3.2, then we get through the equivalence between (a) and (c) of the theorem above that
the Moreau envelope is Clarke directionally subregular if and only if it is strictly Hadamard
differentiable.

Corollary 3.1. Under the assumptions of Theorem 3.2, the function eλf is Clarke directionally
subregular at x if and only if it is strictly Hadamard differentiable at the point x.
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Recalling that continuous convex functions are Clarke directionally subregular at any point of
its effective domain, so for every proper convex function f bounded from below by a quadratic
function the function eλf is Clarke directionally subregular for every λ > 0 since such a func-
tion f is bounded from below by a continuous affine function (see (3.7)). Hence as a direct
consequence of Corollary 3.1 we have

Corollary 3.2. Let (X,‖ · ‖) be a normed vector space whose norm ‖ · ‖ is uniformly Gâteaux
differentiable and f : X → R ∪ {+∞} be a proper convex function bounded from below by a
quadratic function. Then for every real λ > 0 the function eλf is strictly Hadamard differentiable
at every x ∈ X.

In (3.3) we already observed that the Gâteaux differentiability of the norm ensures the
norm-to-weak∗ continuity of the duality mapping J . In Theorem 3.6 below we have much more
under the additional uniform Gâteaux differentiability of the norm. More precisely, if (X,‖ · ‖)
is a Banach space whose norm ‖ · ‖ is uniformly Gâteaux differentiable, then the mapping J

is continuous on each sphere with respect to the weak sequential convergence induced on the
sphere and the weak∗ topology of X∗. Before proving the result, recall that the norm ‖ · ‖ has
the (sequential) Kadec–Klee property provided that, given a sequence (xi)i in X, the conver-
gences xi

w−→ x ( w−→ stands for the convergence in the weak topology) and ‖xi‖ → ‖x‖ imply
that ‖xi − x‖ → 0 as i → ∞, see [17, Definition 1.1(iii), p. 42] where this property is defined
in an equivalent form. Any uniformly convex norm fulfills this property (of course, the norm
associated with the inner product of a Hilbert space has the property too). Let us also observe
that the associated duality mapping

J : X → X∗ is continuous with respect to the norms ‖ · ‖ on X and ‖ · ‖∗ on X∗, (3.24)

whenever the space is reflexive with its norm Gâteaux differentiable off the origin and the
dual norm ‖ · ‖∗ of X∗ has the Kadec–Klee property, since the convergence xi → x ensures
‖J (xi)‖∗ = ‖xi‖ → ‖x‖ = ‖J (x)‖∗ and combining this with (3.3), the Kadec–Klee property
gives ‖J (xi) − J (x)‖∗ → 0. Moreover, the continuity of J with respect to the norms ‖ · ‖ on X

and ‖ · ‖∗ on X∗ guarantees the C1 property of the square of the norm.
The other property of the mapping J established in Theorem 3.6 below will be useful for

the proof of Theorem 3.8. In the proof of Theorem 3.6 we use a subdifferential approximation
technique, which to the best of our knowledge was first introduced by H. Attouch, see [3]; for
some comments and extensions we refer to [62].

Theorem 3.6. Let (X,‖ · ‖) be a Banach space whose norm ‖ · ‖ is uniformly Gâteaux
differentiable. Then for any x ∈ X and any sequence {xi}i∈N such that ‖xi‖ → ‖x‖ and
lim infi→∞〈J (x), xi〉 � ‖x‖2 we have

J (xi)
w∗−−→ J (x).

Proof. For x = 0 the sequence {xi}i∈N converges to 0 in norm and hence in that case the result
follows from the norm to weak∗ continuity of J (see (3.3)). Now fix x ∈ X \ {0} and a sequence
{xi}i∈N such that ‖xi‖ → ‖x‖, along with lim infi→∞〈J (x), xi〉 � ‖x‖2. Define

fi(z) := 1‖xi + z‖2 − 1‖xi‖2 − 〈
J (x), z

〉 + 1‖z‖2 for all z ∈ X.

2 2 2
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Obviously fi(0) = 0. Further, for every z ∈ X, since

1

2
‖xi + z‖2 − 〈

J (x), xi + z
〉 + 1

2
‖x‖2 � 1

2

(‖xi + z‖ − ‖x‖)2 � 0,

we have

1

2
‖xi + z‖2 − 〈

J (x), z
〉
� −1

2
‖x‖2 + 〈

J (x), xi

〉
.

Hence

fi(z) � 1

2
‖z‖2 − 1

2
‖x‖2 − 1

2
‖xi‖2 + 〈

J (x), xi

〉
.

Take a sequence {εi}i∈N ⊂ ]0,1[ with εi ↓ 0 and notice that by a form of the Ekeland variational
principle we infer the existence of a sequence {zi}i∈N ⊂ X for which for each i ∈ N we have
fi(zi) � fi(0) = 0 and

fi(zi) � fi(z) + εi‖z − zi‖ for every z ∈ X. (3.25)

Hence

0 � fi(zi) � 1

2
‖zi‖2 − 1

2
‖x‖2 − 1

2
‖xi‖2 + 〈

J (x), xi

〉
,

which together with the inequality lim infi→∞〈J (x), xi〉 − 1
2‖x‖2 − 1

2‖xi‖2 � 0 implies
1
2‖zi‖2 → 0 as i → ∞. Taking into account the Gâtaeux differentiability of the square of the
norm we see that fi is Gâteaux differentiable and DGfi(zi) = {J (xi + zi) − J (x) + J (zi)} for
all i ∈ N. The convergence 1

2‖zi‖2 → 0 as i → ∞ forces ‖J (zi)‖ → 0, as i → ∞, and since
zi are minimizers of the convex functions fi(·) + εi‖ · −zi‖ (see (3.25)), applying the “convex”
subdifferential calculus we arrive at

∥∥J (xi + zi) − J (x)
∥∥ → 0. (3.26)

Take any subsequence {zik }k∈N such that ‖zik‖ > 0 for every k ∈ N (if there is no such a sub-
sequence then ‖J (xi) − J (x)‖ → 0) and put tk := √‖zik‖. Fix any h ∈ X. From the uniform
Gâteaux differentiability of the norm ‖ · ‖ and from Remark 3.2 we have εk → 0, where

εk := max

{∣∣∣∣
1
2‖xik + zik + tkh‖2 − 1

2‖xik + zik‖2 − 〈J (xik + zik ), tkh〉
tk

∣∣∣∣,
∣∣∣∣

1
2‖xik + tkh‖2 − 1

2‖xik‖2 − 〈J (xik ), tkh〉 ∣∣∣∣
}
.

tk
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We also have

tk
〈
J (xik ), h

〉
� 1

2
‖xik + tkh‖2 − 1

2
‖xik‖2

� 1

2
‖xik + zik + tkh‖2 − 1

2
‖xik + zik‖2

+ 1

2
‖xik + tkh‖2 − 1

2
‖xik + zik + tkh‖2 + 1

2
‖xik + zik‖2 − 1

2
‖xik‖2

� tkεk + tk
〈
J (xik + zik ), h

〉

+ 1

2
‖zik‖

(‖xik + tkh‖ + ‖xik + zik + tkh‖ + ‖xik + zik‖ + ‖xik‖
)

and similarly

tk
〈
J (xik + zik ), h

〉
� 1

2
‖xik + zik + tkh‖2 − 1

2
‖xik + zik‖2

� 1

2
‖xik + tkh‖2 − 1

2
‖xik‖2

− 1

2
‖xik + tkh‖2 + 1

2
‖xik + zik + tkh‖2 − 1

2
‖xik + zik‖2 + 1

2
‖xik‖2

� tkεk + tk
〈
J (xik ), h

〉

+ 1

2
‖zik‖

(‖xik + tkh‖ + ‖xik + zik + tkh‖ + ‖xik + zik‖ + ‖xik‖
)
.

Thus |〈J (xik ), h〉− 〈J (xik + zik ), h〉| → 0, which, by (3.26), implies |〈J (xik ), h〉− 〈J (x),h〉| →
0. It follows J (xi)

w∗−−→ J (x) and the proof is completed. �
The following result shows that Moreau envelope is ∂-eds for any presubdifferential ∂ in-

cluded in the Clarke subdifferential.

Theorem 3.7. Under the assumptions of Theorem 3.2, the Moreau envelope eλf is ∂-eds for any
presubdifferential ∂ included in the Clarke subdifferential and D = X.

Proof. The local Lipschitz property of eλf ensures on the one hand that conditions (i) and (ii)
of Definition 2.1 are fulfilled, and on the other hand that for u,v ∈ X with v �= u the function
t �→ eλf (u + t (v − u)) is derivable on a subset T ⊂ [0,1] of full measure in [0,1]. Take any
t ∈ T and any sequence {(xk, x

∗
k )}k∈N in gph∂eλf such that xk → x(t) := u + t (v − u), and put

w := v, h := v − u. It follows from the definition of the Clarke subdifferential and the upper
semicontinuity of (eλf )o(·;·) that

lim sup
k→∞

〈
x∗
k ,

‖v − u‖
‖w − x(t)‖ (w − xk)

〉
� lim sup

k→∞
(eλf )o

(
xk; ‖v − u‖

‖w − x(t)‖ (w − xk)

)

� (eλf )o
(
x(t);v − u

)
.
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Hence by the equality between the second and third members of (3.11) of Theorem 3.2 and by
the derivability at t ∈ T of the function r �→ eλf (u + r(v − u)), we get

lim sup
k→∞

〈
x∗
k ,

‖v − u‖
‖w − x(t)‖ (w − xk)

〉
� (eλf )o

(
x(t);v − u

) = (eλf )′
(
x(t);v − u

)
,

which translates the condition (iii) of Definition 2.1. The proof of the theorem is then fin-
ished. �

Below we use Theorem 3.7 to investigate the Moreau envelope eλf through selections of
the set-valued mapping Eλ,Qf (·). For this reason we need a result recently obtained in [34,
Theorem (c)].

Proposition 3.4. Let U be a nonempty open convex subset of a Banach space X, Q be a dense
subset of U and f : X → R ∪ {+∞} be a ∂-eds function on U relative to Dom ∂f , where ∂ is
a presubdifferential included in the Clarke subdifferential. Then if the set-valued mapping ∂f

admits a selection on Q which is also a continuous mapping on U , then f is strictly Fréchet
differentiable at every point x ∈ U with DF f (x) = σ(x), so it is of class C1 on U .

As a direct consequence of (3.13), Theorem 3.7, and Proposition 3.4 we get the following
proposition:

Proposition 3.5. Let (X,‖ · ‖) be a Banach space whose norm ‖ · ‖ is uniformly Gâteaux differ-
entiable and f : X → R∪{+∞} be a proper function. Suppose that f is bounded from below by
a quadratic function, where α is as in relation (3.5) (with the convention 1

2α
= +∞ for α = 0).

Let a real λ ∈ ]0, 1
2α

[ be given and a dense subset Q ⊂ X. Assume that there exists a continuous
mapping p∗ : X → X∗ such that:

p∗(q) ∈ Eλ,Xf (q), ∀q ∈ Q. (3.27)

Then eλf (·) is strictly Fréchet differentiable at every point x ∈ X with DF f (x) = p∗(x), so
eλf (·) is of class C1 on X.

Of course a good candidate for p∗(·) is any selection of 1
λ
(· − Pλ(·)), whenever X = R

n.
Several facts on this problem can be found in [58] where properties of f and eλf are investigated
with the use of Pλf (·) being single-valued. This problem becomes more difficult, if X is not a
finite-dimensional space; we refer to [6] for some facts in Hilbert spaces. Below we give sufficient
conditions for finding selections.

Theorem 3.8. Let (X,‖ · ‖) be a reflexive Banach space whose norm is uniformly Gâteaux differ-
entiable. Let f : X → R∪{+∞} be a proper weakly lower sequentially semicontinuous function
bounded from below by a quadratic function. Assume that for some λ ∈ ]0, 1

2α
[ the set Pλf (x) re-

duces to exactly one element for every x ∈ X, where α is as in relation (3.5) (with the convention
1

2α
= +∞ for α = 0). Then

Eλ,Xf (x) =
{

1
J
(
x − Pλf (x)

)}

λ
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for every x ∈ X. Moreover eλf (·) is strictly Hadamard differentiable with DH eλf continuous
from X endowed with the norm topology into X∗ endowed with the weak∗ topology.

Additionally, the Kadec–Klee property of the norm ‖ · ‖ gives the continuity of the mapping
Pλf (·) (with respect to the norm topology of X), while the Kadec–Klee property of the dual
norm ‖ · ‖∗ on the dual space X∗ gives the strict Fréchet differentiability of eλf (·), and hence its
C1-smoothness on X.

Proof. Let us fix x ∈ X. It follows from Proposition 3.3 that the set Eλ,Xf (x) is nonempty
and weak∗ compact. Fix any y∗ ∈ Eλ,Xf (x) and any h ∈ X. It follows from the definition of
Eλ,Xf (x) that we can find (see (3.15)) sequences {y∗

i }i∈N in X∗, {yi}i∈N and {zi}i∈N in X, and
{εi}i∈N in ]0,1[, εi → 0 such that 〈y∗

i , h〉 → 〈y∗, h〉 and such that for all i ∈ N

eλf (x) + εi � f (zi) + 1

2λ
‖zi − yi‖2,

‖yi − x‖ � εi and y∗
i ∈ ∂

(
(2λ)−1‖ · ‖2)(yi − zi).

Of course y∗
i = λ−1J (yi − zi). Using Proposition 3.3 and the Eberlein–Smulian Theorem,

see [29], we infer that there is a subsequence {yik − zik }k∈N which converges weakly to x − z for
some z ∈ X, hence {zik }k∈N converges weakly to z. Since

eλf (x) � lim sup
k→∞

f (zik ) + 1

2λ
‖zik − yik‖2

� lim inf
k→∞ f (zik ) + 1

2λ
‖zik − yik‖2 � f (z) + 1

2λ
‖z − x‖2,

we get z = Pλf (x) and

lim
k→∞f (zik ) + 1

2λ
‖zik − yik‖2 = f (z) + 1

2λ
‖z − x‖2.

The latter equality and the weak sequential lower semicontinuity of f and ‖ · ‖2 yield
‖yik − zik‖2 → ‖x − Pλf (x)‖2. Thus the Eberlein–Smulian Theorem (keep in mind that the
weak and weak∗ topology coincide on the dual space X∗ of the reflexive space X) and Theo-
rem 3.6 give a subsequence of {J (yi − zi)}i∈N converging weakly∗ to J (x − Pλf (x)), hence
the whole sequence {J (yi − zi)}i∈N converges weakly∗ to J (x − Pλf (x)). Therefore 〈y∗, h〉 =
λ−1〈J (x − Pλf (x)), h〉 and this being true for every h ∈ X we get y∗ = λ−1J (x − Pλf (x)),
which proves the equality concerning Eλ,Xf (x). Note also that the arguments above ensure that
the whole sequence {zi}i∈N converges weakly to Pλf (x).

In order to get the continuity of the strict Hadamard derivative of eλf let us fix a sequence
{xi}i∈N ⊂ X converging to x. Taking xi and Pλf (xi), instead of yi and zi , respectively, by the
above reasoning we get 2(xi − Pλf (xi))

w−→ 2(x − Pλf (x)) and 2‖(xi − Pλf (xi))‖ → 2‖(x −
Pλf (x))‖. Thus by Theorem 3.6

DH eλf (xi) = 1

λ
J
(
xi − Pλf (xi)

)
w∗−−→ 1

λ
J
(
x − Pλf (x)

)
,

which implies the norm to weak∗ continuity of DH eλf (·).



JID:YJFAN AID:6816 /FLA [m1+; v 1.179; Prn:3/12/2013; 11:58] P.32 (1-53)

32 A. Jourani et al. / Journal of Functional Analysis ••• (••••) •••–•••
Suppose that the norm ‖ · ‖ of X satisfies the Kadec–Klee property. In order to get the con-
tinuity of Pλf , let us take any sequence {xi}i∈N in X converging to x. Taking xi and Pλf (xi),
instead of yi and zi , respectively, by what precedes we get 2(xi − Pλf (xi))

w−→ 2(x − Pλf (x))

and 2‖(xi − Pλf (xi))‖ → 2‖(x − Pλf (x))‖, which by the Kadec–Klee property of the norm
‖ · ‖ gives 2(xi − Pλf (xi)) → 2(x − Pλf (x)), proving the continuity of Pλf with respect to the
norm topology of X.

Let us now assume that the norm ‖ · ‖∗ of X∗ has the Kadec–Klee property. Take sequences
{xi}i∈N, {hi}i∈N, {ai}i∈N and {bi}i∈N in X, such that xi → x, hi → 0 and eλf (xi) + ‖hi‖2 �
f (ai)+ 1

2λ
‖xi −ai‖2, eλf (xi +hi)+‖hi‖2 � f (bi)+ 1

2λ
‖xi +hi −bi‖2 for every i ∈ N. Observe

that from the above reasoning we have ‖xi − bi‖ → ‖x − Pλf (x)‖, xi − bi
w−→ x − Pλf (x)

and ‖xi + hi − ai‖ → ‖x − Pλf (x)‖, xi + hi − ai
w−→ x − Pλf (x). So Theorem 3.6 ensures

J (xi − bi)
w−→ J (x − Pλf (x)), J (xi + hi − ai)

w−→ J (x − Pλf (x)) and by the Kadec–Klee
property of the norm ‖ · ‖∗ of X∗ we obtain J (xi − bi)→J (x − Pλf (x)), J (xi + hi − ai) →
J (x −Pλf (x)) (keep in mind that the weak and weak∗ topology of X∗ coincide by the reflexivity
of X). We have also

−‖hi‖ +
〈

1

λ‖hi‖J (xi − bi), hi

〉
�

−‖hi‖2 + 1
2λ

‖xi + hi − bi‖2 − 1
2λ

‖xi − bi‖2

‖hi‖

� eλf (xi + hi) − eλf (xi)

‖hi‖

�
‖hi‖2 + 1

2λ
‖xi + hi − ai‖2 − 1

2λ
‖xi − ai‖2

‖hi‖

� ‖hi‖ +
〈

1

λ‖hi‖J (xi + hi − ai), hi

〉
,

which implies

lim
‖h‖↓0, x′→x

eλf (x′ + h) − eλf (x′) − 〈DH eλf (x),h〉
‖h‖ = 0,

hence the strict Fréchet differentiability follows. Finally, it is easy to see that this strict Fréchet
differentiability of the function eλf at each point of X entails its C1 property on the space X. �
Corollary 3.3. Let H be a Hilbert space and f : H → R ∪ {+∞} be a proper weakly lower
semicontinuous function bounded from below by a quadratic function. Assume that for some
λ ∈ ]0, 1

2α
[ the set Pλf (x) reduces to exactly one element for every x ∈ H , where α is as in

relation (3.5) (with the convention 1
2α

= +∞ for α = 0). Then

Eλ,Xf (x) =
{

1

λ

(
x − Pλf (x)

)}

for every x ∈ H . Moreover the mappings Eλ,Xf (·) and Pλf (·) are continuous (with respect to
the norm topology of X) and eλf (·) is of class C1.
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Proof. The duality mapping being in this case the identity mapping on X, we obtain from the
proposition above that Eλ,Xf (x) = 1

λ
(x − Pλf (x)), and this combined with the statement of

the proposition above justifies the corollary since ∇H eλf (x) = 1
λ
(x − Pλf (x)) by (3.13) of

Theorem 3.2. �
The following proposition which has its own interest prepares the next theorem where the

weak lower semicontinuity of f involved in Theorem 3.8 is replaced by an assumption of conti-
nuity of Pλf .

Proposition 3.6. Let (X,‖ ·‖) be a Banach space whose norm ‖ ·‖ is uniformly Gâteaux differen-
tiable and f : X →R∪ {+∞} be a proper function bounded from below by a quadratic function
and x ∈ X be given. Assume that for some λ ∈ ]0, 1

2α
[ the set Pλf (x) is not empty, where α is as

in relation (3.5) (with the convention 1
2α

= +∞ for α = 0), and let z ∈ Pλf (x), h ∈ X be such
that there are {ti}i∈N in ]0,∞[, {εi}i∈N in [0,∞[ with ti ↓ 0, εi ↓ 0, {hi}i∈N in X, hi → h and
{zi}i∈N in domf satisfying:

(i) ‖x + tihi − zi‖ → ‖x − z‖ and εi ti + eλf (x + tihi) � f (zi) + 1
2λ

‖x + tihi − zi‖2, and
(ii) lim infi→∞〈J (x − z), x − zi〉 � ‖x − z‖2.

Then

lim
t↓0

eλf (x + th) − eλf (x)

t
= 〈

λ−1J (x − z),h
〉
.

Moreover, if (i) and (ii) hold true for every h ∈ X then eλf is Hadamard differentiable and
DH eλf (x) = λ−1J (x − z).

Proof. Let z ∈ Pλf (x) be as in the assumption. Fix h ∈ X, {ti}i∈N and {εi}i∈N in ]0,∞[ with
ti ↓ 0, εi ↓ 0, {hi}i∈N in X with hi → h, and {zi}i∈N in X such that:

• ‖x + tihi − zi‖ → ‖x − z‖ and εi ti + eλf (x + tihi) � f (zi) + 1
2λ

‖x + tihi − zi‖2, and
• lim infi→∞〈J (x − z), x − zi〉 � ‖x − z‖2.

By (3.12) of Theorem 3.2 we get

d−eλ(x;h) = lim
t↓0

eλf (x + th) − eλf (x)

t
= lim

i→∞
eλf (x + tihi) − eλf (x)

ti

� lim
i→∞

−εi ti + f (zi) + 1
2λ

‖x + tihi − zi‖2 − f (zi) − 1
2λ

‖x − zi‖2

ti

= lim
i→∞

−εi ti + 1
2λ

‖x + tihi − zi‖2 − 1
2λ

‖x − zi‖2

ti
� 1

λ
lim

i→∞
〈
J (x − zi), h

〉
.

Further, from Theorem 3.6 we have J (x − zi)
w∗−−→ J (x − z), hence for every h ∈ X we obtain

d−(eλf )(x;h) � 1 〈
J (x − z),h

〉
. (3.28)
λ
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On the other hand we know by (3.11) of Theorem 3.2 that the limit limt↑0
eλf (x−th)−eλf (x)

t
exists,

thus

lim
t↓0

eλf (x) − eλf (x + th)

t
� lim

t↓0

f (z) + 1
2λ

‖x − z‖2 − f (z) − 1
2λ

‖x + th − z‖2

t

= 1

λ

〈
J (x − z),−h

〉
.

So by (3.11) of Theorem 3.2 and (3.28) we get

1

λ

〈
J (x − z),h

〉
� d−(eλf )(x;h) � 1

λ

〈
J (x − z),h

〉
,

which implies by (3.12) of Theorem 3.2 the desired equality

lim
t↓0

eλf (x + th) − eλf (x)

t
= 〈

λ−1J (x − z),h
〉
.

Moreover 1
λ
J (x −z) ∈ ∂−eλf (x), whenever (i) and (ii) hold true for every h ∈ X, hence the final

statement of the proposition follows from Theorem 3.5. �
Theorem 3.9. Let (X,‖ · ‖) be a Banach space whose norm ‖ · ‖ is uniformly Gâteaux differen-
tiable and f : X → R∪ {+∞} be a proper function bounded from below by a quadratic function
and x ∈ X be given. Let λ ∈ ]0, 1

2α
[, where α is as in relation (3.5) (with the convention 1

2α
= +∞

for α = 0). Assume that Pλf (·) is single-valued on an open set U containing x.

(a) If Pλf (·) is directionally continuous at x, that is, the mappings t �→ Pλf (x + th) are con-
tinuous at 0 ∈ R for every h ∈ X, then eλf is strictly Hadamard differentiable at x and
DH eλf (x) = λ−1J (x − Pλf (x)).

(b) If Pλf (·) is continuous on U and the dual norm ‖ · ‖∗ of X∗ has the Kadec–Klee property,
then eλf is of class C1 on U .

Proof. For any fixed h ∈ X select ti ↓ 0 such that x + tih ∈ U for all i ∈ N, and put zi :=
Pλf (x + tih) for all i ∈ N, and z := Pλf (x). The directional continuity assumption of Pλf (·)
at x ensures zi → z as i → ∞ hence conditions (i) and (ii) of Proposition 3.6 are fulfilled with
εi = 0 and hi = h for all i, so the assertion (a) of the theorem follows from Proposition 3.6.

If in addition the dual norm ‖·‖∗ fulfills the Kadec–Klee property, we know by (3.24) that J is
norm–norm continuous, so the C1 property of eλf is a consequence of the formula DH eλf (x) =
λ−1J (x − Pλf (x)) in (a). �
4. Differentiability of the distance function

In this section we apply the above results to get (sub)differentiability properties of the distance
function. Let us start with the observation, in addition to Remark 3.3, that another direct conse-
quence of Theorem 3.2 is the following result concerning some directional differential properties
of the distance function. This property was first established in [8, Theorem 8].
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Theorem 4.1. Let (X,‖ · ‖) be a normed vector space whose norm ‖ · ‖ is uniformly Gâteaux
differentiable and let S ⊂ X be a nonempty closed subset. Then for all x /∈ S and h ∈ X the
following hold:

−d ′
S(x;h) = d−(−dS)(x;h) = do

S(x;−h) = (−dS)o(x;h), (4.1)

that is, −dS is directionally subregular at any point outside S.

Proof. Fix x /∈ S and h ∈ X. We have, see Remark 3.1, e 1
2
ψS(x) = d2

S(x) and by equalities (2.15)

(e 1
2
ψS)o(x;h) = 2dS(x)do

S(x;h) and d−(−e 1
2
ψS)(x;h) = 2dS(x)d−(−dS)(x;h). (4.2)

We know that (e 1
2
ψS)o(x;−h) = (−e 1

2
ψS)o(x;h), see (2.9). It follows from (3.11) and (3.12) in

Theorem 3.2 that

d−(−e 1
2
ψS)(x;h) = (e 1

2
ψS)o(x;−h),

so, by (4.2) we get

d−(−dS)(x;h) = do
S(x;−h) = (−dS)o(x;h),

which confirms the directional subregularity of the function −dS . �
An immediate consequence of (4.1) and the upper semicontinuity of do

S(·,·), see also Re-
mark 3.3, is the following property of the directional derivative of the distance function.

Corollary 4.1. Let (X,‖ · ‖) be a normed vector space whose norm ‖ · ‖ is uniformly Gâteaux
differentiable and let S ⊂ X be a nonempty closed subset. Then the function f defined on X\S by

f (x) := sup
h∈BX

d ′
S(x;h)

is lower semicontinuous.

Corollary 4.2. Let (X,‖ · ‖) be a normed vector space whose norm ‖ · ‖ is uniformly Gâteaux
differentiable and let S ⊂ X be a nonempty closed subset. Assume that there exist a func-
tion f bounded from below by a quadratic function and a positive λ ∈ ]0, 1

2α
[ such that

eλf (·) = −d2
S(·), where α is as in relation (3.5) (with the convention 1

2α
= +∞ for α = 0).

Then d2
S is strictly Hadamard differentiable on X.

Proof. It follows from Theorem 4.1 and Remark 3.3 that both functions −d2
S(·) and d2

S(·) =
−eλf (·) are Clarke directionally subregular. So for every x ∈ X both functions d−(d2

S)(x; ·) and
−d−(d2

S)(x; ·) are convex and continuous, thus they are linear and d−(d2
S)(x; ·) = (d2

S)o(x; ·),
which gives the strict Hadamard differentiability of d2

S . �
Using (2.15), Theorem 3.5 and Corollary 3.1, as simple consequence we get the following

characterizations of the strict Hadamard differentiability of the distance function.
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Theorem 4.2. Let (X,‖ · ‖) be a normed space whose norm ‖ · ‖ is uniformly Gâteaux differen-
tiable and let S ⊂ X be a nonempty closed set and x ∈ X \ S. Then, the following assertions are
equivalent:

(a) dS is Clarke directionally subregular at x.
(b) ∂−dS(x) �= ∅.
(c) ∂CdS(x) is a singleton.
(d) ∂−dS(x) = ∂CdS(x) and the set ∂CdS(x) is singleton.
(e) dS is strictly Hadamard differentiable at x.
(f) dS is Gâteaux differentiable at x.

Suppose in addition that the space (X,‖ · ‖) is reflexive, and the dual norm ‖ · ‖∗ of the dual
space X∗ has the Kadec–Klee property, and PS(x) �= ∅. Then each of the above conditions is
equivalent to each of the following properties:

(g) dS is Fréchet differentiable at x.
(h) dS is strictly Fréchet differentiable at x.

Proof. Let f be the indicator function of the set S, that is, f = ψS . Then for all λ > 0

eλf (u) = 1

2λ
d2
S(u), ∀u ∈ X.

Since f satisfies all the assumptions of Theorem 3.2, so the equivalences (a) ⇔ (b) ⇔ ·· · ⇔ (f)
are simple consequences of Theorem 3.5, Corollary 3.1.

To prove the implication (f) ⇒ (h) under the additional assumptions of the theorem, it suffices
to consider the concerned properties with d2

S in place of dS . So, suppose that the space X is reflex-
ive and the dual norm ‖ · ‖∗ of the dual space X∗ has the Kadec–Klee property and PS(x) �= ∅.
Take any z ∈ PS(x), by Proposition 3.1 we have DGd2

S(x) = 2J (x − z). First observe that it
follows from (3.11) and from item (e) that

E 1
2 ,X

ψS(x) = {
DGe 1

2
ψS(x)

} = {
DGd2

S(x)
}
. (4.3)

Consider any sequence {zi}i∈N in S such that d2
S(x) = limi→∞ ‖x − zi‖2. The equality (4.3) and

the definition of E 1
2 ,X

ψS(x) yield 2J (x − zi)
w−→ DGd2

S(x) (in the weak topology, we use the

reflexivity of the space and instead of the weak∗ topology we use the weak topology in X∗). Thus
we have 2J (x − zi)

w−→ DGd2
S(x) and

∥∥DGd2
S(x)

∥∥∗ = 2
∥∥J (x − z)

∥∥∗ = 2‖x − z‖ = 2dS(x)

= 2 lim
i→∞‖x − zi‖ = 2 lim

i→∞
∥∥J (x − zi)

∥∥∗,

so by the Kadec–Klee property of ‖ · ‖∗ we have the convergence with respect to the norm
topology, that is,

2J (x − zi) → DGd2(x). (4.4)
S
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Now take sequences {xi}i∈N and {hi}i∈N in X with ‖hi‖ �= 0, {ai}i∈N in S and {bi}i∈N in S, such
that xi → x, hi → 0 and

d2
S(xi) + ‖hi‖2 � ‖xi − ai‖2 � d2

S(xi),

d2
S(xi + hi) + ‖hi‖2 � ‖xi + hi − bi‖2 � d2

S(xi + hi)

for every i ∈N. On the one hand, the latter inequalities imply

d2
S(x) = lim

i→∞‖xi + hi − ai‖2 and d2
S(x) = lim

i→∞‖xi − bi‖2.

Combining this with (4.4), we obtain that {2J (x − ai)}i∈N and {2J (x − bi)}i∈N both converge
in norm to DGd2

S(x), so the norm–norm continuity of J (see (3.24)) yields

lim
i→∞

∥∥DGd2
S(x) − 2J (xi + hi − ai)

∥∥∗ = lim
i→∞

∥∥DGd2
S(x) − 2J (xi − bi)

∥∥∗ = 0. (4.5)

On the other hand, the same inequalities also guarantee that

−‖hi‖ + 〈2J (xi − bi), hi〉
‖hi‖ � −‖hi‖2 + ‖xi + hi − bi‖2 − ‖xi − bi‖2

‖hi‖

�
d2
S(xi + hi) − d2

S(xi)

‖hi‖ � ‖hi‖2 + ‖xi + hi − ai‖2 − ‖xi − ai‖2

‖hi‖
� ‖hi‖ + 〈2J (xi + hi − ai), hi〉

‖hi‖ .

According to (4.5) we deduce

lim
‖h‖↓0, x′→x

d2
S(x′ + h) − d2

S(x′) − 〈DGd2
S(x), h〉

‖h‖ = 0,

which translates the property (h). �
Several results on the differentiability of the distance function can be found in papers [8,12,19,

24–27]. For results on smallness of sets of points where the distance function is not differentiable
(assuming differentiability conditions of the norm), we refer to [39,63]. In [24, Corollary 3.6]
the equivalence between the Gâteaux (with an additional condition that ‖DGdS(x)‖ = 1) and
Fréchet differentiability was established under the assumptions that the norm ‖ · ‖ of X is both
Fréchet differentiable and uniformly Gâteaux differentiable, and the norm of X∗ is Fréchet dif-
ferentiable. In order to compare the equivalence between items (f) and (g) from Theorem 4.2
with that from [24, Corollary 3.6] we note that the assumption of Fréchet differentiability of the
norm ‖ · ‖ of X yields the Kadec–Klee property of the dual norm ‖ · ‖∗ of X∗ whenever X is a
reflexive Banach space, see [18, Theorem 1, (i)(iv), p. 22 and Lemma 1, p. 29]; note also that
the assumption of Fréchet differentiability of the dual norm ‖ · ‖∗ of X∗ implies the reflexivity
of X, see [18, Corollary 1, p. 34]. Let us also observe that item (d) from Theorem 4.2 and Propo-
sition 3.1, Remark 3.1 imply that ‖DGdS(x)‖ = 1, whenever the Gâteaux derivative DGdS(x)

exists.
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Below we will see that one of consequences of Theorem 4.2 is that the nonemptiness of
PS(x) forces the differentiability of d2

S(·) at every point of the segment [z, x[, whenever X is a
Hilbert space and z ∈ PS(x). In fact, the result will follow from the next proposition (which is a
consequence of Proposition 3.6). This proposition says that for any x outside a closed set S of a
Hilbert space H with PS(x) �= ∅ and for z ∈ PS(x) one has 2ρ(x − z) ∈ ∂−d2

S(ρx + (1 − ρ)z)

for each ρ ∈ [0,1[. Its complements in some sense the result that ∂−d2
S(u) = {2(u − PS(u))},

for any u outside S, whenever the Hilbert space H is finite-dimensional and PS(u) is a singleton
(see [51, Example 8.53]).

Proposition 4.1. Let H be a Hilbert space and S ⊂ H be a nonempty subset and x ∈ H be given
such that PS(x) �= ∅. Then for every z ∈ PS(x), ρ ∈ [0,1[ we have 2ρ(x − z) ∈ ∂−d2

S(ρx + (1 −
ρ)z).

Proof. Fix z ∈ PS(x), ρ ∈ [0,1[ and h ∈ H . Of course z ∈ PS(ρx + (1 − ρ)z). For every μ > 0
let us put

δ(μ) := inf
{‖z − s‖2: s ∈ S and∥∥ρx + (1 − ρ)z + th − s

∥∥2 � d2
S

(
ρx + (1 − ρ)z + th

) + tμ, and t ∈ ]0,μ]} and

δ := lim
μ↓0

δ(μ).

If δ = 0 then by Proposition 3.6 we obtain

lim
t↓0

d2
S(ρx + (1 − ρ)z + th) − d2

S(ρx + (1 − ρ)z)

t
= 〈

2ρ(x − z),h
〉
. (4.6)

Suppose δ > 0. Take {ti}i∈N in ]0,1[, ti ↓ 0. If ‖ρx + (1−ρ)z+ tih− z‖2 = d2
S(ρx + (1−ρ)z+

tih) we set si := z, and if not, that is,

∥∥ρx + (1 − ρ)z + tih − z
∥∥2

> d2
S

(
ρx + (1 − ρ)z + tih

)

we can take si ∈ S such that

∥∥ρx + (1 − ρ)z + tih − si
∥∥2

< min
{∥∥ρx + (1 − ρ)z + tih − z

∥∥2
, d2

S

(
ρx + (1 − ρ)z + tih

) + t2
i

}
.

So the sequence {si}i∈N in S satisfies

∥∥ρx + (1 − ρ)z + tih − si
∥∥2 � d2

S

(
ρx + (1 − ρ)z + tih

) + t2
i

and

∥∥ρx + (1 − ρ)z + tih − z
∥∥2 �

∥∥ρx + (1 − ρ)z + tih − si
∥∥2

for every i ∈ N. Observe that for every i ∈ N we have ‖x − si‖2 � ‖x − z‖2 so 2〈x − z, z − si〉+
‖z − si‖2 � 0, and since
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∥∥ρx + (1 − ρ)z + tih − z
∥∥2 �

∥∥ρx + (1 − ρ)z + tih − si
∥∥2

we obtain

0 � 2
〈
ρx + (1 − ρ)z + tih − z, z − si

〉 + ‖z − si‖2

� 2〈tih, z − si〉 + (1 − ρ)‖z − si‖2 � 2〈tih, z − si〉 + (1 − ρ)δ(ti),

hence 0 � 1 − ρ, since limμ↓0 δ(μ) = δ > 0, which is a contradiction. Consequently δ = 0 and
by (4.6) we get the following equality

lim
t↓0

d2
S(ρx + (1 − ρ)z + th) − d2

S(ρx + (1 − ρ)z)

t
= 〈

2ρ(x − z),h
〉

and the statement of the proposition is valid. �
Now we can state an immediate consequence of the proposition above and Theorem 4.2 ((b)

and (g)).

Corollary 4.3. Let H be a Hilbert space and S ⊂ H be a nonempty closed subset such that

H \ S ⊂
⋃

x∈(Dom PS)\S, z∈PS(x)

[z, x[,

where DomPS := {u ∈ X: PS(u) �= ∅}. Then ∂−d2
S(x) �= ∅ for every x ∈ H \ S, thus d2

S(·) is
continuously Fréchet differentiable on H , that is, the Fréchet derivative is continuous.

Observe that for every closed convex subset S ⊂ X we have the Clarke directional subregu-
larity of d2

S at every x ∈ X. Thus we have the following second corollary of Theorem 4.2.

Corollary 4.4. Let (X,‖ · ‖) be a normed space whose norm ‖ · ‖ is uniformly Gâteaux differ-
entiable and let S ⊂ X be a nonempty closed convex set. Then the following assertions hold
true:

(a) For all x ∈ X the set ∂Cd2
S(x) is singleton.

(b) For all x ∈ X the function d2
S is strictly Hadamard differentiable at x.

(c) For all x ∈ X \ S the function dS is strictly Hadamard differentiable at x.

Below we establish that the Vlasov condition, see [57, p. 56] and also [55,56],

lim sup
y→0

dS(x + y) − dS(x)

‖y‖ = 1, ∀x /∈ S (4.7)

together with the following one

lim inf
(
d[a,b](x) − dS(x)

)
� 0, ∀a, b ∈ S, a �= b (4.8)
‖x‖→+∞
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is equivalent to the convexity of S, where S ⊂ X is a given closed set. We show that this new
condition, that is, condition (4.8), is always satisfied whenever the norm of the space is uni-
formly Gâteaux differentiable (without any additional assumptions on the set S). We must say
that L.P. Vlasov showed

d[a,b](x) − dS(x) � 0, ∀a, b ∈ S, a �= b and ∀x ∈ X, (4.9)

whenever the dual norm of X∗ is strictly convex (or equivalently, rotund) and simultaneously
(4.7) is fulfilled, see the proof of Theorem 2 of [56] and [55, Theorem 1, Lemma 1 and Lemma 2].
We also point out that the condition (4.7) is a key in proving the convexity of Tchebyshev sets;
this was observed by L.P. Vlasov when the strict convexity of the dual norm ‖ · ‖∗ of the dual
space X∗ is assumed, see [55,56]. We recall that a nonempty set S of a normed space (X,‖ ‖)
is a Tchebyshev set provided that PS(x) is a singleton for any x ∈ X, see (2.1) for the definition
of PS(x). Obviously, any such set is closed in (X,‖ ‖).

Theorem 4.3. Let X be a Banach space and S ⊂ X be a closed set. Then S is convex if and only
if both properties (i) and (ii) below hold:

(i) lim sup
h→0

dS(x + h) − dS(x)

‖h‖ = 1, ∀x /∈ S. (4.10)

(ii) For all a, b ∈ S, with a �= b, we have

lim inf‖x‖→+∞
(
d[a,b](x) − dS(x)

)
� 0. (4.11)

Proof. In order to prove the convexity of S under (i) and (ii) let us take a′, b′ ∈ S. If the segment
[a′, b′] ⊂ S then we are done. Let us consider the case [a′, b′] \ S �= ∅. Take a, b ∈ S ∩ [a′, b′]
such that ]a, b[ ∩ S = ∅. Put ε := dS( a+b

2 )

2 and

f (x) := −d2
S(x) + d2[a,b](x) + ε

∥∥∥∥x − a + b

2

∥∥∥∥
for every x ∈ X. First note that

f (x) = (
d[a,b](x) − dS(x)

)(
d[a,b](x) + dS(x)

) + ε

∥∥∥∥x − a + b

2

∥∥∥∥,

so

lim inf‖x‖→+∞
f (x)

‖x‖ = lim inf‖x‖→+∞
(
d[a,b](x) − dS(x)

)d[a,b](x) + dS(x)

‖x‖ + ε

so the relation (4.11) gives

lim inf
f (x) � ε. (4.12)
‖x‖→+∞ ‖x‖
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The latter inequality together with a+b
2 ∈ [a, b] ensures that

−∞ < inf
x∈X

f (x) � −d2
S

(
a + b

2

)
= −4ε2 < −2ε2.

Then, we may for each i ∈ N, apply the Ekeland variational principle to obtain some xi ∈ X such
that f (xi) → infx∈X f (x) < −2ε2 (this forces xi /∈ S for i ∈ N large enough, say i � i0, and,
by (4.12), that the sequence {xi}i∈N is bounded) and such that

f (x) + i−1‖x − xi‖ � f (xi) for every x ∈ X. (4.13)

Fix any integer i � i0. From (4.13) we deduce for all h ∈ X that

i−1‖h‖ + ε

[∥∥∥∥xi + h − a + b

2

∥∥∥∥ −
∥∥∥∥xi − a + b

2

∥∥∥∥
]

+ d2[a,b](xi + h) − d2[a,b](xi)

� d2
S(xi + h) − d2

S(xi),

which ensures that

i−1 + ε + 2d[a,b](xi) � 2dS(xi) lim sup
h→0

dS(xi + h) − dS(xi)

‖h‖ .

Using the assumption (i) the latter inequality is equivalent to

(i−1 + ε)

2
+ d[a,b](xi) � dS(xi),

and hence

(i−1 + ε)2

4
+ d2[a,b](xi) + (

i−1 + ε
)
d[a,b](xi) � d2

S(xi).

Since f (xi) → infx∈X f (x) < −2ε2, we have

−2ε2 > inf
x∈X

f (x) = lim
i→∞

(
d2[a,b](xi) − d2

S(xi) + ε

∥∥∥∥xi − a + b

2

∥∥∥∥
)

� lim sup
i→∞

(
d2[a,b](xi) − (i−1 + ε)2

4
− d2[a,b](xi) − (

i−1 + ε
)
d[a,b](xi) + ε

∥∥∥∥xi − a + b

2

∥∥∥∥
)

� lim sup
i→∞

(
− (i−1 + ε)2

4
− (

i−1 + ε
)
d[a,b](xi) + ε

∥∥∥∥xi − a + b

2

∥∥∥∥
)

� lim sup
i→∞

(
− (i−1 + ε)2

4
− i−1d[a,b](xi)

)
= −ε2

4
,

a contradiction (note that the last equality is due to the boundedness of {xi}i∈N). Hence [a′, b′] ⊂
S for all a′, b′ ∈ S, that is, the set S is convex.

Conversely suppose that S is convex. It is obvious that condition (ii) is satisfied. Fix any x

outside S and choose x∗ ∈ ∂dS(x). Through the definition of the subdifferential of convex func-
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tions, it is easily seen that ‖x∗‖∗ = 1, thus there exists a sequence {ui}i∈N with ‖ui‖ = 1 such that
〈x∗, ui〉 → ‖x∗‖∗ = 1. Taking a sequence {ti}i∈N tending to 0 with ti > 0 and putting hi := tiui ,
we obtain ‖hi‖ → 0 and

dS(x + hi) − dS(x)

‖hi‖ �
〈
x∗, ui

〉
hence lim sup

‖h‖→0

dS(x + h) − dS(x)

‖h‖ = 1,

which finishes the proof of the theorem. �
In the following proposition it is established that the relation (4.11) holds true in any normed

space with uniformly Gâteaux differentiable norm without additional assumptions on the set S.

Proposition 4.2. Let (X,‖ · ‖) be a normed space whose norm ‖ · ‖ is uniformly Gâteaux differ-
entiable and S ⊂ X be a closed subset with a, b ∈ S and a �= b. Then one has

lim inf‖x‖→∞
(
d[a,b](x) − dS(x)

)
� 0.

Proof. Put f (·) = d[a,b](·)− dS(·) and take any selection p of P[a,b], that is p(x) ∈ P[a,b](x) for
every x ∈ X. Let us assume that there is a sequence {xi}i∈N ⊂ X with ‖xi‖ → ∞ such that

lim
i→∞f (xi) < −μ (4.14)

for some μ > 0. We may suppose that for every i ∈ N, p(xi) �= b, xi /∈ [a, b] and f (xi) < −μ

(in fact this is true for i large enough, otherwise limi→∞ f (xi) � 0). Since a ∈ S we get

∥∥xi − p(xi)
∥∥ + μ � ‖xi − a‖

and

μ � ‖yi + ti (p(xi) − a)‖ − ‖yi‖
ti

for ti := ‖xi − p(xi)‖−1, yi := ti (xi − p(xi)). Note that ‖yi‖ = 1. The compactness of the seg-
ment [a, b] and the uniform Gâteaux differentiability of the norm yield

μ � lim inf
i→∞

〈
J (yi),p(xi) − a

〉
,

we recall that J stands for the Gâteaux derivative of 1
2‖ · ‖2. Further, the point p(xi) being a

minimizer of ‖xi −·‖ over the convex set [a, b], we have 〈−J (xi −p(xi)), u−p(xi)〉 � 0 for all
u ∈ [a, b]. Since p(xi) �= b, we deduce that 〈J (yi),p(xi) − a〉 = 0 (we have tiJ (xi − p(xi)) =
J (yi) by (3.4)). So μ � 0, which is a contradiction, and hence (4.14) does not hold. �

The condition (4.11) may be given in several equivalent forms, for example

lim inf
d

p
[a,b](x) − d

p
S (x)

p−1
� 0,
‖x‖→+∞ ‖x‖
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with p ∈ [1,∞[. Moreover the proposition above holds true for any compact subset Q taken
instead of {a, b} and coQ instead of [a, b]. This allows to rewrite the above result in many
different ways. Let us also point out that the property given in the proposition above is closely
linked with the differentiability of the norm. In order to illustrate that, we consider the following
remark.

Remark 4.1. Now let us remark that dropping the Gâteaux differentiability assumption of the
norm, we can loose property (4.11) even in a finite-dimensional case. In order to see that, we
use the space X := R

2 endowed with the norm ‖(r, s)‖ := |r| + |s|. Consider a = (−1,0), b =
(1,0), and xi = (0, i) for all i ∈ N, so ‖xi‖ = i. For S := {a, b} the equalities d[a,b](xi) = i and
dS(xi) = i + 1 give

d[a,b](xi) − dS(xi) = −1 hence lim inf‖x‖→+∞d[a,b](x) − dS(x) � −1.

This makes clear that even in the simple space R
2 the property from the proposition may fail for

some usual norms.

The following result was obtained by L.P. Vlasov [56, Theorem 3] in the setting of a Banach
space (X,‖ · ‖) whose dual norm ‖ · ‖∗ of X∗ was assumed to be strictly convex. Below we
provide a new proof of it as a consequence of Theorem 4.3 for X being a Banach space whose
norm is uniformly Gâteaux differentiable.

Theorem 4.4. Let X be a Banach space whose norm is uniformly Gâteaux differentiable and
S ⊂ X be a Tchebyshev set with continuous metric projection. Then S is convex.

Proof. Fix any x outside S, put u := (x − PS(x))/‖x − PS(x)‖ and put also ti := 1/i for every
integer i � 1. By Theorem 3.9(a) for each i we have

2dS(x) = 2
〈
J
(
x − PS(x)

)
, u

〉 = lim
i→∞

d2
S(x + tiu) − d2

S(x)

ti

= 2dS(x) lim
i→∞

dS(x + tiu) − dS(x)

‖tiu‖ ,

hence

lim sup
‖h‖→0

dS(x + h) − dS(x)

‖h‖ = 1.

The result of the theorem then follows from Theorem 4.3 and Proposition 4.2. �
If X is a Hilbert space and the set S ⊂ X is weakly closed and Tchebyshev, then E 1

2 ,X
ψS(·) is

a single-valued monotone and Lipschitz continuous mapping, so the selection p∗(·) in (3.27) is
exactly E 1

2 ,X
ψS(·) and d2

S(·) is a C1,1 function, see [1,36,49]. (We recall that a function is C1,1

on an open set U if it is Fréchet differentiable on U and its Fréchet derivative is locally Lipschitz
continuous on U .) However if the set S is only Tchebyshev, so it has to be strongly closed, then
it is still an open question if it is convex: see [36], where it was stated: “However, even in Hilbert
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space it remains unknown whether a Tchebyshev set must be convex, or, equivalently, whether
it must be weakly closed”; see [28, Problem 5] The Possible Convexity of a Tchebyshev Set in
a Hilbert Space, where a recent review of some achievements in solving the problem is given
and where it is observed in the Hilbert setting that if the set is Tchebyshev then the Gâteaux
differentiability of d2

S(·) on X is equivalent to the convexity of S. Other important surveys are [5,
7,57] and many facts concerning the convexity of Tchebyshev sets can be found in [16]. We refer
to Theorem 4.2 above for a list of equivalent derivative properties characterizing the convexity.
We refer also to [50] where a conjecture, whose positive solution would provide an example of a
nonconvex Tchebyshev set in an infinite-dimensional real Hilbert space, is posed.

It is rather obvious that for a given set S the existence of continuous selection in (3.27) is
linked with the continuity of the projection mapping PS(·), whenever f = ψS . There are a lot
of results on this subject (guaranteeing the continuity); for old ones, see for example [37], for
recent ones, see for example [40]. It is likely that they can be used to give the selection in more
explicit form but this is not the aim of the paper. Below we provide a few examples of finding
selections.

As an application of Theorems 3.8 and 4.3, we give a result concerning the convexity of
weakly closed Tchebyshev sets in a reflexive Banach space whose norm is uniformly Gâteaux
differentiable. The result was first established by V. Klee for X being a Banach space whose norm
is both uniformly Gâteaux differentiable and uniformly rotund (the latter assumption implies the
reflexivity of the space, see [18, Theorem 2, p. 27] and yields the Kadec–Klee property of the
norm ‖ · ‖), see also [36, Corollary 4.2], and [1,49].

Theorem 4.5. Let X be a Banach space whose norm is uniformly Gâteaux differentiable and
S ⊂ X be a closed set. Assume that either (a) or (b) or (c) below holds:

(a) lim sup‖h‖→0
dS(x+h)−dS(x)

‖h‖ = 1 for all x ∈ X \ S;

(b) DH d2
S(x) exists, and PS(x) �= ∅ for every x ∈ X;

(c) The space X is reflexive and the set S is weakly closed and Tchebyshev.

Then the set S is convex and

E 1
2 ,X

ψS(x) = {
2J

(
x − PS(x)

)}
.

Proof. Under (a), the convexity of S is justified by Theorem 4.3 and Proposition 4.2. If (b) holds,
we deduce from Proposition 3.1 that the condition (a) is satisfied, so S is convex. Suppose now
(c) holds. It follows from Theorem 3.8 applied to the function ψS (see Remark 3.1) that for every
x ∈ X we have

E 1
2 ,X

ψS(x) = {
2J

(
x − PS(x)

)}

and DH d2(x) exists, so the convexity of S follows from (b). �
As a first consequence of (b) of the theorem above we have the following corollary.

Corollary 4.5. Let X be a Banach space whose norm is uniformly Gâteaux differentiable and
S ⊂ X be a closed set such that PS(x) �= ∅ for all x ∈ X. Then S is convex if and only if anyone
of properties (a) or (b) below holds:
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(a) ∂CdS(x) is a singleton for all x ∈ X \ S;
(b) dS is Gâteaux differentiable at any point outside S.

Proof. The implication (a) ⇒ (b) is obvious and Theorem 4.5(b) ensures that the condition (b)
of the corollary entails the convexity of the set S. On the other hand, Corollary 4.4(a) justifies
that the convexity of S implies the condition (a) of the corollary. �

The equivalence between the property (a) of the corollary and the convexity of S has been
established in [19, Theorem 8] under the assumption that S is Tchebyshev and both norms ‖ · ‖
of the Banach space X and ‖ · ‖∗ of X∗ are locally uniformly convex (which entails that both
norms are also Fréchet differentiable off zero).

Another direct consequence of Theorem 4.5(b) and Corollary 4.3 is

Corollary 4.6. Let H be a Hilbert space and S ⊂ H be a nonempty closed subset such that

H \ S ⊂
⋃

x∈(Dom PS)\S, z∈PS(x)

[z, x[.

Then the set S is convex.

It is an interesting question whether the fulfillment of condition (a) in Corollary 4.4 implies
the convexity of S. To the best of our knowledge this is an open problem in the case of Banach
space whose norm ‖ · ‖ is uniformly Gâteaux differentiable. An answer to this question under
some assumptions on X and X∗ can be found in [19] for S being a Tchebyshev set. Below we
give an answer to this question in Hilbert space setup.

Corollary 4.7. Let (H,‖ · ‖) be a Hilbert space.

(a) If S ⊂ X is a nonempty weakly closed set such that the set ∂CdS(x) is singleton for every
x ∈ X \ S, then S is convex.

(b) For any nonempty nonconvex weakly closed subset S ⊂ X, the squared distance function d2
S

is a ∂C -eds function but there is a point u ∈ H at which it is not Clarke directionally subreg-
ular.

(c) If S ⊂ X is a nonempty closed set such that the set PS(x) �= ∅ and DGd2
S(x) exists for every

x ∈ X \ S, then S is convex.
(d) If S ⊂ X is a nonempty closed subset such that there exist a function f bounded from below

by a quadratic function and a positive λ ∈ ]0, 1
2α

[ such that eλf (·) = −d2
S(·), where α is as

in relation (3.5) (with the convention 1
2α

= +∞ for α = 0), then S is convex.
(e) If S ⊂ X is a nonempty nonconvex closed subset, then −d2

S(·) is a ∂C -eds function which is
not the Moreau envelope of a function f bounded from below by a quadratic function, i.e.,
there is no λ ∈ ]0, 1

2α
[ such that eλf (·) = −d2

S(·), where α is as in relation (3.5) (with the

convention 1
2α

= +∞ for α = 0).

Proof. (a) In order to prove the convexity of S we employ Theorem 4.5(c). It is enough to show
that S is a Tchebyshev set. It follows from the reflexivity of the space and the weak closedness
property of S that PS(x) �= ∅. Proposition 3.1 ensures that PS(x) is singleton, hence S is a
Tchebyshev set, and by Theorem 4.5(c) S is convex.
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The statement in (b) is consequence of Theorems 4.2 and 3.7 and of (a) above.
(c) The statement (c) follows directly from Theorem 4.5(b).
(d) Let f be a function bounded from below by a quadratic function and a positive λ ∈ ]0, 1

2α
[

be such that eλf (·) = −d2
S(·), where α is as in relation (3.5) (with the convention 1

2α
= +∞ for

α = 0). First observe that both functions h1 and h2 are convex, where

h1(x) := ‖x‖2 − d2
S(x) = sup

s∈S

{〈2x, s〉 − ‖s‖2}

(is the Asplund function) and

h2(x) := 1

2λ
‖x‖2 + d2

S(x) = sup
z∈H

{〈
1

λ
x, z

〉
− 1

2λ
‖z‖2 − f (z)

}
.

Take x∗
1 ∈ ∂h1(x), x∗

2 ∈ −2λ∂h2(x) and observe that for every y ∈ H we have

‖x + y‖2 − ‖x‖2 − 〈
x∗

1 , y
〉
� d2

S(x + y) − d2
S(x) � 1

2λ

(‖x‖2 − ‖x + y‖2 − 〈
x∗

2 , y
〉)
,

which implies that DF d2
S(x) exists (of course ‖DF d2

S(x)‖ � 2dS(x)). In order to get the convex-
ity of S, in view of (c), it is enough to show that PS(x) �= ∅ for every x ∈ X \ S. For this reason
take sequences {ti}i∈N in ]0,1[ and {si}i∈N in S such that ti → 0 and d2

S(x) + t2
i � ‖x − si‖2 for

every i ∈ N and x − si
w−→ v∗ ∈ H (weakly). We have

0 � lim
i→∞

d2
S(x + ti (si − x)) − d2

S(x) − 〈DF d2
S(x), ti(si − x)〉

ti

� lim
i→∞

‖x + ti (si − x) − si‖2 − ‖x − si‖2 + t2
i − 〈DF d2

S(x), ti (si − x)〉
ti

= −2d2
S(x) − 〈

DF d2
S(x), v∗〉 � −2d2

S(x) + ∥∥DF d2
S(x)

∥∥∥∥v∗∥∥
� −2d2

S(x) + 2dS(x)
∥∥v∗∥∥ � −2d2

S(x) + 2d2
S(x) = 0,

so ‖v∗‖ = dS(x), which implies limi→∞ ‖x − si − v∗‖ = 0, so x − v∗ ∈ PS(x). Thus, by (c) we
get the convexity of S.

(e) Statements in (e) are simple consequences of (d) and Remark 3.3. �
In view of Theorem 4.5 items (a), (b) and (c) of the corollary above can be given in a more

general setup, namely whenever the space is a reflexive Banach space whose norm is uniformly
Gâteaux differentiable (the interested reader can obtain it by a repetition of reasonings from
Theorem 4.5).

5. Representation of ∂Lf (x) in terms of the Moreau envelope

In this section we turn our attention to the description of the Mordukhovich limiting subdiffer-
ential of a lower semicontinuous function f in terms of its Moreau envelope. A characterization
of ∂Lf (x) in terms of the limiting subdifferential of Moreau envelope was obtained in Theo-
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rem 5.5 in [33] in Asplund spaces. In the following theorem, we establish this connection in terms
of Fréchet subdifferentials when the space is Asplund, and we also relate ∂Lf (x) to Hadamard
derivatives of Moreau envelope when the norm ‖ · ‖ of the Asplund space is in addition required
to be uniformly Gâteaux differentiable. The latter property is enjoyed by super-reflexive Banach
spaces, see [21, Corollary 1 and Corollary 3]. It should be noted that Theorem 5.1 was established
in Theorem 3.10 [4] in the Hilbert space setting.

Before proving the theorem, let us give a lemma which will be used in the proof of the
theorem. Although the lemma has its own interest, we do not find it (as stated below) in the
literature.

Lemma 5.1. Let (X,‖ · ‖) be a Banach space, f : X → R ∪ {+∞} be an extended real-valued
function. Then for any ε � 0

{
(x∗,−r∗) ∈ ∂F,ε(ψepi f )(x, r)

and r∗ > ε

}
⇒ r = f (x).

Proof. Take the sum norm ‖(x, r)‖ := ‖x‖ + |r| on X ×R and fix (x∗,−r∗) ∈ ∂F,εψepi f (x, r)

with r∗ > ε. By the definition of ε-Fréchet subdifferential, for any real ε′ > ε there exists some
real δ > 0 such that

〈
x∗, u − x

〉 − r∗(s − r) � ε′∥∥(u, s) − (x, r)
∥∥

for all (u, s) ∈ epif ∩B((x, r), δ). Suppose that r > f (x). We can then choose some real s such
that f (x) < s < r and (x, s) ∈ B((x, r), δ). Taking (x, s) in place of (u, s) in the above inequality
yields

−r∗(s − r) � ε′(r − s) hence r∗ � ε′.

Consequently r∗ � ε, which contradicts the assumption r∗ > ε. �
Theorem 5.1. Assume that (X,‖ · ‖) is an Asplund space and that f is lower semicontinuous
and bounded from below by a negative quadratic function, see (3.6). Then for any x where f is
finite one has

∂Lf (x) = Lim sup
λ↓0

(u,eλf (u))→(x,f (x))

∂F eλf (u),

where Lim sup means the weak∗ sequential outer (upper) limit superior of sets in X∗.
If the norm ‖ · ‖ of the Asplund space X is in addition supposed to be uniformly Gâteaux

differentiable, then one also has

∂Lf (x) ⊂ Lim sup
λ↓0

(u,eλf (u))→(x,f (x))

{
DH eλf (u)

}
,

and the equality holds provided that f is weakly sequentially lower semicontinuous and (X,‖ ·‖)
is Hilbert.
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Proof. As in the proof of the above lemma, endow X ×R with the norm ‖(u, r)‖ := ‖u‖ + |r|,
so the dual norm on X∗ × R is ‖(u∗, r∗)‖∗ = max{‖u∗‖∗, |r∗|}. Fix any x∗ ∈ ∂Lf (x). By (2.3)
and (2.5) there exists some real t > 0 such that

1

t

(
x∗,−1

) ∈ ∂Ld
(
epif,

(
x,f (x)

))
.

Put u∗ = 1
t
x∗ and α∗ = − 1

t
. Then by (2.6) there are sequences {(xi, ri)}i∈N in epif with

(xi, ri)
epi f−−−→ (x, f (x)), {(x∗

i , α∗
i )}i∈N in X∗ ×R with (x∗

i , α∗
i )

w∗−−→ (u∗, α∗), {εi}i∈N with εi > 0
and εi ↓ 0, and {δi}i∈N with 0 < δi < 1/4 and δi ↓ 0 such that ‖(x∗

i , α∗
i )‖∗ � 1 + εi and

−〈
x∗
i , u − xi

〉 − α∗
i (r − ri) + εi

∥∥(u, r) − (xi, ri)
∥∥ � 0,

∀(u, r) ∈ epif ∩ B
[
(xi, ri), δi

]
. (5.1)

This ensures in particular (x∗
i , α∗

i ) ∈ ∂F,εi
ψepi f (xi, ri). Since α∗ < 0, by Lemma 5.1 for i suffi-

ciently large we get ri = f (xi). It follows from (3.8) that there are 0 < λi < 1 such that λi ↓ 0 and

Ci := epi eλi
f ∩ B

[(
xi, f (xi)

)
,
δi

2

]
⊂ epif + B

(
0, δ3

i

)
, (5.2)

recall B[·,·] stands for the closed ball. We also observe that Ci �= ∅ since (xi, f (xi)) ∈ epi eλi
f

(keeping in mind the inclusion epif ⊂ epi eλf for any λ > 0). Combining relations (5.1)
and (5.2) and putting ci = 1 + 2εi , we get for i large enough

ciδ
3
i − 〈

x∗
i , u − xi

〉 − α∗
i

(
r − f (xi)

) + εi

∥∥(u, r) − (
xi, f (xi)

)∥∥ � 0, ∀(u, r) ∈ Ci.

Consider the function

hi(u, r) = −〈
x∗
i , u − xi

〉 − α∗
i

(
r − f (xi)

) + εi

∥∥(u, r) − (
xi, f (xi)

)∥∥.

Then we have

hi

(
xi, f (xi)

) = 0 � hi(u, r) + ciδ
3
i , ∀(u, r) ∈ Ci

and (xi, f (xi)) ∈ Ci . By the Ekeland variational principle, there are (x′
i , r

′
i ) ∈ Ci such that

∥∥(
x′
i , r

′
i

) − (
xi, f (xi)

)∥∥ � δ2
i (5.3)

and

hi

(
x′
i , r

′
i

)
� hi(u, r) + ciδi

∥∥(u, r) − (
x′
i , r

′
i

)∥∥, ∀(u, r) ∈ Ci. (5.4)

Thus for (u, r) ∈ epi eλi
f with ‖(u, r) − (x′

i , r
′
i )‖ < δ2

i we have

−〈
x∗
i , x′

i − xi

〉 − α∗
i

(
r ′
i − f (xi)

) + εi

∥∥(
x′
i , r

′
i

) − (
xi, f (xi)

)∥∥
� −〈

x∗, u − xi

〉 − α∗(r − f (xi)
) + εi

∥∥(u, r) − (
xi, f (xi)

)∥∥ + ciδi

∥∥(u, r) − (
x′, r ′)∥∥,
i i i i
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that is,

〈
x∗
i , u − x′

i

〉 + α∗
i

(
r − r ′

i

)
� εi

∥∥(u, r) − (
xi, f (xi)

)∥∥ − εi

∥∥(
x′
i , r

′
i

) − (
xi, f (xi)

)∥∥ + ciδi

∥∥(u, r) − (
x′
i , r

′
i

)∥∥,

hence

〈
x∗
i , u − x′

i

〉 + α∗
i

(
r − r ′

i

)
� (εi + ciδi)

∥∥(u, r) − (
x′
i , r

′
i

)∥∥.

This implies that

(
x∗
i , α∗

i

) ∈ ∂F,εi+ciδi
ψepi eλi

f

(
x′
i , r

′
i

)
.

Since α∗ < 0, Lemma 5.1 yields r ′
i = eλi

f (x′
i ) for i large enough. Further, by the Asplund prop-

erty of X and by (2.7) there are sequences {(ui, si)}i∈N in X × R and {(u∗
i , s

∗
i )}i∈N in X∗ × R

with (u∗
i , s

∗
i ) ∈ NF (epi eλi

f, (ui, si)) such that

∥∥(ui, si) − (
x′
i , eλi

f
(
x′
i

))∥∥ � δi,
∥∥(

x∗
i , α∗

i

) − (
u∗

i , s
∗
i

)∥∥∗ � 2(εi + ciδi).

Since s∗
i → α∗ and α∗ < 0, by Lemma 5.1 we get si = eλi

f (ui) for i large enough and

−1

s∗
i

u∗
i ∈ ∂F eλi

f (ui),

according to the first inclusion of (2.3). Since ui → x, eλi
f (ui) → f (x), s∗

i → α∗, and

−1

s∗
i

u∗
i

w∗−−→ −1

α∗ u∗ = x∗,

we get

x∗ ∈ Lim sup
i→+∞

∂F eλi
f (ui) and

(
ui, eλi

f (ui)
) → (

x,f (x)
)
,

which justifies the inclusion of the first member into the second of the desired equality.
Conversely, let x∗ ∈ Lim supλ↓0, (u,eλf (u))→(x,f (x)) ∂F eλf (u). Then there are sequences

{λi}i∈N with λi > 0 and λi ↓ 0, {xi}i∈N in X with xi → x and eλi
f (xi) → f (x), and {x∗

i }i∈N
in X∗ with x∗

n
w∗−−→ x∗, such that

x∗
i ∈ ∂F eλi

f (xi), for all i sufficiently large.

So there are sequences {εi}i∈N with εi > 0 and εi ↓ 0, and {δi}i∈N with δi > 0 and δi ↓ 0 such
that for i sufficiently large

eλ f (xi + h) − eλ f (xi) − 〈
x∗, h

〉 + εi‖h‖ � 0, ∀h ∈ B[0, δi].
i i i
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Pick vi ∈ X such that

f (vi) + 1

2λi

‖vi − xi‖2 � eλi
f (xi) + δ3

i .

The above inequality and relation (3.6) ensure that vi → x and limi→+∞ f (vi) = f (x), and
also

δ3
i + eλi

f (xi + h) − f (vi) − 1

2λi

‖vi − xi‖2 − 〈
x∗
i , h

〉 + εi‖h‖ � 0, ∀h ∈ B[0, δi].

Now taking into account that

eλi
f (xi + h) � f (vi + h) + 1

2λi

‖vi − xi‖2

we get

δ3
i + f (vi + h) − f (vi) − 〈

x∗
i , h

〉 + εi‖h‖ � 0, ∀h ∈ B[0, δi].

The Ekeland variational principle ensures the existence of ui ∈ X which satisfies

‖ui‖ � δ2
i and f (vi + ui) − 〈

x∗
i , ui

〉 + εi‖ui‖ � f (vi) (5.5)

and for all h ∈ B[0, δi]

f (vi + h) − f (vi + ui) − 〈
x∗
i , h − ui

〉 + εi‖h‖ − εi‖ui‖ + δi‖h − ui‖ � 0,

which ensures

f (vi + h) − f (vi + ui) − 〈
x∗
i , h − ui

〉 + εi‖h − ui‖ + δi‖h − ui‖ � 0, ∀h ∈ B[0, δi].

By the first inequality in (5.5), for i large enough, ui is an interior point of B[0, δi] thus

x∗
i ∈ ∂F,εi+δi

f (vi + ·)(ui) = ∂F,εi+δi
f (vi + ui),

so x∗ ∈ ∂Lf (x) since {(vi +ui, f (vi +ui))}i∈N converges to (x, f (x)) according to the inequal-
ities in (5.5), to the lower semicontinuity of f , and to the equality limi→∞ f (vi) = f (x). The
first equality of the theorem is then proved.

Finally, if we suppose that the norm ‖ · ‖ of the Asplund space X is uniformly Gâteaux differ-
entiable, the inclusion

∂Lf (x) ⊂ Lim sup
λ↓0

(u,eλf (u))→(x,f (x))

{
DH eλf (u)

}

as well the equality, under the additional assumptions in the theorem, follow from the fact that
∂F eλf (u) ⊂ ∂−eλf (u) and from Theorem 3.5(d) and (f). �
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The equality (2.11) then yields:

Corollary 5.1. Assume in addition to the hypotheses of Theorem 5.1 that f is locally Lipschitz
continuous near x0. Then

∂Cf (x) = co∗( lim sup
λ↓0

(u,eλf (u))→(x,f (x))

∂F eλf (u)
)
.

Acknowledgment

We thank the referee for his comments on the presentation of the paper.

References

[1] E. Asplund, C̆ebys̆ev sets in Hilbert spaces, Trans. Amer. Math. Soc. 144 (1969) 235–240.
[2] H. Attouch, Convergence de fonctions convexes, des sous-différentiels et semi-groupes aassociés, C. R. Acad. Sci.

Paris Sér. A–B 284 (1977) 539–542.
[3] H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced Publishing Program, Boston,

1984.
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