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CHAIN RULES FOR CODERIVATIVES

OF MULTIVALUED MAPPINGS IN BANACH SPACES

A. JOURANI AND L. THIBAULT

(Communicated by Dale Alspach)

Abstract. Our basic object in this paper is to establish calculus rules for
coderivatives of multivalued mappings between Banach spaces. We consider
the coderivative which is associated to some geometrical approximate subdif-
ferential for functions.

1. Introduction

In his paper [12] B.S. Mordukhovich developed several calculus rules for coderiva-
tives of sum and composition of multivalued mappings (and also other opera-
tions). He has given many applications in optimization and control problems where
coderivatives of multivalued mappings have to be considered in a natural way, and
he has related the concept of coderivatives to the study of generalized equations.
All the results are proved for finite dimensional spaces and are strongly based on an
extremal principle for local extremal points of a system of two sets. This extremal
principle was introduced and used by the author in [10] to prove calculus rules for
subdifferentials of functions.

The aim of this paper is to establish calculus rules for coderivatives of multivalued
mappings between general Banach spaces. We consider the coderivatives which
are associated to some geometric approximate subdifferential for functions. This
concept of geometric approximate subdifferential has been discovered by Ioffe [2]-
[3], who showed that it is a good extension to the infinite dimensional setting of
the Mordukhovich subdifferential. Our method is quite simple and is completely
different from that of [12].

2. Preliminaries

Throughout the paper X, Y and Z will be Banach spaces, X∗, Y ∗ and Z∗ their
topological duals equipped with the weak-star topology w∗. We will denote by BX

the closed unit ball of X and by d(·, S) the distance function to a subset S of X ,

d(x, S) = inf
u∈S

‖x− u‖.
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We will write x
f→x0 and x

S→x0 to express x→ x0 with f(x) → f(x0) and x→ x0

with x ∈ S, respectively, and we will denote by GrF the graph of a multivalued
mapping F : X ⇒ Y, i.e.,

GrF = {(x, y) : y ∈ F (x)}.
If not otherwise specified, the norm in a product of two Banach spaces is defined
by ‖(a, b)‖ = ‖a‖+ ‖b‖.

We will use the notations in Ioffe [4]-[5].
Let f : X → R ∪ {+∞} be a lower semicontinuous function in a neighbourhood

of x0 ∈ X with f(x0) < ∞. The approximate subdifferential (see Ioffe [4]-[5]),
which is an extension to the context of Banach spaces of the concept introduced by
Mordukhovich [10]-[12] for finite dimensional spaces, is defined by

∂Af(x0) =
⋂

L∈F(X)

lim sup
x
f→xo

∂−fx+L(x),

where

∂− f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h), ∀h ∈ X},

d− f(x;h) = lim inf
u→h
t↓0

t−1(f(x+ tu)− f(x)).

Here, for S ⊂ X, fS denotes the function defined by

fS(x) =

{
f(x) if x ∈ S,

+∞ otherwise,

F(X) is the family of all finite dimensional subspaces of X , and

lim sup
x
f→xo

∂−fx+L(x) = {x∗ ∈ X∗ : x∗ = w∗ − lim x∗i , x
∗
i ∈ ∂fxi+L(xi), xi

f→x0},

that is, the set of w∗−limits of all such nets.
The approximate coderivative of a multivalued mapping F : X ⇒ Y at a point

(x0, y0) of its graph GrF is the multivalued mapping D∗F (x0, y0) : Y ∗ ⇒ X∗

defined by

D∗F (x0, y0)(y
∗) = {x∗ : (x∗,−y∗) ∈ R+∂Ad(x0, y0;GrF )}.

For the distance function and for

∂−ε f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h) + ε‖h‖ ∀h},
Ioffe [5] has given the following result.

Lemma 2.1. Let C be a closed subset of X containing x0. Then

∂Ad(x0, C) =
⋂

L∈F(X)

lim sup
x
C→xo
ε↓0

∂−ε dx+L(x,C) ∩ (1 + ε)BX∗ .

Before stating Proposition 2.2, which will be one of the main tools of section 3,
let us recall the following notion by Borwein and Strojwas [1]. A set S ⊂ X is said
to be compactly epi-Lipschitzian at x0 ∈ S if there exist γ > 0 and a ‖‖−compact
set H ⊂ X such that

S ∩ (x0 + γBX) + tγBX ⊂ S − tH, for all t ∈]0, γ[.
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We recall also that, following Jourani and Thibault [9], a multivalued mapping
F : X ⇒ Y is partially coderivatively compact at (x0, y0) ∈ GrF if the following
condition is satisfied:

if there exist nets (xi, yi)
GrF→ (x0, y0) and

(x∗i , y
∗
i ) ∈ R+∂Ad(xi, yi, GrF ) such that ‖x∗i ‖ → 0 and y∗i → 0,

then ‖y∗i ‖ → 0.

Proposition 2.2 ([7]-[9]). Let C and D be two closed subsets of X with x0 ∈
C ∩D. Consider the following assertions:

(a) D is compactly epi-Lipschitzian at x0 and ∂Ad(x0, C)∩(−∂Ad(x0, D)) = {0};
(b) the multivalued mapping F : X ⇒ X defined by

F (x) =

{
−x+D if x ∈ C,

∅ otherwise,

is partially coderivatively compact at (x0, 0), and kerD∗F (x0, 0) = {0};
(c) there exist a > 0 and r > 0 such that

d(x,C ∩D) ≤ a[d(x,C) + d(x,D)]

for all x ∈ x0 + rBX ;
(d) there exists b > 0 such that

∂Ad(x0, C ∩D) ⊂ b[∂Ad(x0, C) + ∂Ad(x0, D)].

Then (a) =⇒ (b) =⇒ (c) =⇒ (d).

3. Chain rules

In this section we are going to prove a general chain rule for multivalued map-
pings, and we will show how other formulas may be derived from it.

Theorem 3.1. Let G : X ⇒ Y and F : Y ⇒ Z be two multivalued mappings, and
(x0, z0) ∈ GrF ◦G. Suppose that the following assumptions are fulfilled:

i) For each y0 ∈ G(x0) ∩ F−1(z0) there are a > 0 and r > 0 such that

d(x, y, z,GrG× Z ∩X ×GrF ) ≤ a[d(x, y,GrG) + d(y, z,GrF )]

for all (x, y, z) ∈ (x0, y0, z0) + rBX×Y×Z .
ii) For any net ((xi, zi)) of Gr(F ◦G) converging to (x0, z0) there exist some net

(yi) with yi ∈ G(xi) ∩ F−1(zi) and some point y0 ∈ G(x0) ∩ F−1(z0) which is a
cluster point of (yi).

Then for all z∗ ∈ Z∗

D∗(F ◦G)(x0, z0)(z
∗) ⊂

⋃
y0∈G(x0)∩F−1(z0)

D∗G(x0, y0) ◦D∗F (y0, z0)(z
∗).

Proof. Set C = GrG× Z and D = X ×GrF . We start by showing that

{
if (x∗, z∗) ∈ ∂Ad(x0, z0, Gr(F ◦G)) then there exists y0 ∈ G(x0) ∩ F−1(z0)

such that (x∗, 0, z∗) ∈ ∂Ad(x0, y0, z0, C ∩D).

(3.1)

Fix any (x∗, z∗) ∈ ∂Ad(x0, z0, Gr(F ◦G)), and put S = cl(Gr(F ◦G)). Then for each

L = L1×L2 ∈ F(X)×F(Z), by Lemma 2.1, there are nets (ui,L, vi,L)i
S−→(x0, z0),
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(εi,L)i −→ 0+ with 2εi,L < 1, (x∗i,L)i
w∗−→x∗ and (z∗i,L)i

w∗−→ z∗ such that for j :=

(i, L) in J := I ×F(X)×F(Z)

(x∗j , z
∗
j ) ∈ ∂−εjf(uj,vj)+L(uj , vj) and ||(x∗j , z∗j )|| ≤ 1 + εj ,

where f(x, z) = d(x, z, S). So from Lemma 1 in [3] and Proposition 2.4.3 in [2], we
get some rj ∈]0, 1

3εj [ such that the function

(x, z) 7−→ f(x, z)−〈x∗j , x− uj〉 − 〈z∗j , z − vj〉
+ 2εj(||x − uj||+ ||z − vj ||) + 3d(x− uj, z − vj , L)(3.2)

attains a minimum at (uj , vj) over (uj , vj) + 3rjBX×Z . Take (x′j , z
′
j) ∈ Gr(F ◦G)

with ||(x′j , z′j) − (uj , vj)|| ≤ r2j . Choose by condition ii) some isotone mapping

k 7−→ α(k) = (ik, Lk) from some directd set K into J (directed in the standard
way) and some net y′j ∈ G(x′j) ∩ F−1(z′j) with (y′α(k)) converging to some y0 ∈
G(x0) ∩ F−1(z0). Putting

ϕj(x, y, z) = d(x, y, z, C ∩D)− 〈x∗j , x− x′j〉 − 〈z∗j , z − z′j〉
+ 2εj(||x− x′j ||+ ||z − z′j ||) + 3d(x− x′j , z − z′j, L)

for j = (i, L) and using (3.2), one obtains ϕj(x
′
j , y

′
j, z

′
j) ≤ ϕj(x, y, z) + 7r2j for

all (x, y, z) in (x′j , y
′
j , z

′
j) + 2rjB. By Ekeland’s variational principle there exists

(xj , yj , zj) in (x′j , y
′
j , z

′
j) + rjB such that for all (x, y, z) in (x′j , y

′
j , z

′
j) + 2rjB one

has

ϕj(xj , yj , zj) ≤ ϕj(x, y, z) + 7rj(||x− xj ||+ ||y − yj ||+ ||z − zj||).
Therefore for sk := 2εα(k) + 7rα(k) one gets

(x∗α(k), 0, z
∗
α(k)) ∈ ∂Ad(xα(k), yα(k), zα(k), C ∩D) + skB + (L1

k)
⊥ × {0} × (L2

k)
⊥,

and hence (x∗, 0, z∗) ∈ ∂Ad(x0, y0, z0, C ∩D).
Consider now z∗ ∈ Z∗ and x∗ ∈ D∗(F ◦G)(x0, z0)(z

∗). Choose r > 0 such that
r(x∗,−z∗) ∈ ∂Ad(x0, z0, Gr(F ◦ G)). By (3.1) there exists y0 ∈ G(x0) ∩ F−1(z0)
such that r(x∗, 0,−z∗) ∈ ∂d(x0, y0, z0, C ∩ D). So the result follows by applying
Proposition 2.2 and the obvious equalities

∂Ad(x0, y0, z0, C) = ∂Ad(x0, y0, GrG) × {0}
and

∂Ad(x0, y0, z0, D) = {0} × ∂Ad(y0, z0, GrF ).

We consider an important corollary of Theorem 3.1 that gives more verifiable
conditions.

Corollary 3.2. Let G : X ⇒ Y and F : Y ⇒ Z be two multivalued mappings
with closed graphs. Suppose that, in addition to ii) in Theorem 3.1, the following
assumptions are fulfilled:

i′) For each y0 ∈ G(x0) ∩ F−1(z0) the set GrF (or GrG) is compactly epi-
Lipschitzian at (y0, z0) (resp. (x0, y0)).

iii) For all y0 ∈ G(x0) ∩ F−1(z0)

[y∗ ∈ D∗F (y0, z0)(0) and 0 ∈ D∗G(x0, y0)(y
∗)] =⇒ y∗ = 0.

Then the conclusion of Theorem 3.1 is valid.
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Proof. Set C = GrG×Z and D = X×GrF and consider the multivalued mapping
M : X × Y × Z ⇒ X × Y × Z defined by

M(x, y, z) =

{
−(x, y, z) +D if (x, y, z) ∈ C,

∅ otherwise.

The proof is concluded by applying Proposition 2.2 and Theorem 3.1.

Another consequence of this theorem is the following result concerning the convex
case.

Corollary 3.3. Let G : X ⇒ Y and F : Y ⇒ Z be two multivalued mappings with
closed and convex graphs. Suppose that condition ii) of Theorem 3.1 is satisfied
and that

0 ∈ int(GrG × Z −X ×GrF ).

Then the conclusion of Theorem 3.1 is valid.

Proof . Consider the multivalued mapping M : X × Y × Z ⇒ X × Y × Z defined
by

M(x, y, z) =

{
−(x, y, z) +X ×GrF if (x, y, z) ∈ GrG × Z,

∅ otherwise.

Then GrM is closed and convex, and 0 ∈ int Φ(X×Y ×Z). So, by Proposition 4.2
in [9], M is partially coderivatively compact at all points (x0, y0, z0, 0) satisfying
y0 ∈ G(x0)∩F−1(z0), and the proof can be completed by applying Proposition 2.2
and Theorem 3.1.

Now we use Theorem 3.1 to obtain calculus rules for the sum of two multivalued
mappings.

Theorem 3.4. Let F1, F2 : X ⇒ Y be two multivalued mappings with closed
graphs, and let z0 ∈ F1(x0) + F2(x0). Suppose that the following conditions are
satisfied:

i′) GrF1 is compactly epi-Lipschitzian at all points (x0, z0 − y0) ∈ GrF1 with
y0 ∈ F2(x0).

ii′) For any net (xi, zi)
Gr(F1+F2)−→ (x0, z0) there exist convergent subnets (vα(j)) and

(wα(j)) such that zα(j) = vα(j) + wα(j), vα(j) ∈ F1(xα(j)) and wα(j) ∈ F2(xα(j)).
iii) For all y0 ∈ F2(x0) with z0 − y0 ∈ F1(x0),

D∗F1(x0, z0 − y0)(0) ∩ (−D∗F2(x0, y0)(0)) = {0}.
Then for A(x0, z0) = {y0 ∈ F2(x0) : z0 − y0 ∈ F1(x0)} we have for all y∗ ∈ Y ∗

D∗(F1 + F2)(x0, z0)(y
∗) ⊂

⋃
y0∈A(x0,z0)

D∗F1(x0, z0 − y0)(y
∗) +D∗F2(x0, y0)(y

∗).

The proof of this theorem will be derived from Theorem 3.1 and the following
lemma.

Lemma 3.5. Let F1, F2 : X ⇒ Y be two multivalued mappings, and consider the
multivalued mappings F and G defined by

F (x, y) = y + F1(x), G(x) = {x} × F2(x)).
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Then for y0 ∈ F2(x0) with z0 − y0 ∈ F1(x0) we have

(x∗, y∗, z∗) ∈ ∂Ad(x0, y0, z0, GrF ) =⇒ y∗ = −z∗, (x∗, z∗) ∈ ∂Ad(x0, z0 − y0, GrF1)

(3.3)

and

(x∗, u∗, z∗) ∈ ∂Ad(x0, x0, y0, GrG) =⇒ (x∗ + u∗, z∗) ∈ 2∂Ad(x0, y0, GrF2).(3.4)

Proof. Using the fact that (u, y, v + y) ∈ GrF whenever (u, v) ∈ GrF1, it is not
difficult to see that

d(x, y, z,GrF ) ≤ d(x, z − y,GrF1)

for all (x, y, z) ∈ X × Y × Y . Then for each (x, y, z) ∈ cl(GrG), f := d(., GrF ) and
f1 := d(., GrF1) one has for any (u, v, w) ∈ X × Y × Y

d−f(x, y, z);u, v, w) ≤ d−f1(x, z − y;u,w − v).

So (3.3) easily follows from this inequality and Lemma 2.1.
As d(x, x, z,GrG) ≤ 2d(x, z,GrF2) for all (x, z) ∈ X × Y (as easily seen), one

obtains (3.4) in a similar way.

Proof of Theorem 3.4. Let F and G be as in Lemma 3.5. Then y ∈ (F1 + F2)(x)
iff y ∈ (F ◦G)(x). We easily show that F and G satisfy i), ii) and iii) of Theorem
3.1 with Y replaced by X × Y and Z by Y . So let

y∗ ∈ Y ∗ and x∗ ∈ D∗(F1 + F2)(x0, z0)(y
∗).

Then, by Theorem 3.1, there exist

(u0, y0) ∈ G(x0) ∩ F−1(z0) and (u∗, v∗) ∈ D∗F (x0, y0, z0)(y
∗)

such that x∗ ∈ D∗G(x0, u0, y0)(u
∗, v∗). Thus there exist r1 > 0 and r2 > 0 such

that

r1(u
∗, v∗,−y∗) ∈ ∂Ad(x0, y0, z0, GrF )

and

r2(x
∗,−u∗,−v∗) ∈ ∂Ad(x0, u0, y0, GrG).

By Lemma 3.5 r1(u
∗,−y∗) ∈ ∂Ad(x0, z0 − y0, GrF1), v

∗ = y∗ and

2−1r2(x
∗ − u∗,−v∗) ∈ ∂Ad(x0, y0, GrF2)

(because u0 = x0). So we obtain

x∗ − u∗ ∈ D∗F2(x0, y0)(y
∗) and u∗ ∈ D∗F1(x0, z0 − y0)(y

∗).

Note that these calculus rules can be used to obtain subdifferential calculus for
sums and compositions of mappings. This allows us to deduce the results in Ioffe
[3]-[5], Mordukhovich [10]-[12], Jourani and Thibault [8] and Jourani [6].

For other applications to calculus rules, the reader can easily use Theorem 3.1
to get estimates of the coderivative of a multivalued mapping given, for instance,
by f(x)F (x) := {f(x)y : y ∈ F (x)}, where f is a real-valued mapping defined on
X and F is a multivalued mapping from X into Y . Many other examples can be
considered.

We give another important application in a simple setting. More general cases
will be treated in a forthcoming paper.
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Corollary 3.6. Let G : X ⇒ Y be a multivalued mapping with closed graph and
g : Y → Rp a locally Lipschitzian mapping. Suppose that G satisfies ii) of Theorem
3.1 for F (y) = g(y) + Rp

+ and also that for any y0 ∈ G(x0) ∩ g−1(z0 − Rp
+)

Rp
+ ∩ kerD∗G(x0, y0) ◦D∗g(y0) = {0}.

Then there are a > 0 and r > 0 such that

d(x, (g ◦G)−1(z − Rp
+)) ≤ ad(z, g ◦G(x) + Rp

+)

for all x ∈ (x0 + rBX) and z ∈ z0 + rBRp , with d(z, g ◦G(x) + Rp
+) ≤ r. (Here for

a multivalued mapping M , M−1(S) = {u : S ∩M(u) 6= ∅}.)
Proof. It suffices to apply Corollary 3.2 and Corollary 5.4 in [7].

After we completed this work, we received the paper [13] by Mordukhovich and
Shao, which treats, by other methods in the spirit of [11] and [12], chain rules for
limiting Fréchet coderivatives of multivalued mappings in Asplund spaces.
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