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Abstract

The main objective of this work is to study the existence of Lagrange multipliers
for infinite dimensional problems under Gâteaux differentiability assumptions on
the data. Our investigation follows two main steps: the proof of the existence of
Lagrange multipliers under a calmness assumption on the constraints and the study
of sufficient conditions, which only use the Gâteaux derivative of the function defining
the constraint, that ensure this assumption.

We apply the abstract results to show directly the existence of Lagrange multi-
pliers of two classes of standard stochastic optimal control problems.
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1 Introduction

Consider the following optimization problem

min{f(x) ; g(x) ∈ D}, (1.1)

where f : X → R and g : X → Y are (for simplicity of the exposition) differentiable
mappings, X and Y are Banach spaces and D ⊆ Y is nonempty. In the case where Y is
finite dimensional the following result holds for any closed set D: if x0 is a local solution
to (P ), then there exist λ ≥ 0 and y∗ ∈ N(D, g(x0)) such that

(λ, y∗) 6= (0, 0), (1.2)

λf ′(x0) + y∗ ◦ g′(x0) = 0. (1.3)

Here N(D, g(x0)) denotes some normal cone to D at g(x0) (say, for instance, the Clarke
normal cone, the approximate normal cone, etc..).
The following example proposed by Brokate in [10, Section 2] shows that the previous
result is no longer true in the infinite dimensional case.

Example 1 Let X = Y = `2 be the Hilbert space of square summable real sequences.
Denote by (ek)k≥1 the canonical orthonormal base of `2 and consider the operator A :
`2 → `2 defined by

A

∑
i≥1

xiei

 =
∑
i≥1

21−ixiei.
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France (Abderrahim.Jourani@u-bourgogne.fr).
†Institut de recherche XLIM-DMI, UMR-CNRS 7252, Université de Limoges, 87060 Limoges, France
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It is easy to check that A is injective but not surjective and that the image of A, denoted
by Im(A), is a proper dense subspace of `2. As a consequence, the adjoint operator A∗ is
injective but not surjective. Now, let x∗ ∈ `2\Im(A∗) and consider the function f : X → R
defined by f(x) = 〈x∗, x〉, for all x ∈ X, where 〈·, ·〉 denotes the standard scalar product
in `2. Set g := A, and D := {0}. Using this data for problem (1.1), 0 is the only feasible
point and, hence, 0 is the solution of this problem. Using that x∗ ∈ `2 \ Im(A∗), we easily
check that there is no (λ, y∗) 6= (0, 0) satisfying (1.3).

In infinite dimension, most of the authors have assumed that D is a closed convex cone
with a nonempty interior or that D = D1 × {0}, where D1 is a closed convex cone with
a nonempty interior and {0} ⊂ Rn (see [17, 22, 30, 40, 49] and references therein). The
first result which gives a condition for the validity of (1.2)-(1.3) in the case where D is
closed is due to Jourani and Thibault [34], where it is assumed that the system g(x) ∈ D
is metrically regular (see [14, 29] and the references therein for a systematic study of this
property). This condition is expressed metrically in terms of g and D and implies that
λ can be taken different from zero. In [32], it is shown that relations (1.2)-(1.3) subsist
in the case where f is vector-valued and D is epi-Lipschitz-like in the sense of Borwein
(see [9]). In [35, 36], the authors gave general conditions ensuring (1.2) and (1.3). More
precisely, let x0 be a local solution to problem (P ) and suppose that f and g are locally
Lipschitz mappings at x0, with g strongly compactly Lipschitz at x0 (see [34]). Denote
by ∂Ad(u,D) the approximate subdifferential of d(·, D) at u (see [26, 27]) and assume the
existence of a locally compact cone K∗ ⊂ Y ∗ and a neighbourhood V of g(x0) such that

∂Ad(u,D) ⊂ K∗, ∀ u ∈ V ∩D,

or equivalently (see [28]), D is compactly epi-Lipschitzian in the sense of Borwein-Strojwas
[8]. Then, there exist λ ≥ 0 and y∗ ∈ R+∂Ad(g(x0), D), with (λ, y∗) 6= (0, 0), such that

λ∂Af(x0) + ∂A(y∗ ◦ g)(x0) 3 0.

In order to ensure the existence of Lagrange multipliers (i.e. λ 6= 0 in (1.3)), several
qualification conditions have been considered in the literature, including the classical ones
as Slater condition, Mangasarian-Fromovitz condition and so on. In this paper, we are
interested in the existence of Lagrange multipliers for problem (1.1), where the problem
is nonconvex, the data is Gâteaux differentiable and the set D is a closed set. These
multipliers are obtained in Theorem 3.1 and in Theorem 3.2 under the so-called calmness
condition (introduced in [48] as pseudo upper-Lipschitz continuity), which is a kind of
constraint qualification, and which is implied by the aforementioned notion of metric
regularity.
Several sufficient conditions for calmness of the constraint system have been considered in
the literature. They are given by using boundary qualification conditions (see [25, 24, 23]
and the references therein) or (directional) coderivative conditions (see [18, 20, 19, 21]
and the references therein). Concerning the stronger notion of metric regularity of the
constraint system, besides the work [34], mentioned above, and which provides some
criteria to ensure this property by means of suitable approximations, several sufficient
conditions already exist in the literature. They are given either in the dual space via the
notion of coderivative (see the monograph by Mordukhovich [41, 42] and the references
therein) or in the primal space by using the notion of tangency (see the monograph by
Aubin and Frankowska [1] and the references therein).
In this article we propose a new qualification condition, written in terms of the Gâteaux
derivative of the function defining the constraint, which ensures that the constraint system
is metrically regular around a nominal point. Inspired by the work by Ekeland [16],
Theorem 4.1 and Theorem 4.3 establish the metric regularity property of the constraint
system under Gâteaux differentiability assumptions only. As in [16], the proofs of these
results do not rely on any iteration scheme.
Our main motivation to prove the existence of Lagrange multipliers under Gâteaux differ-
entiability assumptions on the data arises from stochastic optimal theory. The first appli-
cation of our results deals with first order necessary optimality conditions for stochastic
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optimal control problems in continuous time. Following the functional framework pro-
posed by Backhoff and Silva in [2], our abstract results allow us to provide a direct proof
of the existence of Lagrange multipliers at any local solution of the control problem. Hav-
ing in mind the importance of Lagrange multipliers in sensitivity analysis in optimization
theory (see e.g. [6, Chapter 4]), the study of their existence in stochastic control plays an
important role. As pointed out in [2], the main difficulty in deriving the existence result,
from standard variational principles, is that the smoothness of the equality constraint
that defines the dynamics of the controlled diffusion process is difficult to check. The
results in Sections 3 and 4, which assume only Gâteaux differentiability of the mapping
that defines the constraints and a uniform surjectivity property of the Gâteaux derivative
in a neighbourhood of the optimal solution, allow us to avoid this issue. Moreover, by
means of the identification between Lagrange multipliers and adjoint states, proved in [2],
we recover the weak Pontryagin’s minimum principle proved first in [4] by using different
techniques. A detailed discussion and extensions of this result are provided in Section 5.1.
In the second application, we consider a discrete time stochastic optimal control problem
where the randomness is modelled by a multiplicative independent noise. As in the contin-
uous time case, the main difficulty to apply standard abstract Lagrange multiplier results
comes from the functional equation defining the controlled trajectory. By introducing a
suitable functional framework for the optimization problem and using our abstract results,
we are able to prove in a rather straightforward manner the validity of the optimality sys-
tem obtained in [38] under more general assumptions than those imposed in that article
(see Remark 6.1(i)).
The paper is organized as follows. In the next section we set up the notation and recall
some standard results in nonsmooth analysis. In Section 3, we establish the existence of
Lagrange multipliers for problem (1.1) under the calmness assumption. Next, in Section
4, we provide sufficient conditions, in terms of the Gâteaux derivative of g, for the metric
regularity of the constraint system. Finally, in Sections 5 and 6, we apply these abstract
results to the stochastic control problems described in the previous paragraphs.

2 Notations and preliminaries

In all the paper (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are (real) Banach spaces. The dual spaces of X
and Y are denoted by X∗ and Y ∗, respectively, and for x∗ ∈ X∗, h ∈ X we set 〈x∗, h〉X :=
x∗(h). Given r > 0 and x ∈ X we denote BX(x, r) := {x′ ∈ X ; ‖x′ − x‖X ≤ r} the
closed ball of radius r centered at x. For A ⊆ X we denote by cl(A) and int(A) its closure
and its topological interior, respectively.
Let us recall some basic notions in nonsmooth analysis (see e.g. [11, 6, 41] for a detailed
account of the theory). Given a locally Lipschitz function ϕ : X 7→ R, the directional
derivative ϕ◦(x;h) of ϕ at x in the direction h ∈ X and the subdifferential ∂Cϕ(x) of ϕ
at x are both defined in sense of Clarke as

ϕ◦(x;h) := lim sup
y→x,τ↓0

ϕ(y + τh)− ϕ(y)

τ
,

∂Cϕ(x) := {x∗ ∈ X∗ ; 〈x∗, h〉X ≤ ϕ◦(x;h) ∀ h ∈ X} .

Note that for all x ∈ X, ϕ◦(x; ·) : X 7→ R is well-defined, positively homogeneous,
subadditive, Lipschitz continuous and satisfies that ϕ◦(x; 0) = 0. This implies that ϕ◦(x; ·)
is the support function of ∂Cϕ(x), which is a nonempty, weak∗-compact and convex set
(see [11, Proposition 2.1.2]). Given a nonempty set A ⊆ X, we denote by dA(·) :=
infx∈A ‖ · −x‖X the distance to A function. Given x ∈ cl(A), the Clarke’s tangent cone is
defined as

TA(x) :=

{
h ∈ X : lim

y→x, y∈A, τ→0+

dA(y + τh)

τ
= 0

}
.

If x /∈ cl(A) we set TA(x) := ∅. If x ∈ cl(A), we have that h ∈ TA(x) iff for every sequences
(xn) such that xn ∈ A, xn → x, and τn → 0+ there exists a sequence hn → h such that
xn + τnhn ∈ A for all n large enough. The Clarke’s normal cone to A at x is defined

3



as NA(x) = TA(x)0, where for a given cone K we denote by K0 its negative polar cone,
defined as

K0 := {x∗ ∈ X∗ : 〈x∗, h〉X ≤ 0 ∀ h ∈ K}.
We have (see e.g. [11, Proposition 2.4.2])

NA(x) = w∗-cl
(⋃

λ≥0 λ∂CdA(x)
)
, (2.1)

where w∗-cl denotes the weak-star closure in X∗. The adjacent (or Ursescu) tangent cone
to A at x ∈ cl(A) is defined by

T (A, x) =

{
h ∈ X : lim

τ→0+

dA(x+ τh)

τ
= 0

}
.

We set T (A, x) := ∅ if x /∈ cl(A). By definition, if x ∈ cl(A) then h ∈ T (A, x)
iff for any sequence τn → 0+ there exists a sequence hn → h such that x + τnhn ∈
A for all n sufficiently large.
Finally, the contingent (or Bouligand) tangent cone to A at x ∈ cl(A) is defined as

K(A, x) :=
{
h ∈ X : d−A(x;h) = 0

}
,

where d−A(x;h) is the lower Dini directional derivative of dA at x in the direction h, that
is,

d−A(x;h) := lim inf
τ→0+

dA(x+ τh)

τ
.

We set K(A, x) := ∅ if x /∈ cl(A). By definition, if x ∈ cl(A) then h ∈ K(A, x) iff there
exist sequences τn → 0+ and hn → h such that x+τnhn ∈ A for n sufficiently large. Note
that

TA(x) ⊆ T (A, x) ⊆ K(A, x).

If A is convex, then the previous tangent cones coincide. In the general case these cones
are closed, they differ and only TA(x) is guaranteed to be convex.
We say that A is tangentially regular at x if

K(A, x) = T (A, x). (2.2)

For later use, we state the following result whose proof can be easily deduced from the
previous definitions.

Lemma 2.1 Let A ⊂ X and B ⊂ Y be closed sets and let x0 ∈ A and y0 ∈ B. The space
X × Y is endowed with the product norm, that is, ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y . Then

(i) K(A × B, (x0, y0)) ⊂ K(A, x0) ×K(B, y0). The equality holds whenever A is tan-
gentially regular at x0 or B is tangentially regular at y0.

(ii) For all h ∈ X and k ∈ Y , d−A×B((x0, y0), (h, k)) ≤ d−A(x0, h) + d0
B(y0, k).

(iii) If A is tangentially regular at x0 or B is tangentially regular at y0, then for all
h ∈ X and k ∈ Y ,

d−A×B((x0, y0), (h, k)) ≤ dK(A,x0)(h) + dK(B,y0)(k).

Recall that g : X → Y is said Gâteaux differentiable at x0 ∈ X (see e.g. [11, Section 2.2])
if there exists a bounded linear operator1 Dg(x0) : X → Y such that

lim
τ↓0

g(x0 + τh)− g(x0)

τ
= Dg(x0)h ∀ h ∈ X.

To end up this section, we sate the following lemma, first proved in [46, Lemma 1]. For
the sake of completeness, we provide a short proof based on the separation theorem.

1Some authors drop the linearity requirement in this definition.
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Lemma 2.2 Let A ⊂ X be a closed convex set and let s > 0 and r ∈]0, s[. Then the
following implication holds

BX(0, s) ⊂ A+BX(0, r) =⇒ BX(0, s− r) ⊂ A.

Proof. Let x ∈ BX(0, s− r). Suppose that x /∈ A. Then, by a separation theorem, there
exist x∗ ∈ X∗, with ‖x∗‖X∗ = 1, and α ∈ R such that

〈x∗, x〉X > α ≥ 〈x∗, u〉X ∀ u ∈ A.

By assumption, for all z ∈ BX(0, s) there exists b ∈ BX(0, r) such that z + b ∈ A. Thus,

〈x∗, x〉X > α ≥ 〈x∗, z + b〉X ≥ 〈x∗, z〉X − r,

and, hence,
s− r ≥ 〈x∗, x〉X > α ≥ s− r.

This contradiction completes the proof of the lemma.

3 Lagrange multipliers for optimization problems un-
der Gâteaux differentiability assumptions on the data

This section is concerned with necessary optimality conditions or existence of Lagrange
multipliers associated to local solutions of optimization problems of the form{

min f(x)

s.t. g(x) = 0, x ∈ C,
(3.1)

where f : X 7→ R∪{+∞} is function, g : X 7→ Y is a mapping from a (real) Banach space
(X, ‖ · ‖X) to a (real) Banach space (Y, ‖ · ‖Y ), and C is a nonempty closed subset of X.
Suppose that x0 is a local solution to problem (3.1). Let us state now our basic assump-
tions that will allow us to establish first order optimality conditions at x0.

(Hf ) f is Gâteaux differentiable at x0 and locally Lipschitz around x0 with constant
Kf > 0, that is, there exists r > 0 such that

|f(x)− f(x′)| ≤ Kf‖x− x′‖X ∀ x, x′ ∈ BX(x0, r).

(Hg) g is Gâteaux differentiable at x0.

If (Hg) holds true, we will denote by D∗g(x0) : Y ∗ → X∗ the adjoint operator of Dg(x0).
We recall that the system

x ∈ C and g(x) = 0, (3.2)

is said to be calm at x0 ∈ g−1(0) ∩ C if there exist a > 0 and s > 0 such that

dg−1(0)∩C(x) ≤ a‖g(x)‖Y ∀ x ∈ BX(x0, s) ∩ C. (3.3)

The following result gives existence of Lagrange multipliers for problem (3.1) under the
calmness condition (3.3) and the weak differentiability assumptions (Hf )-(Hg).

Theorem 3.1 Suppose that (Hf )-(Hg) hold and that system (3.2) is calm at x0. Let Kf

and a be as in (Hf ) and (3.3), respectively. Then

(i) if x0 ∈ int(C), then there exists y∗ ∈ Y ∗, with ‖y∗‖Y ∗ ≤ Kfa, such that

Df(x0) +D∗g(x0)y∗ = 0.
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(ii) If g is locally Lipschitz around x0 with constant Kg > 0, then

Df(x0)h+Kfa‖Dg(x0)h‖Y +Kf (1 +Kga)d−C(x0;h) ≥ 0 ∀ h ∈ X. (3.4)

In particular, there exists y∗ ∈ Y ∗, with ‖y∗‖Y ∗ ≤ Kfa, such that

0 ∈ Df(x0) +D∗g(x0)y∗ +NC(x0).

If, in addition, K(C, x0) is convex then there exists y∗ ∈ Y ∗, with ‖y∗‖Y ∗ ≤ Kfa,
such that

0 ∈ Df(x0) +D∗g(x0)y∗ + (K(C, x0))0.

Proof. Since x0 is a local solution of problem (3.1) and f satisfies (Hf ), by [11, Propo-
sition 2.4.3] we have that x0 is a local minimum of

x ∈ X 7→ f(x) +Kfdg−1(0)∩C(x).

Using the calmness assumption of system (3.2), we get that x0 is a local solution to

min f(x) +Kfa‖g(x)‖Y s.t. x ∈ C. (3.5)

Now, let us prove assertion (i). Since x0 ∈ int(C), there exists s > 0 such that

f(x) +Kfa‖g(x)‖Y ≥ f(x0) ∀ x ∈ BX(x0, s).

Let h ∈ X be arbitrary and choose τ > 0 small enough such that x0 + τh ∈ BX(x0, s).
Then

f(x0 + τh)− f(x0)

τ
+Kfa

∥∥∥∥g(x0 + τh)− g(x0)

τ

∥∥∥∥
Y

≥ 0.

Using that f and g are Gâteaux differentiable at x0, we get

Df(x0)h+Kfa‖Dg(x0)h‖Y ≥ 0.

This means that the convex function h 7→ Df(x0)h+Kfa‖Dg(x0)h‖Y attains its minimum
at h = 0. Thus, the (convex) subdifferential calculus produces a y∗ ∈ Y ∗, with ‖y∗‖Y ∗ ≤
Kfa, such that

Df(x0) +D∗g(x0)y∗ = 0.

In order to prove assertion (ii), note that since x0 solves locally (3.5) and f and g are
locally Lipschitz at x0, by using [11, Proposition 2.4.3] again, we obtain the existence of
s > 0 such that

f(x) +Kfa‖g(x)‖Y +Kf (1 +Kga)dC(x) ≥ f(x0) ∀ x ∈ BX(x0, s).

Let h ∈ X be arbitrary and choose a sequence τn → 0+ such that

d−C(x0;h) = lim
n→+∞

dC(x0 + τnh)

τn
.

Then, using the Gâteaux differentiability of f and g, we get

Df(x0)h+Kfa‖Dg(x0)h‖Y +Kf (1 +Kga)d−C(x0;h) ≥ 0. (3.6)

Noting that d−C(x0;h) ≤ d◦C(x;h), we obtain

Df(x0)h+Kfa‖Dg(x0)h‖Y +Kf (1 +Kga)d◦C(x0;h) ≥ 0 ∀ h ∈ X,

or equivalently the convex function

h ∈ X 7→ Df(x0)h+Kfa‖Dg(x0)h‖Y +Kf (1 +Kga)d◦C(x0, h)
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attains its minimum at h = 0. Using that ∂Cd
◦
C(x0, ·)(0) = ∂CdC(x0) and (2.1), the

(convex) subdifferential calculus produces a y∗ ∈ Y ∗, with ‖y∗‖Y ∗ ≤ Kfa, such that

−Df(x0)−D∗g(x0)y∗ ∈ Kf (1 +Kga)∂dC(x0) ⊂ NC(x0).

So that assertion (ii) follows.
Finally, inequality (3.6) yields

Df(x0)h+Kfa‖Dg(x0)h‖Y ≥ 0 ∀ h ∈ K(C, x0).

Thus, if K(C, x0) is convex, the last assertion in (ii) follows from the convex subdifferential
calculus.

Now consider the following optimization problem{
min f(x)

s.t. g(x) ∈ D, x ∈ C,
(3.7)

and the system

Find x ∈ C, g(x) ∈ D. (3.8)

System (3.8) is said to be calm at x0 ∈ g−1(D) ∩ C if there exist a > 0 and s > 0 such
that

dg−1(D)∩C(x) ≤ adD(g(x)) ∀ x ∈ BX(x0, s) ∩ C. (3.9)

Problem (3.7) can be rephrased as follows

{
min f̃(x, y)

s.t. g̃(x, y) = 0, (x, y) ∈ C ×D,
(3.10)

where f̃(x, y) = f(x) and g̃(x, y) = g(x)− y. Therefore, (3.7) can be written in the form
(3.1). In the following result, we transfer the calmness property of system (3.8) to that of
system

Find (x, y) ∈ C ×D, g̃(x, y) = 0, (3.11)

where the product space X ×Y is endowed with the norm given by the sum of the norms
in X and Y .

Lemma 3.1 Suppose that g is locally Lipschitz around x0 and set y0 := g(x0). Then the
following assertions are equivalent:

(i) The system (3.8) is calm at x0 ∈ g−1(D) ∩ C.

(ii) The system (3.11) is calm at (x0, y0) ∈ C ×D.

Proof. For notational convenience, we omit the subscripts for the norms ‖ ·‖X and ‖ ·‖Y .
(i) ⇒ (ii): Since the system (3.8) is calm at x0 ∈ g−1(D) ∩ C and g is locally Lipschitz
around x0, there exist a > 0, s > 0 and Kg > 0 such that

dg−1(D)∩C(x) ≤ adD(g(x)) ∀ x ∈ BX(x0, 3s) ∩ C,

and
‖g(x)− g(x′)‖ ≤ Kg‖x− x′‖ ∀ x, x′ ∈ BX(x0, 3s).

Let (x, y) ∈ B((x0, y0), s) ∩ (C ×D). For all t ∈]0, s[ there exists u ∈ g−1(D) ∩ C such
that

‖x− u‖ ≤ dg−1(D)∩C(x) + t ≤ ‖x− x0‖+ t ≤ 2s,
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and this asserts that u ∈ B(x0, 3s) ∩
(
g−1(D) ∩ C

)
. Thus,

‖g(x)− g(u)‖ ≤ Kg‖x− u‖.

We have

dg̃−1(0)∩(C×D)(x, y) = inf
v∈C∩g−1(D)

[‖x− v‖+ ‖y − g(v)‖] ≤ ‖x− u‖+ ‖y − g(u)‖, (3.12)

and using the triangle inequality, we get

‖y − g(u)‖+ ‖x− u‖ ≤ ‖y − g(x)‖+ ‖g(x)− g(u)‖+ ‖x− u‖

≤ ‖y − g(x)‖+ (1 +Kg)‖x− u‖

≤ ‖y − g(x)‖+ (1 +Kg)dg−1(D)∩C(x) + t(1 +Kg)

≤ ‖y − g(x)‖+ (1 +Kg)a‖y − g(x)‖+ t(1 +Kg)

≤ (1 + a(1 +Kg))‖y − g(x)‖+ t(1 +Kg)

= (1 + a(1 +Kg))‖g̃(x, y)‖+ t(1 +Kg).

As t is arbitrary, relation (3.12) yields

∀ (x, y) ∈ B((x0, y0), s) ∩ (C ×D), dg̃−1(0)∩(C×D)(x, y) ≤ (1 + a(1 +Kg))‖g̃(x, y)‖,

which implies that (ii) holds. The implication (ii) ⇒ (i) is obvious since the following
inequality holds true for all x ∈ X and y ∈ Y

dg̃−1(0)∩(C×D)(x, y) ≥ dg−1(D)∩C(x).

The following theorem, which is a consequence of Theorem 3.1, Lemma 2.1 and Lemma
3.1, gives the existence of Lagrange multipliers for problem (3.7) under the calmness
condition and the weak differentiability assumptions (Hf )-(Hg).

Theorem 3.2 Let x0 be a local solution to problem (3.7) and suppose that system (3.8)
is calm at x0. Suppose that (Hf ) and (Hg) hold and that g is locally Lipschitz around x0.
Then

(i) There exists y∗ ∈ ND(g(x0)), with ‖y∗‖Y ∗ ≤ Kf (1 + a(1 +Kg)) (where Kf , Kg and
a are as in (Hf ), (Hg) and (3.9), respectively), such that

−Df(x0)−D∗g(x0)y∗ ∈ NC(x0).

(ii) Moreover, if K(C, x0) and K(D, g(x0)) are convex and C is tangentially regular at
x0 or D is tangentially regular at g(x0), then there exists y∗ ∈ (K(D, g(x0)))0 such
that ‖y∗‖Y ∗ ≤ Kf (1 + a(1 +Kg)) and

0 ∈ Df(x0) +D∗g(x0)y∗ + (K(C, x0))0.

Proof. Since x0 solves (3.7) locally, (x0, g(x0)) is a local solution to problem (3.10).
Using that the constant a satisfies (3.9), the proof of Lemma 3.1 shows that the calmness
constant associated to system (3.11) is given by (1 + a(1 + Kg)). Applying the second
assertion in Theorem 3.1(ii) to problem (3.10), yields the first assertion (i). In order to
prove assertion (ii), note that (3.4) implies that

Df(x0)h+Kf (1 + a(1 +Kg))‖Dg(x0)h− k‖Y ≥ 0 ∀ (h, k) ∈ K(C ×D, (x0, g(x0)).

By Lemma 2.1 we have that K(C ×D, (x0, g(x0)) = K(C, x0)×K(D, g(x0)), which is a
convex set. The result then follows from standard convex analysis calculus.
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4 Sufficient conditions for calmness under Gâteaux
differentiability

In this section, we first provide sufficient conditions for a stronger property than the
calmness of the system (3.2), namely its metric regularity (see [14, 29] and the references
therein). Then, and as in the previous section, we deduce the corresponding sufficient
condition for system (3.8) by reducing it to an instance of system (3.2) (see (3.11)). Let
us stress the fact that the aforementioned conditions only involve Gâteaux differentiability
assumptions on the function g.
In the remainder of this article, given a subset A of a real Banach space (Z, ‖ · ‖Z), y ∈ A
and r > 0, we set BA(y, r) := BZ(y, r)∩A. Let us recall that the system (3.2) is metrically
regular at x0 ∈ g−1(0) ∩ C if there exist α > 0 and r > 0 such that

dg−1(y)∩C(x) ≤ α‖g(x)− y‖Y ∀ x ∈ BC(x0, r), ∀ y ∈ BY (0, r).

From the very definition, it follows that the previous notion is stronger than the calmness
property of system (3.2) (see e.g. [23] for a more detailed discussion of this subject).

Let us fix a point x0 ∈ g−1(0) ∩ C. We consider the following constraint qualification
condition on a neighborhood of x0.

(Hcq) there exist α > 0 and r > 0 such that g is continuous and Gâteaux differentiable on
BC(x0, r) and

BY (0, 1) ⊂ Dg(x)
(
BK(C,x)(0, α)

)
∀ x ∈ BC(x0, r). (4.1)

Remark 4.1 For each x ∈ B(x0, r) consider a right-inverse G(x) : Y ⇒ X of Dg(x),
i.e. Dg(x)G(x)y = {y} for all y ∈ Y (we know that such right-inverse exists because (4.1)
implies that Dg(x) is surjective). Then, assumption (4.1) can be rephrased in terms of G
as follows

sup
x∈BX(x0,r), y∈BY (0,1)

inf
v∈G(x)y∩K(C,x)

‖v‖X ≤ α.

In the following result, we provide a sufficient condition for the metric regularity of system
(3.2) at x0 ∈ g−1(0) ∩ C under (Hcq).

Theorem 4.1 Suppose that (Hcq) holds true and let α > 0 and r > 0 be such that (4.1)
is satisfied. Then for all r1 > 0 and r2 > 0, with r1 + r2 = r, and all

(x, y) ∈ Dr1,r2 :=
{

(u, v) ∈ BC(x0, r1)× Y : ‖g(u)− v‖Y <
r2

α

}
,

we have

dg−1(y)∩C(x) ≤ α‖g(x)− y‖Y . (4.2)

Proof. The proof is inspired from [16]. Fix (x, y) ∈ Dr1,r2 . If y = g(x) then (4.2) is
trivial, so let us assume that y 6= g(x). Consider the function h : X 7→ R defined as

h(u) := ‖g(u)− y‖Y .

Let β > α be such that 0 < h(x) = ‖g(x) − y‖Y < r2
β . As h is continuous and bounded

from below on the closed set BC(x0, r) and, evidently,

h(x) ≤ inf
x′∈BC(x0,r)

h(x′) + h(x),

9



Ekeland’s variational principle (see [15, Theorem 1.1]) gives the existence of ū ∈ BC(x0, r)
such that

h(ū) ≤ h(x), (4.3)

‖ū− x‖X ≤ βh(x), (4.4)

h(ū) ≤ h(u) +
1

β
‖ū− u‖X ∀ u ∈ BC(x0, r). (4.5)

Inequality (4.4) and the choice of x and β imply that

‖ū− x‖X < r2 and so ‖ū− x0‖X ≤ ‖ū− x‖X + ‖x− x0‖X < r2 + r1 = r. (4.6)

Claim: we have that y = g(ū). Let us assume for a moment that the claim is true. By
(4.4), we obtain

dg−1(y)∩C(x) ≤ β‖g(x)− y‖Y ,
and, as β > α is arbitrary, we get that (4.2) holds true.
It remains to prove the claim. Suppose the contrary and define

w =
y − g(ū)

‖y − g(ū)‖Y
.

Since ū ∈ BC(x0, r), assumption (Hcq) implies the existence of v ∈ BK(C,ū)(0, α) such
that

w = Dg(ū)v.

Since v ∈ BK(C,ū)(0, α), there exist sequences τn → 0+ and vn → v such that

un := ū+ τnvn ∈ C for n sufficiently large.

We may write un = ū + τnv + o(τn) ∈ C, where lim
n→+∞

o(τn)

τn
= 0. Note that the

second inequality in (4.6) implies that un ∈ BC(x0, r) for n sufficiently large. Now, using
inequality (4.5), we get

h(ū) ≤ h(un) +
1

β
‖τnv + o(τn)‖X . (4.7)

On the other hand, since g is Gâteaux differentiable at ū, we have

g(un) = g(ū) + τnDg(ū)v + τnε(τn), where lim
n→+∞

ε(τn) = 0, (4.8)

which, combined with (4.7), ensures that

‖g(ū)− y + τnDg(ū)v + τnε(τn)‖Y − ‖g(ū)− y‖Y
τn

≥ − 1

β

∥∥∥∥v +
o(τn)

τn

∥∥∥∥
X

. (4.9)

Since

lim
n→+∞

‖g(ū)− y + τnDg(ū)v‖Y − ‖g(ū)− y‖Y
τn

= max
y∗∈∂‖·‖Y (g(ū)−y)

〈y∗, Dg(ū)v〉Y ,

we get the existence of y∗v ∈ ∂‖ · ‖(g(ū)− y), such that

−1 = 〈y∗v , w〉Y = 〈y∗v , Dg(ū)v〉Y ≥ −
1

β
‖v‖X ≥ −

α

β
, (4.10)

where the first equality follows from the fact that we are assuming that g(ū) 6= y and the
standard relation

y∗v ∈ ∂‖ · ‖Y (g(ū)− y)⇔ ‖y∗v‖Y ∗ = 1 and 〈y∗v , g(ū)− y〉Y = ‖g(ū)− y‖Y .

Since (4.10) contradicts α < β, the claim follows.

The previous result extends the following inverse function theorem result, proved first in
[16, Theorem 2] in the case C = X.
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Corollary 4.1 Suppose that the assumptions of Theorem 4.1 are satisfied. Then

dg−1(y)∩C(x0) ≤ α‖y‖Y ∀ y ∈ Y, with ‖y‖Y <
r

α
. (4.11)

Consequently, for all y ∈ Y , with ‖y‖Y < r
α , and for all β > α there exists x ∈ g−1(y)∩C

such that
‖x− x0‖X < r, ‖x− x0‖X ≤ β‖y‖Y . (4.12)

Proof. By Theorem 4.1, in order to prove (4.11) it suffices to choose ε > 0 such that
(x0, y) ∈ Dε,r−ε, which is possible because of the strict inequality in (4.11). It remains
to prove that (4.12) holds for β > α and ‖y‖Y < r/α. In this case, the first inequality in
(4.11) becomes strict and we get the existence of xβ ∈ g−1(y) ∩ C such that the second
inequality in (4.12) holds true.
Since there exists ε > 0 such that ‖y‖Y ≤ (r − ε)/α then the first inequality in (4.12)
holds for xβ provided that α < β < αr/(r − ε). If β ≥ αr/(r − ε) then (4.12) holds for
xβ′ with β′ ∈]α, αr/(r − ε)[ and so ‖xβ′ − x0‖X ≤ β′‖y‖Y ≤ β‖y‖Y . The result follows.

By taking a closer look to the proof of Theorem 4.1, we see that (4.2) holds under al-
ternative assumptions involving the notion of strict differentiability of g, which is much
stronger than its Gâteaux differentiability. Let us recall that g is strictly differentiable at
x0 with respect to C if

lim
x∈C→x0,x

′∈C→x0

x6=x′

g(x)− g(x′)−Dg(x0)(x− x′)
‖x− x′‖X

= 0,

(see e.g. [41, Definition 1.13]). In this framework, we can replace condition (Hcq) by

(H1
cq) there exist α > 0 and r > 0 such that

BY (0, 1) ⊂ Dg(x0)
(
BK(C,x)(0, α)

)
∀ x ∈ BC(x0, r). (4.13)

We obtain the following theorem whose proof’s is similar to that of Theorem 4.1.

Theorem 4.2 Suppose that g is strictly differentiable at x0 and condition (H1
cq) holds.

Then the system (3.2) is metrically regular at x0.

Proof. Since g is strictly differentiable at x0 with respect to C, we have

∀ε ∈ (0,
1

α
), ∃δ > 0; x, x′ ∈ BC(x0, δ) ⇒ ‖g(x)− g(x′)−Dg(x0)(x− x′) ≤ ε‖x− x′‖.

We may assume that δ ≤ r, where r is as in (H1
cq). Let δ1 > 0 and δ2 > 0 be such that

δ1 + δ2 = δ and let (x, y) ∈ Dδ1,δ2 :=
{

(u, v) ∈ BC(x0, δ1)× Y : ‖g(u)− v‖Y < δ2
α

}
. Pick

β ∈ ( α
1−εα ,

δ2
‖g(x)−g(y)‖ ).

Then just copy the proof of Theorem 4.1 by replacing r, r1, r2 and Dg(ū) by δ, δ1, δ2 and
Dg(x0), respectively. Relations (4.8), (4.9) and (4.10) become, respectively,

‖g(un)− g(ū)−Dg(x0)(un − ū)‖ ≤ ε‖u− un‖, for n large enough

−1

β
‖v +

o(τn)

τn
‖ ≤ ‖g(un)− y‖ − ‖g(ū)− y‖

τn

≤ ‖g(un)− g(ū)−Dg(x0)(un − ū)‖+ ‖g(ū) +Dg(x0)(un − ū)− y‖ − ‖g(ū)− y‖
τn

≤ ε‖v +
o(τn)

τn
‖+
‖g(ū)− y +Dg(x0)τnv‖ − ‖g(ū)− y‖

τn

11



and

−1 + εα ≥ −1 + ε‖v‖ = ε‖v‖+ 〈y∗v , w〉Y = ε‖v‖+ 〈y∗v , Dg(x0)v〉Y ≥ −
1

β
‖v‖X ≥ −

α

β
.

Thus
−1 + εα ≥ −α

β

and this contradicts the choice of β. So g(ū) = y and hence

dg−1(y)∩C)(x) ≤ α

1− εα
‖g(x)− y‖.

The proof is then completed.

Remark 4.2 In the convex case, that is C convex, condition (H1
cq) is equivalent to the

following Robinson constraint qualification ([13]):

(HR
cq) g is strictly differentiable at x0 and there exists α > 0 such that

BY (0, 1) ⊂ Dg(x0)
(
B(C−x0)(0, α)

)
. (4.14)

Indeed, from Theorem 4.2 and the equivalence between metric regularity and the Robinson
constraint qualification (4.14) (see [13]), it is enough to show that (4.14) implies (H1

cq).
Let 1 > ε > 0 be such that ε‖Dg(x0)‖ < 1 and x ∈ BC(x0, ε). By (4.14), for all
y ∈ BY (0, 1) there exists c ∈ BC(x0, α) such that

y = Dg(x0)(c− x0) = Dg(x0)(c− x) +Dg(x0)(x− x0),

and, hence, y ∈ Dg(x0)
(
(C − x) ∩BX(0, α+ ε)

)
+ ε‖Dg(x0)‖BY (0, 1). Thus,

BY (0, 1) ⊂ Dg(x0)
(
(C − x) ∩BX(0, α+ ε)

)
+ ε‖Dg(x0)‖BY (0, 1),

and, hence, by Lemma 2.2,

BY (0, 1− ε‖Dg(x0)‖) ⊂ cl
(
Dg(x0)

(
(C − x) ∩BX(0, α+ ε)

))
.

This implies (see [47, Lemma 1] or [13, Lemma 2])

BY

(
0,

1− ε‖Dg(x0)‖
2

)
⊂ Dg(x0)

(
(C − x) ∩BX(0, α+ ε)

)
.

Now, it suffices to conclude by remarking that, since C is convex, C − x ⊂ K(C, x).

We study now the metric regularity property for system (3.8) by assuming that g is
Gâteaux differentiable. We consider the following qualification condition:

(H′cq) there exist α1, α2 > 0 and r > 0 such that g is continuous and Gâteaux differentiable
on BC(x0, r) and

BY (0, 1) ⊂ Dg(x)
(
BK(C,x)(0, α1)

)
−BK(D,y)(0, α2)

∀ (x, y) ∈ BC×D((x0, g(x0)), r).
(4.15)

Theorem 4.3 Suppose that (Hg) and (H′cq) hold true and that at least one of the sets
C and D is convex. Denote α = max{α1, α2}. Then, for all r1 > 0 and r2 > 0, with
r1 + r2 = r, and all

(x, y) ∈ Dr1,r2 :=
{

(u, v) ∈ BC(x0, r1)× Y : dBD(g(x0),r1)(g(u)− v) <
r2

α

}
,

we have
dg−1(D+y)∩C(x) ≤ αdBD(g(x0),r1)(g(x)− y).
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Proof. Using that at least one of the sets C and D is convex, for all (x′, y′) ∈ C ×D we
have

BK(C,x′)(0, α1)×BK(D,y′)(0, α2) ⊆ BK(C×D,(x′,y′))((0, 0), α).

Therefore, defining g̃ : X × Y → Y as g̃(x, z) := g(x)− z, condition (4.15) implies that

BY (0, 1) ⊆ Dg̃(x′, y′)
[
BK(C×D,(x′,y′))((0, 0), α)

]
∀ (x′, y′) ∈ BC×D((x0, g(x0)), r).

(4.16)
Now, let (x, y) ∈ Dr1,r2 and ε > 0 be such that dBD(g(x0),r1)(g(x) − y) + ε < r2

α . Then,
there exists zε ∈ BD(g(x0), r1) such that

‖g(x)− y − zε‖Y ≤ dBD(g(x0),r1)(g(x)− y) + ε <
r2

α
. (4.17)

By (4.16), we can apply Theorem 4.1 to g̃ and deduce that

dg̃−1(y)∩(C×D)(x, zε) ≤ α‖g(x)− zε − y‖Y ≤ αdBD(g(x0),r1)(g(x)− y) + αε. (4.18)

Finally, since (x′, z′) ∈ g̃−1(y)∩ (C ×D) iff x′ ∈ C, z′ ∈ D and g(x′)−y = z′, we get that

dg−1(D+y)∩C(x) ≤ dg̃−1(y)∩(C×D)(x, zε). (4.19)

Since ε is arbitrary, the result follows from (4.18)-(4.19)

We can ask if we can replace the assumption (H′cq) by the following one

(H′′cq) there exist α1, α2 > 0 and r > 0 such that g is continuous and Gâteaux differentiable
on BC(x0, r) and

BY (0, 1) ⊂ Dg(x)
(
BK(C,x)(0, α1)

)
−BK(D,g(x))(0, α2) ∀ x ∈ Bg−1(D)∩C(x0, r).

(4.20)

As the following example shows, the answer is negative.

Example 2 Let C and D be closed sets in R2 defined by

C = {(x, y) ∈ R2 : x ≥ 0, x2 + (y + 1)2 = 1},

and
D = {(x, y) ∈ R2 : [y = x] or [x ≥ 0, x2 + (y + 2)2 = 4]},

(see Figure 1) and take g be the identity function in R2. Then C∩D = {0}, g−1(C∩D) =
{0}, K(C, (0, 0)) = R+ × {0} and K(D, (0, 0)) = {(x, x) : x ∈ R} ∪ (R+ × {0}) . Thus,

BR2(0, 1) ⊂ BK(C,(0,0))(0, 2)−BK(D,(0,0))(0, 2).

Similarly, we have that (4.20) holds true and it is easy to check that (4.15) does not hold.
We will show that there is no a > 0 such that

dg−1(C∩D)(u) ≤ ad(g(u), D) for u ∈ C near 0.

Indeed, for x > 0 and x2 + (y + 1)2 = 1, with (x, y) near (0, 0), we have

dg−1(C∩D)(x, y) =
√
x2 + y2 and d(g(x, y), D) ≤ 2−

√
4− (x2 + y2)

and the inequality √
x2 + y2 ≤ a(2−

√
2− (x2 + y2)) ≈ ax

2 + y2

4

is never satisfied when (x, y) is sufficiently near to (0, 0).
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Figure 1: Sets C and D in Example 2.

5 Application to stochastic optimal control in contin-
uous time

Let T > 0 and consider a filtered probability space (Ω,F ,F,P), on which a d-dimensional
(d ∈ N∗) Brownian motion W (·) is defined. We suppose that F = {Ft}0≤t≤T is the
natural filtration, augmented by all P-null sets in F , associated to W (·). The filtration F
is right-continuous, i.e. Ft = ∩t<u≤TFu (see [45, Chapter I, Theorem 31]).
Recall that a stochastic process v : Ω × [0, T ] → Rn is progressively measurable w.r.t.
F if for all t ∈ [0, T ] the application Ω × [0, t] 3 (s, ω) 7→ v(ω, s) ∈ Rn is Ft × B([0, t])
measurable (here B([0, t]) denotes the set of Borel sets in [0, T ]). Let us define the space

(L2,2
F )n :=

{
v ∈ L2

(
Ω;L2 ([0, T ];Rn)

)
; (ω, t) 7→ v(ω, t) := v(ω)(t)

is progressively measurable} .

When n = 1 we will simply denote L2,2
F := (L2,2

F )1. It is easy to see that (L2,2
F )n, endowed

with the scalar product

〈v1, v2〉L2,2 := E

(∫ T

0

v1(t) · v2(t)dt

)
,

is a Hilbert space. We denote by ‖ · ‖2,2 := 〈·, ·〉
1
2

L2,2 the associated Hilbersian norm.
In this section we consider the stochastic optimal control problem

infx,u E
(∫ T

0
`(ω, t, x(t), u(t))dt+ Φ(ω, x(T ))

)
s.t. dx(t) = b(ω, t, x(t), u(t))dt+ σ(ω, t, x(t), u(t))dW (t) t ∈ (0, T ),

x(0) = x̂0,

u ∈ U ,


(SP )

where U is a non-empty, closed subset of (L2,2
F )m and b : Ω × [0, T ] × Rn × Rm → Rn,

σ : Ω×[0, T ]×Rn×Rm → Rn×d, ` : Ω×[0, T ]×Rn×Rm → R, Φ : Ω×Rn → R, and x̂0 ∈ Rn
are given. In what follows we use the notation b = (bi)1≤i≤n and σ = (σij)1≤i≤n, 1≤j≤d,
where each bi and σij is real valued. The columns of σ are written σj for j = 1, . . . , d.
For ψ = `, Φ, bj , σij we will denote by ∇xψ the gradient of ψ w.r.t. to x. We will also
use the notation bx and σjx to denote, respectively, the Jacobians of b and σj w.r.t. x.
Similar notations will be using when differentiating w.r.t. u.
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In order to make problem (SP ) meaningful, we need to impose some assumptions on the
data. Concerning the terms defining the dynamics b and σ we will assume

(A1) For ψ = bj , σij we have:

(i) ψ is FT ⊗ B([0, T ]× Rn × Rm)-measurable.

(ii) For almost all (a.a.) (ω, t) ∈ Ω × [0, T ] the mapping (x, u) → ψ(ω, t, x, u) belongs
to C1(Rn × Rm), the application (ω, t) ∈ Ω × [0, T ] → ψ(ω, t, ·, ·) ∈ C1(Rn × Rm) is
progressively measurable and there exists c1 > 0 and ρ1 ∈ L2,2

F such that almost surely
(a.s.) in (ω, t) {

|ψ(ω, t, x, u)| ≤ c1 (ρ1(ω, t) + |x|+ |u|) ,
|∇xψ(ω, t, x, u)|+ |∇uψ(ω, t, x, u)| ≤ c1.

(5.1)

Concerning the terms defining the cost functions ` and Φ we will assume

(A2) The functions ` and Φ are respectively FT ⊗B([0, T ]×Rn ×Rm) and FT ⊗B(Rn)
measurable. Moreover, for a.a. (ω, t) the maps (x, u) → `(ω, t, x, u) and x → Φ(ω, x)
are C1. The application (ω, t) ∈ Ω × [0, T ] → `(ω, t, ·, ·) ∈ C1(Rn × Rm) is progressively
measurable. In addition, there exists c2 > 0, ρ2 ∈ L2,2

F and ρ3 ∈ L2(Ω,FT ) such that
almost surely in (ω, t) we have

|`(ω, t, x, u)| ≤ c2
(
ρ2(ω, t) + |x|2 + |u|2

)
,

|∇x`(ω, t, x, u)|+ |∇u`(ω, t, x, u)| ≤ c2 (ρ2(ω, t) + |x|+ |u|) ,
|Φ(ω, x)| ≤ c2

(
ρ3(ω) + |x|2

)
, |∇xΦ(ω, x)| ≤ c2 (ρ3(ω) + |x|) .

(5.2)

The previous assumptions are rather general and cover the case of linear quadratic prob-
lems (see e.g. [50, Chapter 3 and Chapter 6]).
Our aim now is to provide a functional framework for problem (SP ) that will allow us
to apply the abstract results in the previous sections to derive a first order optimality
condition at a local solution. We proceed as in [2] and we focus first in writing the SDE
constraint in the form of an equality constraint in a suitable function space.
Let us consider the mapping I : Rn × (L2,2

F )n × (L2,2
F )n×d → (L2,2

F )n

I(x0, x1, x2)(·) := x0 +

∫ (·)

0

x1(s)ds+

d∑
j=1

∫ (·)

0

xj2(s)dW j(s). (5.3)

Standard results in Itô’s stochastic calculus theory imply that I is well defined. Consider
the Itô space In := I(Rn × (L2,2

F )n × (L2,2
F )n×d). Endowed with the scalar product

〈x, y〉In := x0 · y0 + E

(∫ T

0

x1(t) · y1(t)dt

)
+

d∑
j=1

E

(∫ T

0

xj2(t) · yj2(t)dt

)
, (5.4)

we have that In is a Hilbert space, which, since I is injective (see [2, Lemma 2.1]), can be

identified with Rn× (L2,2
F )n× (L2,2

F )n×d. Let us denote by ‖ · ‖In := 〈·, ·〉
1
2

In the associated
Hilbersian-norm.
Recall that by definition x ∈ In solves the controlled SDE in (SP ) iff

x(t) = x0 +

∫ t

0

b(s, x(s), u(s))ds+

∫ t

0

σ(s, x(s), u(s))dW (s) ∀ t ∈ [0, T ]. (5.5)

It is well known that under (A1) equation (5.5) admits a unique solution x ∈ In (see

e.g. [37, Chapter 5]). It is also known that E
(

supt∈[0,T ] |x(t)|2
)

is finite (see e.g. [2,

Lemma 2.2]). A more precise information is given by the following lemma whose proof is
by now standard. We provide here the details of the proof since we need to obtain explicit
expressions for the involved constants.
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Lemma 5.1 For all t ∈ [0, T ] and u ∈ (L2,2
F )m, the solution x ∈ In satisfies

E

(
sup
s∈[0,t]

|x(s)|2
)

= c

[
|x0|2 + E

(∫ t

0

|b(s, 0, u)|2ds

)
+ E

(∫ t

0

|σ(s, 0, u)|2ds

)]
, (5.6)

where c = max{24, 6T}e6Tc21 max{T,4d}.

Proof. Using the inequality (a1 + a2 + a3)2 ≤ 3(a2
1 + a2

2 + a2
3) for all a1, a2 and a3 in R

and Jensen’s inequality, for all 0 ≤ s ≤ t ≤ T expression (5.5) yields

|x(s)|2 ≤ 3

(
|x0|2 + s

∫ s

0

|b(s′, x(s′), u(s′))|2ds′ +

∣∣∣∣∫ s

0

σ(s′, x(s′), u(s′))dW (s′)

∣∣∣∣2
)
.

By the linear growth condition in (5.1) and the fact that x ∈ In and u ∈ (L2,2
F )m,

we have that σ(·, x(·), u(·)) ∈ (L2,2
F )n×d and so, for each j = 1, . . . , d, the Rn-valued

process s ∈ [0, T ] 7→
∫ s

0
σj(s′, x(s′), u(s′))dW j(s′) is a martingale. Thus, defining g(t) :=

E(sups∈[0,t] |x(s)|2), Doob’s inequality and the Lipschitz property of b and σ with respect
to x in (5.1) imply that

g(t) ≤ 3
[
|x0|2 + TE

(∫ t
0
|b(s, x(s), u(s))|2ds

)
+ 4E

(∫ t
0
|σ(s, x(s), u(s))|2ds

)]
≤ 3

[
|x0|2 + 2TE

(∫ t
0

[
|b(s, 0, u(s))|2 + c21|x(s)|2

])
ds

+8E
(∫ t

0

[
|σ(s, 0, u(s))|2 + dc21|x(s)|2

]
ds
)]

≤ a1 + a2

∫ t
0
g(s)ds,

where

a1 = max{24, 6T}
[
|x0|2 + E

(∫ t

0

|b(s, 0, u(s))|2ds

)
+ E

(∫ t

0

|σ(s, 0, u(s))|2ds

)]
,

and a2 = 6c21 max{T, 4d}. The result then follows from Gronwall’s Lemma.

Remark 5.1 Estimates of the form (5.6) can be easily extended to any power p > 1 by
using in the previous proof the Burkholder-Davis-Gundy inequality (see e.g. [43]) instead
of Doob’s inequality.

Now, let us consider the application g : In × (L2,2
F )m → In defined by

g(x, u)(·) := x̂0 +

∫ (·)

0

b(s, x(s), u(s))ds+

∫ (·)

0

σ(s, x(s), u(s))dW (s)− x(·), (5.7)

which defines the SDE constraint in (SP ) by imposing g(x, u) = 0. Consider also the
application f : In × (L2,2

F )m → R defined by

f(x, u) := E

(∫ T

0

`(t, x(t), u(t))dt+ Φ(x(T ))

)
,

which describes the cost functional in (SP ). Assumption (A2) implies that f is well-
defined. Problem (SP ) can thus be rewritten in the following abstract form

inf f(x, u) subject to g(x, u) = 0, u ∈ U . (SP )

We proceed now to verify that f and g satisfy the assumptions considered in Section 3,
when the underlying space given by X := In × (L2,2

F )m.
We begin by studying some properties of g. The following result is proved in the appendix
in [2]. For the sake of completeness we provide here a short proof.
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Lemma 5.2 Under (A1) the mapping g is Lipschitz continuous and Gâteaux differen-
tiable. Its Gâteaux derivative Dg(x, u) : In × (L2,2

F )m 7→ In is given by

Dg(x, u)(z, v)(·) =
∫ (·)

0
[bx(t, x(t), u(t))z(t) + bu(t, x(t), u(t))v(t)] dt

+
∑d
j=1

∫ (·)
0

[
σjx(t, x(t), u(t))z(t) + σju(t, x(t), u(t))v(t)

]
dW j(t)

−z(·),
(5.8)

for all (z, v) ∈ In × (L2,2
F )m.

Proof. Note that for any (x, u1), (y, u2) ∈ In × (L2,2
F )m we have

‖g(x, u1)(·)− g(y, u2)(·)‖2In

= |x0 − y0|2 + E
(∫ T

0

∣∣b(t, x(t), u1(t))− b(t, y(t), u2(t)) + y1(t)− x1(t)
∣∣2 dt

)
+
∑d
j=1 E

(∫ T
0

∣∣∣σj(t, x(t), u1(t))− σj(t, y(t), u2(t)) + yj2(t)− xj2(t)
∣∣∣2 dt

)
,

which, by the Lipschitz assumption in (5.1), is bounded by

c

[
‖x− y‖2In + E

(∫ T

0

|x(t)− y(t)|2dt

)
+ E

(∫ T

0

|u1(t)− u2(t)|2dt

)]
,

for some constant c > 0. Now, as in the proof of Lemma 5.1, by Jensen’s and Doob’s
inequalities we easily get the existence of a constant c′ > 0 such that

E

(∫ T

0

|x(t)− y(t)|2dt

)
≤ c′‖x− y‖2In ,

from which the Lipschitz property of g easily follows. Now, for j = 1, . . . , d let us set

Db(t, x, u)(z, v) = bx(t, x, u)z + bu(t, x, u)v, Dσj(t, x, u)(z, v) = σjx(t, x, u)z + σju(t, x, u)v

and define

I1 := E
(∫ T

0

[
b(t,x(t)+τz(t),u(t)+τv(t))−b(t,x(t),u(t))

τ −Db(t, x(t), u(t))(z(t), v(t))
]2

dt

)
,

Ij2 := E
(∫ T

0

[
σj(t,x(t)+τz(t),u(t)+τv(t))−σj(t,x(t),u(t))

τ −Dσj(t, x(t), u(t))(z(t), v(t))
]2

dt

)
.

By the Lipschitz property of b and σ in (5.1) and the dominated convergence theorem, we
get that I1 and Ij2 tend to 0 as τ ↓ 0. This implies that

(x, u) ∈ In × (L2,2
F )m 7→

∫ (·)

0

b(s, x(s), u(s))ds+

∫ (·)

0

σ(s, x(s), u(s))dW (s) ∈ In

is directionally differentiable with directional derivative

(z, v) ∈ In × (L2,2
F )m 7→

∫ (·)
0
Db(t, x(t), u(t))(z(t), v(t))dt

+
∑d
j=1

∫ (·)
0
Dσj(t, x(t), u(t))(z(t), v(t))dt.

The continuity of the linear application above follows easily from the bounds in the second
relation in (5.1). Finally, since (x, u) ∈ In × (L2,2

F )m 7→ x ∈ In is C∞ with derivative

(z, v) ∈ In × (L2,2
F )m 7→ z ∈ In, we obtain (5.8).

The previous lemma yields the following result

Lemma 5.3 For every (x, u) ∈ In × (L2,2
F )m and δ ∈ In, there exists a unique z ∈ In

such that Dg(x, u)(z, 0) = δ. Moreover, there exists a constant c > 0, independent of
(x, u, z, δ), such that ‖z‖In ≤ c‖δ‖In
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Proof. By Lemma 5.2, we have that Dg(x, u)(z, 0) = δ is equivalent to the SDE

dz = [bx(t, x(t), u(t))z(t)− δ1] dt+ [σx(t, x(t), u(t))z(t)− δ2] dW (t),

z(0) = −δ0.

The existence and uniquenes of a solution z of this equation is well-known (see e.g. [37,
Chapter 5]). Moreover, using that ‖bx‖∞ ≤ c1 and ‖σx‖∞ ≤ c1, Lemma 5.1 implies the
existence of a constant c > 0, independent of (x, u, z, δ), such that

‖z‖In ≤ c

[
|δ0|2 + E

(∫ T

0

|δ1|2dt

)
+ E

(∫ T

0

|δ2|2dt

)]
.

The result follows.

As a consequence of the last two lemmas and Theorem 4.1, g satisfies (4.1) with C :=
In × V and α = c, where V is any closed set of (L2,2

F )m. Therefore, the following result
holds true.

Corollary 5.1 For any closed set V ⊂ (L2,2
F )m, we have

dg−1(y)∩(In×V)(x, u) ≤ c‖g(x, u)− y‖2In ∀ x, y ∈ In and u ∈ V.

Now, we consider the properties of the cost functional f .

Lemma 5.4 The function f is locally Lipschitz and Gâteaux differentiable, with

Df(x, u)(z, v) = E
(∫ T

0
[`x(t, x(t), u(t))z(t) + `u(t, x(t), u(t))v(t)] dt

)
+E (DΦ(x(T ))z(T )) .

(5.9)

Proof. For τ ∈ [0, 1], set xτ := x1 + τ(x2 − x1), uτ := u1 + τ(u2 − u1), δx = x2 − x1 and
δu = u2 − u1. We have that

|f(x2, u2)− f(x1, u1)| ≤ E
(∫ T

0

∫ 1

0
|D`(t, xτ (t), uτ (t))(δx(t), δu(t))|dτdt

)
+E

(∫ 1

0
|DΦ(xτ (T ))δx(T )|dτ

)
.

By the second assumption in (5.2) we can find c > 0 such that

|D`(t, xτ (t), uτ (t))(δx(t), δu(t))| ≤ c(1 + |xτ (t)|+ |uτ (t)|)(|δx(t)|+ |δu(t)|)

≤ c(1 + |x1(t)|+ |δx(t)|+ |u1(t)|+ |δu(t)|)(|δx(t)|+ |δu(t)|),

which, by the Cauchy-Schwarz inequality, implies that[
E
(∫ T

0

∫ 1

0
|D`(t, xτ (t), uτ (t))(δx(t), δu(t))|dτdt

)]2
≤

c′E
(∫ T

0
(1 + |x1(t)|2 + |δx(t)|2 + |u1(t)|2 + |δu(t)|2)dt

)
(‖δx‖22,2 + ‖δu‖22,2).

Analogously, there exists c′′ > 0 such that[
E
(∫ 1

0

|DΦ(xτ (T ))δx(T )|dτ
)]2

≤ c′′E
(
1 + |x1(T )|2 + |δx(T )|2)dt

)
E
(
|δx(T )|2

)
,

from which the local Lipschitz property for f follows. Now, we prove the formula for the
directional derivative. Consider the term

E
(∫ T

0

[
`(t, x(t) + τz(t), u(t) + τv(t))− `(t, x(t) + τz(t), u(t) + τv(t))

τ
−D`(t, x(t), u(t))

]
dt

)
.

(5.10)

18



Since ` is Gâteaux differentiable, the expression inside the integral converges to zero
pointwisely. Now, writing the ratio inside the integral in integral form, if τ < 1, we have∫ 1

0

D`(t, xγτ (t), uγτ (t))(z(t), v(t))dγ ≤ c(1 + |x(t)|+ |z(t)|+ |u(t)|+ |v(t)|)(|z(t)|+ |v(t)|),

where xγτ := x + γτz and uγτ := u + γτv. The term D`(t, x(t), u(t)) is dominated by
c(1 + |x(t)| + |u(t)|) and thus we can pass to the limit to obtain that the term in (5.10)
tends to 0 as τ ↓ 0. Analogously, as τ ↓ 0,

E
(

Φ(x(T ) + τz(T ))− Φ(x(T ))

τ
−DΦ(x(T ))z(T )

)
→ 0.

Formula (5.9) follows.

As customary in optimal control theory, it is convenient to introduce the Hamiltonian
H : Ω×]0, T [×Rn × Rn × Rn×d × Rm → R defined as

H(ω, t, x, p, q, u) := `(ω, t, y, u) + p · b(ω, t, x, u) +

d∑
i=1

qi · σi(ω, t, x, u).

With the help of Theorem 3.1 and Corollary 5.1 we prove in the next result the existence
of Lagrange multipliers for problem (SP ) and, as a consequence, we recover a weak version
of the stochastic Pontryagin’s minimum principle first proved in [4] (see relations (5.12)-
(5.13) below).

Theorem 5.1 Suppose that (x̄, ū) is a local solution of problem (SP ), then there exists a
Lagrange multiplier λ ∈ In such that

0 ∈ Df(x̄, ū) +Dg(x̄, ū)∗λ+ {0} ×NU (ū). (5.11)

In particular, defining p̄ := λ1, q̄ := λ2 we have that p̄ ∈ In, q̄ ∈ (L2,2
F )n×d and the

following relations hold true:

p̄(·) = ∇xΦ(x̄(T )) +

∫ T

(·)
∇xH(s, x̄(s), p̄(s), q̄(s), ū(s))ds−

∫ T

(·)
q̄(s)dW (s), (5.12)

E

(∫ T

0

∇uH(t, x̄(t), p̄(t), q̄(t), ū(t)) · v(t)dt

)
≥ 0 ∀ v ∈ TU (ū). (5.13)

If, in addition, K(U , ū) is convex, then (5.13) is valid for all v ∈ K(U , ū).

Proof. Lemma 5.2 and Lemma 5.4 imply that g and f satisfy the assumptions (Hg)
and (Hf ), respectively. Since Corollary 5.1 implies that the constraint system in (SP ) is
calm at (x̄, ū), the existence of λ ∈ In satisfying (5.11) follows directly from Theorem 3.1.
Noticing that (5.11) can be written as

Dxf(x̄, ū) +Dxg(x̄, ū)∗λ = 0,
〈Duf(x̄, ū) +Dug(x̄, ū)∗λ, v〉(L2,2

F )m ≥ 0 ∀ v ∈ TU (ū), (5.14)

Theorem 3.12 in [2] directly yields relations (5.12)-(5.13). Finally, if K(U , ū) is convex,
by Theorem 3.1(ii) we have

0 ∈ Df(x̄, ū) +Dg(x̄, ū)∗λ+ {0} ×K(U , ū)0.

Reasoning as before, we get that (5.13) is valid for all v ∈ K(U , ū). The result follows.
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5.1 Comments and extensions

Let us provide some comments on the previous result.

(i) As pointed out in [2], it is not clear that in general the function g defined in (5.7) is
C1. Therefore, standard Lagrange multiplier results, in infinite dimensions, are not
directly applicable to problem (SP ). Nevertheless, we have shown that the function
g, which determines the constraint system in (SP ), satisfies the weak regularity
assumptions introduced in Section 4, which are sufficient to guarantee the metric
regularity of the aforementioned constraint system and, hence, the existence of a
Lagrange multiplier associated to a local solution. Let us stress the fact that the
verification of (Hcq) is rather simple in this case, because it amounts to check the
stability of solutions to linear SDEs under random additive perturbations of the
right-hand side (see Lemma 5.3).

(ii) As mentioned in the introduction, the main contribution of this section is the simple
justification of the existence of a Lagrange multiplier associated to the SDE con-
straint g(x, u) = 0. It is reasonable to conjecture that this fact plays an essential
role in a rigorous sensitivity analysis for problem (SP ) under general perturbations
of b and σ in the controlled SDE. Indeed, it is well known in optimization theory
that Lagrange multipliers are central in the study of the sensitivity of the opti-
mal cost functional under perturbations of the data (see e.g. [11, Section 6.5], [6,
Chapter 4] and the references therein). In the case of deterministic optimal control
problems, the literature is also very rich (see e.g. [12], [31, Chapter 2] and the bibli-
ographic notes in [6, Section 7.5]). On the other hand, to the best of our knowledge,
there exist only few results on the sensitivity analysis for stochastic optimal control
problems. We refer the reader to [2] for convex problems and functional random
perturbations of the dynamics and to [39] for a class of non-convex problems and
finite-dimensional perturbations.

Notice that the results in sections 3 and 4, and the identification between Lagrange
multipliers and adjoint states [2], allowed to give a direct proof of the weak version
of Pontryagin’s minimum principle (5.12)-(5.13). This result has been first proved
in [4] by writing the state x as a function of u, using that for each u there exists a
unique solution x[u] of g(x, u) = 0, and expanding the cost function in terms of u.
This approach is useful to establish (5.12)-(5.13) but hides the importance of the
pair (p, q) as a Lagrange multiplier associated to the SDE constraint.

(iii) In the particular case of pointwise control constraints

U := {u ∈ (L2,2
F )m ; u(ω, t) ∈ U a.s},

where U ⊆ Rm is a nonempty closed set, a result stronger than Theorem 5.1 has
been shown in [44]. In this paper, the author shows that a modified Hamiltonian H,
which involves an additional pair of adjoint processes, is almost surely pointwisely
minimized at ū(ω, t). In this result, which is the stochastic analogous of the classical
Pontryagin’s minimum principle, no regularity assumptions on the data with respect
to u are imposed. On the other hand, stronger assumptions with respect to the
dependence on the state variable x are assumed (which involve requirements on the
second order derivatives of `, Φ, b and σ).

(iv) A straightforward extension of Theorem 5.1 is the case where the initial point x̂0 is
also a decision variable. More precisely, let X0 ⊆ Rn be a closed set and consider
the following extension of problem (SP )

infx,x̂0,u E
(∫ T

0
`(ω, t, x(t), u(t))dt+ Φ(ω, x(T ))

)
s.t. dx(t) = b(ω, t, x(t), u(t))dt+ σ(ω, t, x(t), u(t))dW (t) t ∈ (0, T ),

x(0) = x̂0 ∈ X0,

u ∈ U .


(SP ′)

20



Then, this problem can be written in the abstract form

inf f(x, u) subject to g̃(x, u) ∈ In ×X0, u ∈ U , (SP ′)

where

g̃(x, u) :=

(
x(0) +

∫ (·)

0

b(s, x(s), u(s))ds+

∫ (·)

0

σ(s, x(s), u(s))dW (s)− x(·), x(0)

)
.

Suppose that (x̄, ū) ∈ In×U is a local solution to (SP ′) and assume that (A1)-(A2)
hold true. Using the surjectivity property of the derivative of the first coordinate
of g̃ (as in Lemma 5.3), it is easy to check that (4.15) in (H′cq) is satisfied at (x̄, ū)
(with C = In × U and D = In × X0). Thus, by Theorem 4.3, Theorem 3.2, and
reasoning as in the proof of Theorem 5.1, we obtain the existence of p̄ ∈ In and
q̄ ∈ (L2,2

F )n×d such that

p̄(·) = ∇xΦ(x̄(T )) +
∫ T

(·)∇xH(s, x̄(s), p̄(s), q̄(s), ū(s))ds−
∫ T

(·) q̄(s)dW (s),

−p̄(0) ∈ NX0
(x̄(0)),

and E
(∫ T

0
∇uH(t, x̄(t), p̄(t), q̄(t), ū(t)) · v(t)dt

)
≥ 0 for all v ∈ TU (ū).

(5.15)

(v) Another easy extension is the case where finitely many final constraints on the
state, in expectation form, are added to problem (SP ). In this case, a qualification
condition has to be imposed on the local solution (x̄, ū) in order to ensure that (H′cq)
holds. We refer the reader to [2] for a more detailed discussion on this matter. The
case of final pointwise constrains having the form x(ω, T ) ∈ XT , for some closed set
XT ⊆ Rn, and with probability one, remains as an interesting open problem.

6 Application to a class of stochastic control problems
in discrete time

Let (Ω,F ,P) be a probability space and, as in the previous section, denote by E the
expectation under P. Let w1, . . . , wN be N independent Rd-valued random variables
defined in (Ω,F ,P) such that for all k = 1, . . . , N the coordinates of wk = (w1

k, . . . , w
d
k)

are independent and satisfy

E(wik) = 0, E(|wik|2) = 1.

Define w0 := 0 and for k = 0, . . . , N set Fk := σ (w0, . . . , wk), the sigma-algebra generated
by w0, . . . , wk, and

L2
Fk

:=
{
y ∈ L2(Ω) ; y is Fk measurable

}
.

Let U ⊆ ΠN−1
k=0 (L2

Fk
)m be a non-empty closed set. In this section we consider the following

discrete-time stochastic optimal control problem (see [38])

inf E
(∑N−1

k=0 `(k, xk, uk) + Φ(xN )
)

s.t. xk+1 = b(k, xk, uk) + σ(k, xk, uk)wk+1 k = 0, . . . , N − 1

x0 = x̂0 ∈ Rn

x ∈ ΠN
k=0(L2

Fk
)n, u ∈ U ,


(SPd)

where, denoting [0 : N − 1] := {0, . . . , N − 1}, ` : [0 : N − 1]×Rn×Rm → R, Φ : Rn → R,
b : [0 : N−1]×Rn×Rm → Rn and σ : [0 : N−1]×Rn×Rm → Rn×d are Borel measurable
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functions. Denoting σj (j = 1, . . . , d) the jth column of σ, for ψ = b, σj we suppose that
ψ is C1 with respect to (x, u) and the existence of c1 > 0 such that for all k ∈ [0 : N − 1]{

|ψ(k, x, u)| ≤ c1 (1 + |x|+ |u|) ,
|ψx(k, x, u)|+ |ψu(k, x, u)| ≤ c1.

(6.1)

Similarly, in the remainder of this section we will assume that there exists c2 > 0 such
that for all k ∈ [0 : N − 1]

|`(k, x, u)| ≤ c2 (1 + |x|+ |u|)2
,

|`x(k, x, u)|+ |`u(k, x, u)| ≤ c2 (1 + |x|+ |u|) ,

|Φ(x)| ≤ c2 (1 + |x|)2
, |Φx(x)| ≤ c2 (1 + |x|) .

(6.2)

As in Section 5 we introduce now a Hilbert space for the state x which is suitable for the
application of the results in Sections 3 and 4. Set X0 = Rn and given k ∈ [1 : N ] define

Xk :=

{
y0
k−1 +

d∑
i=1

yik−1w
i
k ; yik−1 ∈

(
L2
Fk−1

)n
∀ i = 0, . . . , d

}
.

Endowed with the scalar product

〈x, x′〉Xk
:= E

(
d∑
i=0

yik−1 · zik−1

)
∀ x = y0

k−1 +

d∑
i=1

yik−1w
i
k, x′ = z0

k−1 +

d∑
i=1

zik−1w
i
k,

the following elementary result shows that Xk is a Hilbert space.

Lemma 6.1 For every (y0
k−1, y

1
k−1, . . . , y

d
k−1) ∈ (L2

Fk−1
)n × (L2

Fk−1
)n×d we have

E

∣∣∣∣∣y0
k−1 +

d∑
i=1

yik−1w
i
k

∣∣∣∣∣
2
 =

d∑
i=0

E
(
|yik−1|2

)
. (6.3)

As a consequence, for every k ∈ [1 : N ] the linear operator I : (L2
Fk−1

)n × (L2
Fk−1

)n×d →
Xk defined as

I(y0
k−1, y

1
k−1, . . . , y

d
k−1) := y0

k−1 +

d∑
i=1

yik−1w
i
k,

is a bijection.

Proof. Relation (6.3) follows directly from the relations

E
(
y0
k−1 · yik−1w

i
k

)
= E

(
y0
k−1 · yik−1E

(
wik|Fk−1

))
= 0 ∀ i ∈ [1 : d],

E
(
yik−1 · y

j
k−1w

j
kw

i
k

)
= E

(
yik−1 · y

j
k−1E

(
wjkw

i
k|Fk−1

))
=

{
E
(
|yik−1|2

)
if i = j,

0 otherwise.

By definition of Xk we only need to show that I is injective. But this is clear because if

I(y0
k−1, y

1
k−1, . . . , y

d
k−1) = 0,

then (6.3) implies that E
(
|yik−1|2

)
= 0 and so yik−1 = 0 a.e. for all i ∈ [0 : d].

Define g : ΠN
k=0Xk ×ΠN−1

k=0

(
L2
Fk

)m → ΠN
k=0Xk as

g0(x, u) := x̂0 − x0,

gk+1(x, u) := b(k, xk, uk) + σ(k, xk, uk)wk+1 − xk+1 ∀ k = 0, . . . , N − 1,
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and f : ΠN
k=0Xk ×ΠN−1

k=0

(
L2
Fk

)m → R as

f(x, u) := E

(
N−1∑
k=0

`(k, xk, uk) + Φ(xN )

)
.

Under these notations, problem (SPd) can be rephrased as

inf f(x, u) subject to g(x, u) = 0, u ∈ U . (SPd)

As in the previous section, we prove now that if we set X := ΠN
k=0Xk × ΠN−1

k=0

(
L2
Fk

)m
,

then under our assumptions the mappings f and g satisfy the assumptions in Section 3.

Lemma 6.2 The following assertions hold true:

(i) The mapping g is Lipschitz and Gâteaux differentiable. For (x, u), (z, v) ∈ X the
directional derivative of g at (x, u) in the direction (z, v) is given by Dg(x, u)(z, v) =
(Dg0(x, u)(z, v), . . . , DgN (x, u)(z, v)), where

Dg0(x, u)(z, v) = −z0,

Dgk+1(x, u)(z, v) = b(x,u)(k, xk, uk)(zk, vk)+∑d
i=1 σ

i
(x,u)(k, xk, uk)(zk, vk)wik+1 − zk+1,

(6.4)

for all k = 0, . . . , N − 1.

(ii) The mapping f is locally Lipschitz and Gâteaux differentiable, with

Df(x, u)(z, v) = E

(
N−1∑
k=0

`(x,u)(k, xk, uk)(zk, vk) +DΦ(xN )zN

)
, (6.5)

for all (x, u), (z, v) ∈ X.

Proof. We only prove assertion (i) since the proof of (ii) is analogous. By the second
relation in assumption (6.1), there exists c > 0 such that for all k = 0, . . . , N − 1,

‖gk+1(x1, u1)− gk+1(x2, u2)‖2Xk+1

= E
(
|b(k, x1

k, u
1
k)− b(k, x2

k, u
2
k)|2 +

∑d
i=1 |σi(k, x1

k, u
1
k)− σi(k, x2

k, u
2
k)|2

)
≤ cE

(
|x1
k − x2

k|2 + |u1
k − u2

k|2
)

= c

(
‖x1

k − x2
k‖2Xk

+ ‖u1
k − u2

k‖2L2
Fk

)
,

where the last equality follows from (6.3). The Lipschitz continuity of g easily follows.
Now, for ψ = b, σi (i = 1, . . . , d) we have

E
(
ψ(k,xk+τzk,uk+τvk)−ψ(k,xk,uk)

τ − ψx(k, xk, uk)zk − ψu(k, xk, uk)vk

)2

→ 0,

by the Lipschitz continuity of ψ(k, ·, ·) and the Lebesgue’s dominated convergence theorem.
The continuity of the linear mapping (z, v) → Dg(x, u)(z, v) follows easily from (6.4),
assumption (6.1) and the isometry (6.3).

As a corollary of the first assertion in the previous lemma, we obtain the following result.

Lemma 6.3 For every (x, u) ∈ X and δ ∈ ΠN
k=0Xk there exists a unique z ∈ ΠN

k=0Xk

such that Dg(x, u)(z, 0) = δ. Moreover, there exists c > 0, independent of (x, u, z, δ), such
that

N∑
k=0

‖zk‖Xk
≤ c

N∑
k=0

‖δk‖Xk
. (6.6)

In particular, for every closed set V ⊆ ΠN−1
k=0

(
L2
Fk

)m
we have that

d
(
(x, u), g−1(y) ∩

(
ΠN
k=0Xk ∩ V

))
≤ c ∀ (x, u) ∈ X, y ∈ ΠN

k=0Xk. (6.7)
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Proof. The unique z ∈ ΠN
k=0Xk such that Dg(x, u)(z, 0) = δ is given recursively by

z0 = −δ0

zk+1 = bx(k, xk, uk)zk +
∑d
i=1 σ

i
x(k, xk, uk)zkw

i
k+1 − δk+1 ∀ k = 0, . . . , N − 1.

Noting that

‖zk+1‖2Xk+1
= E

(
|zk+1|2

)
≤ (d+ 2)

[
c21E

(
|zk|2

)
+ c21

∑d
i=1 E

(
|zk|2(wik+1)2

)
+ |δk+1|2

]
,

≤ (d+ 2)2c21E
(
|zk|2

)
+ (d+ 2)E(|δk+1|2),

≤ c̄
[
E
(
|zk|2

)
+ E(|δk+1|2)

]
≤ (N + 1)c̄N+1∑N

k=0 E
(
|δk|2

)
= (N + 1)c̄N+1∑N

k=0 ‖δk‖
2
Xk
,

where c̄ := (d+2)2(c21 +1) > 1 and the last equality is a consequence of (6.3). This proves
(6.6). Relation (6.7) follows directly from (6.6) and Theorem 4.1.

Let us define the Hamiltonian H : [0 : N − 1]× Rn × Rn × Rn×d × Rm → R by

H(k, x, p, q, u) := `(k, x, u) + p · b(k, x, u) +

d∑
i=1

qi · σi(k, x, u)

We have now all the elements to establish the optimality system for problem (SPd).

Theorem 6.1 Suppose that (x̄, ū) is a local solution to (SPd). Then, there exist p ∈
ΠN−1
k=0 (L2

Fk
)n, q ∈ ΠN−1

k=0 (L2
Fk

)n×d such that

pk−1 = E (∇xH(k, x̄k, pk, qk, ūk)|Fk−1) ∀ k ∈ [1 : N − 1]

qik−1 = E
(
∇xH(k, x̄k, pk, qk, ūk)wik|Fk−1

)
∀ k ∈ [1 : N − 1], i ∈ [1 : d]

pN−1 = E (∇Φ(x̄N )|FN−1)

qiN−1 = E
(
∇Φ(x̄N )wiN |FN−1

)
∀ i ∈ [1 : d],

(6.8)

and

E

(
N−1∑
k=1

∇uH(k, x̄k, p̄k, q̄k, ūk) · vk

)
≥ 0 ∀ v ∈ TU (ū). (6.9)

If in addition K(U , ū) is convex, then (6.9) holds for all v ∈ K(U , ū).

Proof. By Lemma 6.2 and Theorem 3.1 there exists λ ∈ ΠN
k=0Xk such that

(0, 0) ∈ Df(x̄, ū) +Dg(x̄, ū)∗λ+ {0} ×NU (ū),

from which we deduce that for all z = (z0, . . . , zN ) ∈ ΠN
k=0Xk

Dxk
f(x̄, ū)zk +

∑N
j=0〈λj , Dxk

gj(x̄, ū)zk〉Xj
= 0 ∀ k = 0, . . . , N,

Duf(x̄, ū)v +
∑N
k=1〈λk, Dugk(x̄, ū)v〉Xk

≥ 0 ∀v ∈ TU (ū).
(6.10)

Lemma 6.2 and the first equation in (6.10) imply that for all k = 1, . . . , N − 1

E (`x(k, x̄k, ūk)zk) +
〈
λk+1, bx(k, x̄k, ūk)zk +

∑d
i=1 w

i
k+1σ

i
x(k, x̄k, ūk)zk

〉
Xk+1

= 〈λk, zk〉Xk
,

E (Φx(x̄N )zN ) = 〈λN , zN 〉XN
.

(6.11)

Setting

zk = y0
k−1 +

d∑
i=1

yik−1w
i
k ∈ Xk, λk = pk−1 +

d∑
i=1

qik−1w
i
k ∈ Xk,
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relation (6.11) yields

E (∇xH(k + 1, x̄k+1, pk+1, qk+1, ūk+1) · zk) = E
(
pk−1 · y0k−1 +

∑d
i=1 q

i
k−1 · yik−1

)
,

E (∇Φ(x̄N ) · zN ) = E
(
pN−1 · y0N−1 +

∑d
i=1 q

i
N−1 · yiN−1

)
.

(6.12)

Taking yik−1 = 0 for all i ∈ [1 : d] the first equation in (6.12) gives

E
(
∇xH(k + 1, x̄k+1, pk+1, qk+1, ūk+1) · y0

k−1

)
= E

(
pk−1 · y0

k−1

)
,

and so, since y0
k−1 ∈ L2

Fk−1
is arbitrary, by definition of conditional expectation w.r.t.

Fk−1, the first equality in (6.8) follows. Similarly, fixing ī ∈ [1 : d] and letting yik−1 = 0
for all i ∈ [0 : d] \ {j̄}, we obtain the second relation (6.8) for i = ī. The last two relations
in (6.8) follow by an analogous argument.
Finally, since for all k = 0, . . . , N − 1,

〈λk+1, Dugk+1(x̄, ū)v〉Xk+1
= E

(
pk · bu(k, x̄k, ūk)vk +

d∑
i=1

qik · σiu(k, x̄k, ūk)vk

)
,

relation (6.9) follows directly from the second relation in (6.10) and Lemma 6.2(ii). If
K(U , ū) is convex then Theorem 3.1(ii) ensures that the second relation in (6.10) holds
for all v ∈ K(U , ū), from which the last assertion of the theorem easily follows.

Remark 6.1 (i) The optimality system (6.8)-(6.9) has been first shown in [38] under
more restrictive assumptions on `, Φ, f , σ (see Assumption 1 in [38]) and the control
constraint set U (see [38, Section 3]). The results in Sections 3 and 4 allow us to prove a
more general result in a quite direct manner.

(ii) Similarly to the continuous case (see Section 5), it is easy to extend the results in this
section to the case where the initial state x̂0 is a decision variable subject to the constraint
x̂0 ∈ X0, where X0 is a closed subset of Rn. In this case, the optimality system is as
in Theorem 6.1 with the additional constraint on the adjoint state (called transversality
condition) −p0 ∈ NX0(x̂0).

(iii) Note that if {w1, . . . , wN} corresponds to a sequence of normalized increments of a d-
dimensional Brownian motion on a time grid in [0, T ] (T > 0), then, by suitably redefining
b and σ, problem (SPd) can be seen as an Euler discretization of (SP ). It is well known
that, under general assumptions, the optimal cost of (SPd) converges to the optimal cost
of (SP ), provided that the maximum time step of the grid tends to zero (see e.g. [5]).
Therefore, the analysis of the optimality system in Theorem 6.1 can be useful even if one
is interested in solving (SP ).
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