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Abstract

Our basic object in this paper is to show that for a given bornology β
on a Banach space X the following “lim inf” formula holds true

lim inf
x′

C→x
Tβ(C;x′) ⊂ Tc(C;x)

for every closed set C ⊂ X, and x ∈ C, provided that the space X ×X is
∂β-trusted. Here Tβ(C;x) and Tc(C;x) denote the β-tangent cone and the
Clarke tangent cone to C at x. The trustworthiness includes spaces with
an equivalent β-differentiable norm or more generally with a Lipschitz
β-differentiable bump function. As a consequence, we show that for the
Fréchet bornology, this “lim inf” formula characterizes in fact the Asplund
property of X. We use our results to obtain new characterizations of Tβ-
pseudoconvexity of X.

Key Words. Tangent cones, subdifferentials, bornology, Asplund space,
Gâteaux (Fréchet) differentiability, psodoconvexity, trustworthiness.

AMS subject classification. Primary 46B20, 49J52; Secondary 58C20

1 Introduction

Let X be a real Banach space and X∗ be its topological dual with pairing 〈·, ·〉.
A bornology β on X is a family of bounded and centrally symmetric subsets of
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X whose union is X, which is closed under multiplication by positive scalars
and is directed upwards (i.e., the union of any two members of β is contained
in some member of β). The most important bornologies are Gâteaux bornology
consisting of all finite subset of X, Hadamard bornology consisting of all norm
compact sets, weak Hadamard bornology consisting of all weakly compact sets
and Fréchet bornology consisting of all bounded sets.
Each bornology β generates a β-subdifferential which in turn gives rise to the
β-normal cone, and hence by making polars to the β-tangent cone.
In this paper, we are concerned with sufficient conditions on a Banach space X
satisfying the following “lim inf” formula

lim inf
x′

C→x
Tβ(C;x′) ⊂ Tc(C;x) (1.1)

for each closed set C ⊂ X, and for each x ∈ C. Here Tβ(C;x) and Tc(C;x)
denote the β-tangent cone and the Clarke tangent cone to C at x.
This kind of formulas has been studied by many authors in special situations.
They started with the work by Cornet [6] who found a topological connection
between the Clarke tangent cone and the contingent cone K(C;x) to C at x.
He has shown that if C ⊂ Rm, then

Tc(C;x) = lim inf
x′

C−→x
K(C;x′).

Using his new characterization of Clarke tangent cone, Treiman [20]-[21](see
also [8] for an independent proof) showed that the inclusion

lim inf
x′

C−→x
K(C;x′) ⊂ Tc(C;x)

is true in any Banach space and equality holds whenever C is epi-Lipschitzian
at x in the sense of Rockafellar [19]. But this result does not include the finite
dimensional case where this formula holds true for any closed set. In [4],[5],
Borwein and Strojwas introduced the concept of compactly epi-Lipschitz sets to
show that the previous equality holds for C in this class unifying the finite and
infinite dimensional situations. In the case when the space is reflexive, these
authors obtained the following equality

Tc(C, x) = lim inf
x′

C−→x
WK(C, x′)

where WK(C, x) denotes the weak-contingent cone to C at x. They generalize
the results of Penot [16] for finite dimensional and reflexive Banach spaces and
of Cornet [6] for finite dimensional spaces. Aubin-Frankowska [2] obtained the
following formula

Tc(C;x) = lim inf
x′

C→x
WK(C;x′) = lim inf

x′
C−→x

co(WK(C;x′))

in the case when the space X is uniformly smooth and the norm of X∗ is Fréchet
differentiable off the origin.
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In their paper [5], Borwein and Strojwas gave a characterization of reflexive
Banach spaces. They showed that the following assertions are equivalent :

(i) Tc(C;x) ⊂ lim inf
x′

C−→x
coWK(C;x′), for all closed sets C ⊂ X, and all x ∈ C;

(ii) X is reflexive.

The validity of the “lim inf” formula (1.1) has been accomplished in Borwein and
Ioffe [3] in the case when the space X admits a β-differentiable equivalent norm.

Our aim in this paper is to show that if the space X×X is ∂β-trusted or equiv-
alently basic fuzzy principle is satisfied on X × X (this includes spaces with
equivalent β-smooth norm or more generaly spaces with Lipschitz β-smooth
bump function) then the “lim inf” formula (1.1) holds. As a consequence, we
show that for the Fréchet bornology, the formula (1.1) characterizes in fact the
Asplund property of X. We then use our results to obtain new characterizations
of β-pseudoconvexity.
The plan of the present paper is as follows: After recalling some tools of nons-
mooth analysis in the second section, we establish in the third one a connection
between Gâteaux (Fréchet) differentiability of the norm and the regularity of
the set D = Bc = {x ∈ X : ‖x‖ ≥ 1}. For x̄ ∈ D, with ‖x̄‖ = 1, Borwein and
Strojwas [5] showed that Gâteaux differentiability of the norm at x̄ is equivalent
to c̄oK(C; x̄) 6= X. We prove that Gâteaux differentiability of the norm at x̄ is
equivalent to K(D; x̄) equal to a half space which in turn is equivalent to the
Clarke tangential regularity of D at x̄. Similar results are obtained for Fréchet
differentiability by means of the Fréchet normal cone to D. In the fourth section,
we prove our main theorem and some of its consequences. In the fifth section,
we give some corollaries, namely a new characterization of Asplund spaces: A
Banach space is Asplund space if and only if the “lim inf” formula holds true
with the Fréchet bornology for any closed set C ⊂ X. The last section concerns
characterizations of Tβ-pseudoconvex sets.

2 Notation and Preliminaries

Let X be a Banach space with a given norm ‖ · ‖, X∗ be its topological dual
space and 〈·, ·〉 be the duality pairing between X and X∗. The sphere of X and
the open ball in X centered at x and of radius δ are defined by SX = {h ∈ X :
‖h‖ = 1} and B(x, δ) = {h ∈ X : ‖h− x‖ < δ}.

Let C be a closed subset of X. The contingent cone K(C;x) (resp. weak-
contingent cone WK(C;x)) to C at x is the set of all h ∈ X for which there are
a sequence (hn) in X converging strongly (resp. weakly) to h and a sequence of
positive numbers (tn) converging to zero such that

x+ tnhn ∈ C,

for all n ∈ N. A vector h ∈ X belongs to the Clarke tangent cone Tc(C;x) of C
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at x provided that for any real ε > 0 there exists a real δ > 0 such that(
u+ tB(h, ε)

)
∩ C 6= ∅,

for all u ∈ C ∩ B(x, δ) and t ∈]0, δ[. It is known that h ∈ Tc(C;x) if and only
if for any sequences (xn) ∈ C converging to x and (tn) of positive numbers
converging to zero there is a sequence (hn) in X converging to h such that

xn + tnhn ∈ C,

for all n ∈ N. It is obvious that Tc(C;x) ⊂ K(C;x). The Clarke normal cone
is defined as the negative polar cone of the Clarke tangent cone, that is,

Nc(C;x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ Tc(C;x)}.

Let us recall that the (negative) polar cone of a convex cone K is given by

K0 = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ K}.

Definition 2.1 Let f : X → R ∪ {±∞} be a function finite at x and β be a
bornology on X.
(a) f is said to be β-differentiable (or β-smooth) at x if it is Gâteaux differen-
tiable at x uniformly on members of β, that is, there is x∗ ∈ X∗ such that for
each set S ∈ β

lim
t→∞

t−1 sup
h∈S
|f(x+ th)− f(x)− 〈x∗, th〉 | = 0,

(b) x∗ ∈ X∗ is a β-subgradient of f at x, if for each ε > 0 and each set S ∈ β
there is δ > 0 such that for all 0 < t < δ and all h ∈ S

t−1
(
f(x+ th)− f(x)

)
− 〈x∗, h〉 ≥ −ε.

We denote by ∂βf(x) the set of all β-subgradient of f at x.

It follows from this definition that if β1 ⊂ β2, then ∂β2
f(x) ⊂ ∂β1

f(x).

Applying Definition 2.1(a) to the bounded bornology, Gâteaux bornology and
Hadamard bornology, we obtain the following classical definitions of:

• Fréchet differentiability: There is x∗ ∈ X∗ such that

lim
h→0
‖h‖−1(f(x+ h)− f(x)− 〈x∗, h〉) = 0.

• Gâteaux differentiability: There is x∗ ∈ X∗ such that

∀h ∈ X, lim
t→0+

t−1(f(x+ th)− f(x)) = 〈x∗, h〉.
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• Hadamard differentiability: There is x∗ ∈ X∗ such that

∀h ∈ X, lim
t→0+,
u→h

t−1(f(x+ tu)− f(x)) = 〈x∗, h〉 .

While Definition 2.1(b) leads ([14]) in the case of the bounded bornology, Gâteaux
bornology and Hadamard bornology, to the following classical definitions of :

• Fréchet-subdifferential of f at x:

∂βf(x) = ∂F f(x) =

{
x∗ ∈ X∗ : lim inf

y→x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0

}
.

• Gâteaux-subdifferential of f at x:

∂βf(x) = ∂Gf(x) =

{
x∗ ∈ X∗ : lim inf

t→0+

f(x+ th)− f(x)

t
≥ 〈x∗, h〉 , ∀h ∈ X

}
.

• Hadamard-subdifferential (or Dini-Hadamard-subdifferential) of f at x:

∂βf(x) = ∂Hf(x) =

{
x∗ ∈ X∗ : lim inf

t→0+

u→h

f(x+ tu)− f(x)

t
≥ 〈x∗, h〉 , ∀h ∈ X

}
.

We denote by ∂ the Fenchel (or Moreau-Rockafeller) subdifferential that is

∂f(x) = {x∗ ∈ X∗ : f(x+ h)− f(x) ≥ 〈x, h〉 ,∀h ∈ X}.

It is important to note that in case of lower semicontinuous convex function f ,
we have

∂βf(x) = ∂f(x).

We will denote by Nβ(C;x) the β-normal cone of C at x which is defined by

Nβ(C;x) = ∂βψC(x)

where ψC is the indicator fonction of C, that is,

ψC(x) =

{
0 if x ∈ C,
+∞ if x /∈ C

and by Tβ(C;x) the β-tangent cone which is defined as the negative polar cone
of the β-normal cone intersected with X, that is

Tβ(C, x) = (Nβ(C, x))0 ∩X.

For any bornology β the following inclusions hold:

NF (C;x) ⊂ Nβ(C;x) ⊂ NG(C;x), TG(C;x) ⊂ Tβ(C;x) ⊂ TF (C;x).

When β is the Hadamard (resp. Fréchet) bornology, then ([1],[17]) we obtain
that

TH(C;x) = coK(C;x), ( resp. NF (C; x̄) =

{
x∗ ∈ X∗ : lim sup

u
C−→x

〈x∗, u− x〉
‖u− x‖

≤ 0

}
).
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Definition 2.2 Let X be a Banach space and let β be a bornology on it, we say
that X is ∂β trusted, if the following fuzzy minimization rule holds: let f be a
lower semicontinuous function on X finite at x̄ ∈ X, and let g be a Lipschitz
continuous function on X. Assume that f + g attains a local minimum at x.
Then for any ε > 0 there are x, u ∈ X and x∗ ∈ ∂βf(x), u∗ ∈ ∂βg(u) such that

‖x− x̄‖ < ε, ‖u− x̄‖ < ε, |f(x)− f(x̄)| < ε, and ‖x∗ + y∗‖ < ε.

We recall that a bump function on X is a real-valued function φ which has
bounded nonempty support supp(φ) = {x ∈ X : φ(x) 6= 0}.

Proposition 2.3 [14] If there is on X a β-differentiable Lipschitz bump func-
tion, then X is ∂β−trusted,

Proposition 2.4 [9] A Banach space is trusted for the Fréchet subdifferential
if and only if it is Asplund.

3 Characterizations of Gâteaux and Fréchet dif-
ferentiability of the norm

In this section, we study the connection between differentiability of the norm
‖ · ‖ on X and some property of the subset D := Bc = {x ∈ X : ‖x‖ ≥ 1}. In [5]
Borwein and Srojwas showed several properties of D in various Banach spaces.
In particular they showed that if ‖x̄‖ = 1 then Gâteaux differentiability of the
norm at x̄ is equivalent to the P-properness of D et x̄, i.e., c̄oK(D;x) 6= X. In
this section we will show furthur properties for various norms. We denote by
PC(x) the set of projections of x on the subset C of X, i.e.,

PC(x) = {y ∈ C : ‖x− y‖ = dC(x)}.

Proposition 3.1 Assume that X is a Banach space with a given norm ‖ · ‖.
Let x̄ ∈ D with ‖x̄‖ = 1. Then

(a) K(D; x̄) contains at least a one half space,

(b) x̄+K(D; x̄) ⊂ D,

(c) K(D; x̄) 6= X,

(d) ∀λ ∈]0, 1[, D ∩B(x̄, 1− λ) + tB(x̄, λ) ⊂ D, for all t > 0,

(e) B(x̄, 1) ⊂ Tc(D; x̄),

(f)
x

‖x‖
∈ PD(x) and dD(x) = 1− ‖x‖ for all x ∈ B\{0}.
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Proof. (a) Since B is convex and ‖x̄‖ = 1, Hahn-Banach Theorem ensures the
existence of x∗ ∈ X∗, with ‖x∗‖ = 1, such that

B ⊂ {h ∈ X : 〈x∗, h− x̄〉 ≤ 0} .

Thus
{h ∈ X : 〈x∗, h− x̄〉 ≥ 0} ⊂ D,

x̄+ {h ∈ X : 〈x∗, h〉 ≥ 0} ⊂ D,

{h ∈ X : 〈x∗, h〉 ≥ 0} ⊂ D − x̄.

Therefore we receive that

{h ∈ X : 〈x∗, h〉 ≥ 0} ⊂ K(D; x̄).

(b) Suppose that there is h ∈ K(D; x̄) such that x̄+ h ∈ intB. Then there is
δ > 0 such that x̄+B(h, δ) ⊂ B. Since B is convex for any t ∈]0, 1]

x̄+ tB(h, δ) ⊂ B.

Therefore for any sequences (hn) converging to h and any tn → 0 there is n0 ∈ N
such that

x̄+ tnhn ∈ intB, ∀n ≥ n0.

This is in contradiction with h ∈ K(D, x̄), therefore x̄+ h ∈ D.
(c) It is a direct consequence of (b).
(d) For any x ∈ D, z ∈ X and t > 0

‖z − (1 + t)x‖ ≤ t =⇒ (1 + t)‖x‖ − ‖z‖ ≤ t =⇒ 1 ≤ ‖z‖.

Therefore B
(
(1+ t)x, t

)
⊂ D or equivalently x+ tB(x, 1) ⊂ D. Let λ ∈]0, 1[ and

pick x ∈ B(x̄, 1 − λ) ∩D, then B(x̄, λ) ⊂ B(x, 1) and hence x + tB(x̄, λ) ⊂ D.
Finally we receive that

D ∩B(x̄, 1− λ) + tB(x̄, λ) ⊂ D.

(e) Let (xn)n be a sequence in D converging to x̄, (tn)n be a sequence of
positive numbers converging to 0 and h ∈ B(x̄, 1). Then there exist λ > 0 and
n0 > 0 such that for all n ≥ n0, xn ∈ D∩B(x̄, 1−λ). The property (d) ensures
that xn + tnh ∈ D for all n > n0. By the definition of the Clarke tangent cone,
we get h ∈ Tc(D; x̄).

(f) Suppose that x ∈ BX and z ∈ D, then

‖x− z‖ ≥ ‖z‖ − ‖x‖ ≥ 1− ‖x‖ =
∥∥∥x− x

‖x‖

∥∥∥
therefore

x

‖x‖
∈ PD(x).�

The following proposition contains several characterizations of the Gâteaux dif-
ferentiability of the norm.
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Proposition 3.2 Let X be a Banach space with a given norm ‖ · ‖. Assume
that ‖x̄‖ = 1. Then the following assertions are equivalent:

(a) ‖ ‖ is Gâteaux differentiable at x̄,

(b) there is x∗ ∈ X∗, ‖x∗‖ = 1 such that K(D; x̄) = {h ∈ X : 〈x∗, h〉 ≥ 0},

(c) Tc(D; x̄) = K(D; x̄).

Proof. (a) ⇒ (b). Suppose that ‖ · ‖ is Gâteaux differentiable at x̄ with
derivative x∗. Then for any h ∈ X

lim
t→0

‖x̄+ th‖ − ‖x̄‖
t

− 〈x∗, h〉 = 0

By (a) of Proposition 3.1 the cone K(D; x̄) contains at least one half space. If
we show that K(D; x̄) ⊂ {h ∈ X : 〈x∗, h〉 ≥ 0} then this inclusion will become
equality. Take h ∈ K(D; x̄) and find (hn)n ⊂ X converging strongly to h and
a sequence (tn)n of positive numbers converging to zero such that for all n ∈ N
large enough

x̄+ tnhn ∈ D.

Thus, as ‖x̄+ tnhn‖ ≥ 1,

‖x̄+ tnh‖ − ‖x̄‖
tn

− 〈x∗, h〉 ≥ ‖x̄+ tnhn‖ − ‖x̄‖
tn

− 〈x∗, h〉 − ‖h− hn‖

≥ − 〈x∗, h〉 − ‖h− hn‖.

Therefore

lim
n→∞

‖x̄+ tnh‖ − ‖x̄‖
tn

− 〈x∗, h〉 ≥ − 〈x∗, h〉 ,

0 ≥ −〈x∗, h〉 ,

〈x∗, h〉 ≥ 0.

(b)⇒(a) Assume that K(D; x̄) = {h : 〈x∗, h〉 ≥ 0} for some x∗ ∈ X∗. Let
z∗ ∈ ∂‖ ‖(x̄). Then ‖z∗‖ = 1 and

lim
t→0

‖x̄+ th‖ − ‖x̄‖
t

− 〈z∗, h〉 ≥ 0.

Suppose that 〈z∗, h〉 > 0. Then lim
t→0

‖x̄+ th‖ − ‖x̄‖
t

> 0 and thus there is t0 > 0

such that
‖x̄+ th‖ − ‖x̄‖

t
> 0, ∀ 0 < t < t0,

and hence for all t ∈]0, t0[, x̄ + th ∈ D, which asserts that h ∈ K(D; x̄). We
receive, because of the closedness of K(D;x), that

{h : 〈z∗, h〉 > 0} ⊂ K(D; x̄) ⊂ {h : 〈x∗, h〉 ≥ 0}.
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By Farkas Lemma ([11]), we conclude that z∗ = λx∗ with λ > 0. Thus

λ =
‖z∗‖
‖x∗‖

= 1 and z∗ = x∗.

(a) ⇒ (c) Suppose that the norm ‖ · ‖ is Gâteaux differentiable at x̄. It suffices
to show that there exists a unique x∗ ∈ X∗, with ‖x∗‖ = 1 such that

Tc(D; x̄) = {h ∈ X : 〈x∗, h〉 ≥ 0}.

Assertions (c) and (d) of Proposition 3.1 ensure that 0 is a boundary point of
Tc(D; x̄) and intTc(D, x̄) 6= ∅. So the separation theorem produces x∗ ∈ X∗,
with ‖x∗‖ = 1 such that

Tc(D; x̄) ⊂ {h ∈ X : 〈x∗, h〉 ≥ 0}

and as B(x̄, 1) ⊂ Tc(D; x̄) (by (d) of Proposition 3.1), the assumption (a) implies
that x∗ is exactly the Gâteaux derivative of the norm ‖ · ‖ at x̄. It remains to
establish the reverse inclusion

Tc(D; x̄) ⊃ {h ∈ X : 〈x∗, h〉 ≥ 0}.

Suppose that there exists v ∈ X satisfying 〈x∗, v〉 ≥ 0 and v /∈ Tc(D; x̄). Once
again, the separation theorem yields u∗ ∈ X∗, with ‖u∗‖ = 1, such that

Tc(D; x̄) ⊂ {h ∈ X : 〈u∗, h〉 ≥ 0} and 〈u∗, v〉 < 0.

As before we show that u∗ is also a Gâteaux derivative of the norm ‖ · ‖ at x̄,
and by (a), x∗ = u∗ and this contradicts the relations

〈x∗, v〉 ≥ 0 and 〈u∗, v〉 < 0.

(c)⇒ (b) Suppose that Tc(D; x̄) = K(D; x̄). Then Tc(D; x̄) contains at least one
half space. By Proposition 3.1, Tc(D, x̄) 6= X and by the separation Theorem
(recall that the Clarke cone is convex and closed) there is x∗ ∈ X∗, ‖x∗‖ = 1
such that

Tc(D;x) ⊂ {h ∈ X : 〈x∗, h〉 ≥ 0}.

By the Farkas lemma we have

Tc(D;x) = {h ∈ X : 〈x∗, h〉 ≥ 0}.

�
The following corollary on the density of points of Gâteaux differentiability of
the norm is a consequence of Propositions 3.1 and 3.2.

Corollary 3.3 Let (X, ‖·‖) be a Banach space and put D = {u ∈ X : ‖u‖ ≥ 1}.
The following assertions are equivalent:

(1) For each x ∈ SX , lim inf
x′

D→x
c̄oK(D;x′) 6= X.
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(2) The norm ‖ · ‖ is Gâteaux differentiable on a dense subset of X.

Proof. First, we remark that

lim inf
x′

D→x
c̄oK(D;x′) 6= X ⇐⇒ lim inf

x′
SX→ x

c̄oK(D;x′) 6= X

(1)⇒ (2): It suffices to show that ‖ · ‖ is Gâteaux differentiable on dense subset
of SX . Let x ∈ SX . Then

lim inf
x′

D→x
c̄oK(D;x′) 6= X.

Therefore for any ε > 0 there is z ∈ B(x, ε) ∩D such that

c̄oK(D; z) 6= X.

That is the convex cone c̄oK(D; z) belongs to a half space, thus K(D; z) also
belongs to a half space. Since by (a) of Proposition 3.1 we know that K(D; z)
contains at least one half space, then by Farkas Lemma we deduce that K(D; z)
is equal to the half space and ‖ · ‖ is Gâteaux differentiable at z according to
the Proposition 3.2.

(2) ⇒ (1): Let x ∈ SX and xn
SX→ x such that the norm ‖ · ‖ is Gâteaux

differentiable. Proposition 3.2 asserts that there exists x∗n ∈ X∗, ‖x∗n‖ = 1,
such that K(D,xn) = {h ∈ X : 〈x∗n, h ≤ 0 }, and hence c̄oK(D;xn) =
K(D;xn). Applying Proposition 3.1 (b), we get c̄oK(D;xn) ⊂ D − xn. Thus
lim inf

x′
D→x

c̄oK(D;x′) ⊂ D − x, and the proof is completed.�

Proposition 3.4 Let X be a Banach space with a given norm ‖ · ‖. Assume
that ‖x̄‖ = 1. Then the following assertions are equivalent:

(a) ‖ ‖ is Fréchet differentiable at x̄,

(b) NF (D; x̄) 6= {0},

Proof. (a) ⇒ (b) If (a) holds then there is some x∗ ∈ X∗, ‖x∗‖ = 1 which is
the Fréchet derivative of ‖ · ‖ at x̄, that is, for any ε > 0 there is δ > 0 such that

−ε ≤ ‖y‖ − ‖x̄‖ − 〈x
∗, y − x̄〉

‖y − x̄‖
≤ ε,

for all y ∈ B(x̄, δ). If y ∈ D ∩B(x̄, δ) then ‖y‖ ≥ 1 = ‖x̄‖ and so

〈−x∗, y − x̄〉
‖y − x̄‖

≤ ε.

This implies that −x∗ ∈ NF (D; x̄).
(b) ⇒ (a) Suppose that x∗ ∈ NF (D; x̄) with ‖x∗‖ = 1. Since NF (D; x̄) ⊂(
K(D;x)

)◦
then, by polarity, we get

K(D; x̄) ⊂ {h ∈ X : 〈x∗, h〉 ≤ 0}.
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As K(D; x̄)0 contains at least one half space, we deduce by Farkas Lemma that
K(D; x̄) is a half space and therefore Proposition 3.2 asserts that −x∗ is a
Gâteaux derivative of ‖·‖ at x̄ and 〈−x∗, x̄〉 = 1. By the definition of NF (D; x̄),
for any ε > 0 there is δ > 0 (with δ ≤ 1) such that

〈x∗, x− x̄〉 ≤ ε‖x− x̄‖ (3.1)

for all x ∈ D ∩B(x̄, δ). We note that∥∥∥ x

‖x‖
− x̄
∥∥∥ =

1

‖x‖

∥∥∥x− ‖x‖x̄∥∥∥ ≤ 1

‖x‖

[∥∥∥x− ‖x‖x∥∥∥+
∥∥∥‖x‖x− ‖x‖x̄∥∥∥]

=
∣∣‖x‖ − 1

∣∣+ ‖x− x̄‖
≤ 2‖x− x̄‖.

Thus if x ∈ B(x̄,
δ

2
), then

x

‖x‖
∈ B(x̄, δ) ∩D and therefore by inequality (3.1)

〈
x∗,

x

‖x‖
− x̄
〉
≤ ε
∥∥∥ x

‖x‖
− x̄
∥∥∥,

1 +

〈
x∗,

x

‖x‖

〉
≤ 2ε

∥∥x− x̄∥∥,
‖x‖+ 〈x∗, x〉 ≤ 2ε‖x‖‖x− x̄‖,

‖x‖ − 1 + 〈x∗, x− x̄〉 ≤ 4ε‖x− x̄‖,

‖x‖ − ‖x̄‖+ 〈x∗, x− x̄〉 ≤ 4ε‖x− x̄‖.

As −x∗ is the Gâteaux derivative of ‖ · ‖ at x̄ we receive finally that

0 ≤ ‖x‖ − ‖x̄‖+ 〈x∗, x− x̄〉 ≤ 4ε‖x− x̄‖,

for all x ∈ B(x̄,
δ

2
). Therefore ‖ · ‖ is Fréchet differentiable at x̄.�

The following corollary on the density of points of Fréchet differentiability of
the norm is a consequence of Propositions 3.1 and 3.4. Its proof is similar to
that of Corollary 3.3.

Corollary 3.5 Let (X, ‖·‖) be a Banach space and put D = {u ∈ X : ‖u‖ ≥ 1}.
The following assertions are equivalent:

(1) For each x ∈ SX , lim inf
x′

D→x
TF (D;x′) 6= X.

(2) The norm ‖ · ‖ is Fréchet differentiable on a dense subset of X.

11



4 The validity of the “lim inf” formula

Theorem 4.1 Let (X, ‖ · ‖) be a Banach space and β a bornology on X such
that X ×X is ∂β-trusted. Then for any closed subset C of X and x̄ ∈ C

lim inf
x

C→x̄
Tβ(C;x) ⊂ Tc(C; x̄).

Proof. Pick w ∈ lim inf
x

C→x̄
Tβ(C, x). We want to show that w ∈ Tc(C;x). Suppose

that w /∈ Tc(C, x). Then by Lemma 1.2.1 in [20] there are a sequence xn in C
converging to x, a sequence (λn) in (0, 1

2 ) of real positive numbers converging
to zero, ε > 0 and n0 ∈ N such that(

xn+]0, λn]B(w, ε)
)
∩ C = ∅, ∀n ≥ n0.

Let us fix an integer n ≥ n0 and put D := xn +
[
0, λn

2

]
B(w, ε). Then

(
D +

λ4
nw
)
∩ C = ∅. Define the function f by

f(x, y) = ‖x− y − λ4
nw‖, ∀(x, y) ∈ X ×X.

Thus f(xn, xn) = λ4
n and

λ4
n + inf

(x,y)∈C×D
f(x, y) ≥ f(xn, xn).

The well-known Ekeland’s variational principle assures the existence of (un, vn) ∈
C ×D satisfying

‖un − xn‖+ ‖vn − xn‖ < λ2
n,

and

∀u ∈ C, ∀v ∈ D, f(un, vn) ≤ f(u, v) + λ2
n(‖u− un‖+ ‖v − vn‖).

Thus

f(un, vn) ≤ f(u, v) + λ2
n(‖u− un‖+ ‖v − vn‖) + ψC(u) + ψD(v), (4.1)

for all u, v ∈ X. Since
(
D + λ4

nw
)
∩ C = ∅, we get

‖un − vn − λ4
nw‖ > 0

and so there is δn > 0 such that

‖t− τ − λ4
nw‖ > 0,

for all t ∈ B(un, δn) and τ ∈ B(vn, δn).

Since X × X is ∂β-trusted, 4.1 provides there are u1
n, u

2
n, v

1
n, v

2
n ∈ X and

u∗1n , u
∗2
n , v

∗1
n , v

∗2
n ∈ X∗ such that

‖u1
n − un‖+ ‖u2

n − un‖+ ‖v1
n − vn‖+ ‖v2

n − vn‖ < αn = min{δn, λ4
n},

12



‖u∗1n + u∗2n ‖+ ‖v∗1n + v∗2n ‖ ≤ αn = min{δn, λ4
n} (4.2)

and
(u∗1n , v

∗1
n ) ∈ ∂β

(
f + λ2

n

(
‖ · −un‖+ ‖ · −vn‖

))
(u1
n, v

1
n),

(u∗2n , v
∗2
n ) ∈ ∂β

(
ψC + ψD

)
(u2
n, v

2
n).

By the convexity of separate summands

∂β

(
f + λ2

n

(
‖ · −un‖+ ‖ · −vn‖

))
(u1
n, v

1
n)

= ∂
(
f + λ2

n

(
‖ · −un‖+ ‖ · −vn‖

))
(u1
n, v

1
n)

⊂ ∂f(u1
n, v

1
n) + λ2

n(BX∗ ×BX∗).

Since ‖u1
n−v1

n−λ4
nw‖ 6= 0 we receive that ∂f(u1

n, v
1
n) is included in {(x∗,−x∗) :

‖x∗‖ = 1}. That is there is x∗n ∈ X∗ with ‖x∗n‖ = 1 such that

‖u∗1n − x∗n‖ ≤ λ2
n and ‖v∗1n + x∗n‖ ≤ λ2

n.

By the inequality (4.2) we receive that

‖x∗n + u∗2n ‖ ≤ λ2
n + λ4

n and ‖v∗2n − x∗n‖ ≤ λ2
n + λ4

n (4.3)

and thus

‖u∗2n + v∗2n ‖ ≤ 2(λ2
n + λ4

n) (4.4)

It is evident that

∂β(ψC(·) + ψD(·))(u2
n, v

2
n) = ∂βψC(u2

n)× ∂βψD(v2
n).

Thus 〈
v∗2n , u− v2

n

〉
≤ 0 ∀u ∈ D,〈

v∗2n , xn +
λn
2

(w + b)− v2
n

〉
≤ 0 ∀b ∈ B(0, ε),

ε‖v∗2n ‖
λn
2

+

〈
v∗2n , xn − v2

n +
λn
2
w

〉
≤ 0,

ελn
2

(1− λ2
n − λ4

n) ≤
〈
v∗2n , v

2
n − xn −

λn
2
w

〉
.

Using (4.3) and (4.4), we get

ελn
2

(1− λ2
n − λ4

n) ≤
〈
v∗2n + u∗2n , v

2
n − xn −

λn
2
w

〉
+

〈
−u∗2n , v2

n − xn −
λn
2
w

〉
≤ 2(λ2

n + λ4
n)
(
‖v2
n − xn −

λn
2
w‖) +

〈
−u∗2n , v2

n − xn
〉

+
λn
2

〈
u∗2n , w

〉
,

ελn
2

(1−λ2
n−λ4

n)+
〈
u∗2n , v

2
n − xn

〉
≤ 2(λ2

n+λ4
n)
(
‖v2
n−xn−

λ

2
w‖)+

λn
2

〈
u∗2n , w

〉
,
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ελn
2

(1−λ2
n−λ4

n)−‖u∗2n ‖‖v2
n−xn‖ ≤ 2(λ2

n+λ4
n)
(
‖v2
n−xn−

λ

2
w‖)+

λn
2

〈
u∗2n , w

〉
,

ελn
2

(1−λ2
n−λ4

n)−(1+λ2
n+λ4

n)(λ2
n+λ4

n) ≤ 2(λ2
n+λ4

n)
(
‖v2
n−xn−

λn
2
w‖)+λn

2

〈
u∗2n , w

〉
,

ε(1−λ2
n−λ4

n)−2(1+λ2
n+λ4

n)(λn+λ3
n) ≤ 4(λn+λ3

n)
(
‖v2
n−xn−

λn
2
w‖)+

〈
u∗2n , w

〉
.

Now remember that u∗2n ∈ ∂βψC(u2
n) = Nβ(C, u2

n), {u2
n}n converges strongly

to x̄, (λn)n converges to zero and w ∈ lim inf
x

C→x̄
Tβ(C;x). Therefore there is

wn ∈ Tβ(C, u2
n) converging strongly to w. Thus we receive that

ε− (2ε+ 8)λn ≤ 4(λn + λ3
n)
(
‖v2
n − xn −

λn
2
w‖) +

〈
u∗2n , w − wn

〉
+
〈
u∗2n , wn

〉
≤ 4(λn + λ3

n)
(
‖v2
n − xn −

λn
2
w‖) + ‖u∗2n ‖‖w − wn‖.

as u∗2 ∈ Nβ(C;u2
n). Passing to the limit on n and taking into account that

‖u∗2n ‖ ≤ 1 + λ2
n + λ4

n and v2
n − xn − λn

2 w converges to 0 we receive ε ≤ 0 which
is contradiction.�

We know that if there is on X a β-differentiable Lipschitz bump function then
there is also on X × X a β-differentiable Lipschitz bump function, therefore
according to Proposition 2.3, X ×X is ∂β-trusted. So the following corollary is
a direct consequence of Theorem 4.1.

Corollary 4.2 Assume that there is on X a β-differentiable Lipschitz bump
function. Then for any closed subset C of X containing x

lim inf
x′

C→x
Tβ(C;x′) ⊂ Tc(C;x).

We recall that if X admits an equivalent β-differentiable norm (at all nonzero
points), then there is on X a β-differentiable Lipschitz bump function [18]. Note
that the reverse is not true. Haydon [12] constructed a nonseparable Banach
space that has Fréchet differentiable Lipschitz bump function but doesn’t admit
an equivalent Gâteaux differentiable norm.

Corollary 4.3 ([3]) Let X be a Banach space with a norm which is β-differentiable
away from the origin. Let C be a closed subset of X. Then for any x ∈ C we
have

lim inf
x′

C→x
Tβ(C;x′) ⊂ Tc(C;x).

The following corollary is an extention of Theorem 3.4 in [4] from spaces with
equivalent Fréchet differentiable norm away from the origin to Asplund spaces
and without the weak compcatness assumption on the set C. We recall that
WK(C;x) denotes the weak-contingent cone to C at x.
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Corollary 4.4 ([15]) Let X be Asplund space and C be a closed subset of X.
Then for any x ∈ C we have

lim inf
x′

C→x
c̄o(WK(C;x′)) ⊂ Tc(C;x).

Proof. Borwein and Strojwas [4] proved that for any closed subset C of X and
x ∈ C

NF (C;x) ⊂ (WK(C;x))◦.

Therefore
c̄o(WK(C;x)) ⊂ TF (C;x).

On the other hand since X is Asplund thus X×X is also Asplund and therefore
according to the Proposition 2.3 trusted for the Fréchet subdifferetnial. By
Theorem 4.1 we receive that

lim inf
x′

C→x
TF (C;x) ⊂ Tc(C;x),

and therefore
lim inf
x′

C→x
c̄o(WK(C;x)) ⊂ Tc(C;x).

The proof is completed.�

To end up this section, we give an extention of Theorem 5.4 in [5] where
lower semicontinuity (LSC) of a multivalued mapping is involved. A multivalued
mapping F : C ⇒ X is said to be lower semicontinuous at x ∈ C if

F (x) ⊂ lim inf
x′

C→x
F (x′)

and is LSC on C if it is LSC at each point x in C.

Theorem 4.5 Let (X, ‖·‖) be a Banach space, β be a bornology on X containing
the Hadamard bornology such that X×X is ∂β-trusted and C be a closed subset
of X. Suppose that F : C ⇒ X is LSC on C. Then the following statements
are equivalent:

(i) F (x) ⊂ Tc(C;x), for all x ∈ C,

(ii) F (x) ⊂ Tβ(C;x), for all x ∈ C.

Proof (ii)⇒ (i) Follows from the lower semicontinuity of F and Theorem 4.1.
(i) ⇒ (ii) : Since Tc(C;x) ⊂ TH(C;x), our hypothesis on the bornology β
ensures that Tc(C;x) ⊂ coK(C;x) = TH(C;x) ⊂ Tβ(C;x) and so (i) implies
(ii). �
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Remark 4.6

• Statement (2) in Theorem 5.4 in [5] is extended from refelexive Banach
spaces to Asplund spaces.

• The weak compactness assumptions and the smoothness of an equivalent
norm (resp. the Fréchet differentiability of an equivalent norm) off zero
assumed in the statement (4) (resp. (5)) of Theorem 5.4 in [5] are weak-
ened by assuming that the space admits a Gâteaux differentiable lipschitz
bump function (resp. the space is Asplund) and the set is closed.

5 The ”lim inf” formula as a characterization of
Asplund spaces

We begin by recalling that X is an Asplund space if every continuous convex
function on any open convex subset U of X is Fréchet differentiable at the points
of a dense Gδ subset of U .
A well known theorem of Fabian and Mordukhovich [10] affirms that the space
X is Asplund if and only if for every closed set C ⊂ X and every x̄ ∈ C one has
the limiting representation

N(C; x̄) = lim sup
x→x̄

NF (C;x)

where N(x̄;C) denotes the limiting normal cone of C at x̄. Here, we give a
characterization of Asplund spaces by mean of the ”liminf” formula.

Theorem 5.1 A Banach space X is Asplund if and only if for every closed set
C in it and every x ∈ C, the following inclusion holds

lim inf
x′

C→x
TF (C;x′) ⊂ Tc(C;x).

Proof. (a) ⇒ (b): We know that if X is Asplund space then X × X is also
Asplund space. According to (c) of Proposition 2.4 X×X is trusted for Fréchet
subdifferential. Theorem 4.1 asserts that

lim inf
x′

C→x
TF (C;x′) ⊂ Tc(C;x),

for any set C ⊂ X and x ∈ C.

(b)⇒ (a): Suppose that X is not Asplund space then it is known [7] that there is
an equivalent norm on X which is nowhere Fréchet differentiable. Therefore by
Proposition 3.4 NF (C1;x) = {0} for all x ∈ C1, where C1 = {z ∈ X : ‖z‖ ≥ 1}.
Thus TF (C1;x) = X for all x ∈ C1 and

X = lim inf
x′

C1→x
TF (C1;x′) ⊂ Tc(C1;x).

This is in contradiction with Tc(C1;x) ⊂ K(C1, x) 6= X (see Proposition 3.1
(c)).�
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6 Convexity of Pseudoconvex sets

Let C be a set in a Banach space X and let x ∈ C. Let R(C;x) denotes one of
the cones Tc(C;x), Tβ(C;x), K(C;x), . . .. We say that C is R-pseudoconvex
at x if

C − x ⊂ R(C;x).

We say that C is R-pseudoconvex if the last inclusion holds for every x ∈ C.
Concerning this notion, Borwein and Strojwas [5] established the following result
concerning the equivalence between convexity and R-pseudoconvexity. For the
sake of completeness, we include its proof which is slightly different than that
given in [5].

Theorem 6.1 [5] For a closed set C in a Banach space X TFAE : (i) C is
convex; (ii) C is Tc-pseudoconvex; (iii) C is K-pseudoconvex.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are obvious.
(iii)⇒ (i) : By Treiman Theorem ([20]-[21]) we receive that Tc-pseudoconvexity
coincide with K-pseudoconvexity. Suppose that C is Tc-pseudoconvex, that is
C − x ⊂ Tc(C;x) for all x ∈ C. If C is not convex, then there exist distinct
u, v ∈ C such that ]u, v[∩C = ∅. Let w ∈]u, v[ and consider the function
f(x) = ‖x− w‖. For every n ∈ N find un ∈ C such that

‖un − w‖ ≤ inf
x∈C
‖x− w‖+

1

n2
. (6.1)

By Ekeland’s variational principle, there exists xn ∈ C such that

‖xn − un‖ ≤
1

n
(6.2)

and

f(xn) ≤ f(x) +
1

n
‖x− xn‖ ∀x ∈ C.

This later one ensures that xn is a local minimum of the function

x 7→ (1 +
1

n
)dC(x) + ‖x− w‖+

1

n
‖x− xn‖

and hence

0 ∈ (1 +
1

n
)∂dC(xn) + ∂‖ · −w‖(xn) +

1

n
∂‖ · −xn‖(xn).

Since xn 6= w, there exists x∗n ∈ ∂‖ · −w‖(xn) and b∗n ∈ 1
n∂‖ · −xn‖(xn) such

that

‖x∗n‖ = 1, 〈x∗n, xn − w〉 = ‖xn − w‖, −x
∗
n + b∗n
1 + 1

n

∈ ∂dC(xn) = Nc(C;xn).

By Tc-pseudoconvexity, we get

〈−x
∗
n + b∗n
1 + 1

n

, x− xn〉 ≤ 0 ∀x ∈ C
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or equivalently

〈−x
∗
n + b∗n
1 + 1

n

, w − xn〉 ≤ 〈
x∗n + b∗n
1 + 1

n

, x− w〉 ∀x ∈ C. (6.3)

Remark that

〈−x
∗
n + b∗n
1 + 1

n

, w − xn〉 =
1

1 + 1
n

[〈−x∗n, w − xn〉+ 〈−b∗n, w − xn〉]

=
1

1 + 1
n

‖xn − w‖+
1

1 + 1
n

〈−b∗n, w − xn〉

≥ 1

1 + 1
n

dC(w) +
1

1 + 1
n

〈−b∗n, w − xn〉

and, by (6.1) and (6.2), 〈−b∗n, w − xn〉 → 0. Thus extracting subnet, we may

assume that x∗n
w∗→x∗, with ‖x∗‖ ≤ 1, and, by relation (6.3), we obtain

dC(w) ≤ 〈x∗, x− w〉 ∀x ∈ C.

In particular this later one holds for x = u and x = v, and hence on all the
segment [u, v] and particularly for x = w. Thus dC(w) ≤ 0 and the closeness of
C ensures that w ∈ C and this is in contradiction with ]u,w[∩C = ∅.�

Here we give another result in terms of the Tβ-pseudoconvexity.

Theorem 6.2 Let (X, ‖ ‖) be a Banach space and β be a bornology on X. If
X ×X is ∂β-trusted then

a closed set C ⊂ X is Tβ-pseudoconvex if and only if it is convex.

Proof. If C is Tβ-pseudoconvex then

C − x ⊂ Tβ(C;x), ∀x ∈ C,

and hence
lim inf
x′

C→x
Tβ(C;x′) ⊂ Tc(C;x).

By Theorem 4.1 we obtain that

C − x = lim
x′→x

(C − x′) ⊂ lim inf
x′

C→x
Tβ(C;x′) ⊂ Tc(C;x),

and therefore by Theorem 6.1 C is convex.�

Using Proposition 2.3, we obtain the following corollaries.

Corollary 6.3 Let (X, ‖ ‖) be a Banach space and β be a bornology on X. If
there is on X a β-differentiable Lipschitz bump function then

C is Tβ-pseudoconvex if and only if C is convex.
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Corollary 6.4 Assume that X is an Asplund space and C is a closed subset of
X. Then

C is coWK-pseudoconvex if and only if C is convex.

Proof. It is direct from Theorem 6.2 and Proposition 2.3.�
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