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Abstract
This paper deals with the non-uniqueness of the solutions of an analysis—Lasso reg-
ularization. Most previous works in this area are concerned with the case, where the
solution set is a singleton, or to derive guarantees to enforce uniqueness. Our main
contribution consists in providing a geometrical interpretation of a solution with a
maximal analysis support: such a solution abides in the relative interior of the solu-
tion set. Our result allows us to provide a way to exhibit a maximal solution using a
primal-dual interior point algorithm.

Keywords Lasso · Analysis sparsity · Uniqueness · Inverse problem · Support
identification · Barrier penalization

Mathematics Subject Classification 90C25 · 49J52

1 Introduction

This paper is concerned with solving linear inverse problems with a generalized spar-
sity constraint. More specifically, we provide a refined study of the solution set of the
analysis Lasso.

The linear model is widely used in imaging for degradation such as entry-wise
masking, convolution, etc, or in statistics under the nameof linear regression.Typically,
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this inverse problem is ill-posed, and one should add additional informations in order
to recover at least an approximation of the ground truth. During the last decade, sparse
regularization in orthogonal basis has become a classical tool in the analysis of such
inverse problems, in particular in imaging [1,2] or in statistics andmachine learning [3].
In this work, we consider the more general framework, known as the sparse analysis
prior [4,5], cosparse prior [6] or generalized Lasso. The idea is to not measure the
sparsity of the coefficients in an orthogonal basis only, but in any dictionary.

Probably the most popular example of analysis sparsity-inducing regularizer is the
total variation, which was introduced in [7] in a continuous setting for denoising. In
the discrete setting, it corresponds to taking the dictionary as a discretization of a
derivative operator. In the context of one-dimensional signals, a popular choice is to
take a forward finite difference operator. Other popular choices of dictionary include
translation invariant wavelets (which can be viewed as a higher-order total variation
following [8]) or the concatenation of a derivative operator with the identity, known
under the name of Fused Lasso [9] in statistics.

It is important to keep in mind that the solution set is typically not a singleton.
Most previous works in this area are concerned with the case, where the solution set
is a singleton, or aim at deriving guarantees to enforce uniqueness. Necessary and
sufficient conditions have been derived in [10,11] and also in [12] for the constrained
case. In this paper, we tackle the case, where the solution set is not a singleton, and we
want to better understand the structure of the solution set in this case. Some insights
are given in [13], but their results are limited to the synthesis case. In that work, the
authors give a bound on the size of the support and prove that the LARS algorithm
converges to a solution with a maximal support. To our knowledge, our work is the
first to address this structure in the context of analysis sparsity.

2 Problem Setting

We consider the problem of estimating an unknown vector x0 ∈ R
n from noisy

observations
y = Φx0 + w ∈ R

q , (1)

where Φ is a linear operator from R
n to R

q and w is the realization of a noise.
The sparsity of some coefficients x ∈ R

n is measured by using the counting func-
tion, or abusively �0 norm, which reads

‖x‖0 := Card(supp(x)), where supp(x) := {i ∈ {1, . . . , n} : xi �= 0}

is coined the support of the vector x and Card E denotes the cardinality of the set E .
The associated regularization problem to (1) is given by

Argmin
x∈Rn

1

2
‖y −Φx‖22 + λ ‖x‖0 ,

which is known to be NP-hard [14]. Oneway to alleviate this issue consists in adopting
greedy methods, such as the Matching Pursuit [15] or derivation from it such as the
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OMP [16], CoSAMP [17]. This will not be the concern of this paper, which focuses
on one of its most popular convex relaxation through the �1-norm. More precisely, we
consider the (synthesis) Lasso optimization problem [3]

Argmin
x∈Rn

1

2
‖y −Φx‖22 + λ ‖x‖1 , (2)

where the �1-norm is defined as ‖x‖1 =
n∑

i=1
|xi |.

In the more general framework of analysis regularization, a dictionary is used to
analyze the sparsity pattern of the solution set. Formally, a dictionary D is a linear
operator fromR

p toR
n which is defined through p n-dimensional atoms di whichmay

be redundant. Using this dictionary, one can build an analysis regularization ‖D∗·‖1
associated to the variational framework defined by

Xλ := Argmin
x∈Rn

h(x) = 1

2
‖y −Φx‖22 + λ

∥∥D∗x
∥∥
1 . (3)

When there is no noise, i.e., y = Φx0, it is common to use a constrained version
of (3) given by

X0 := Argmin
x∈Rn

∥∥D∗x
∥∥
1 subject to Φx = y. (4)

It has been first introduced in [1] under the name Basis Pursuit for D = Id, and one
can easily see that (4) can be recasted as a linear program (LP).

Suppose that someone aims to solve a problem1 of the form (3), and that running
two different algorithm, he obtains two solutions

x1 =
(
0

1

4

1

4
1 . . . 1

)
such that D∗x1 =

(
0

1

2

1

2
0 . . . 0

)
,

x2 =
(
0 0

1

2
1 . . . 1

)
such that D∗x2 =

(
1

4

1

4

1

2
0 . . . 0

)
.

He may be confused by the fact that the first component of D∗x2 is active, but not for
D∗x1. Indeed, the sparsity level (with respect to D∗) is different, and without more
information on the problem, it is impossible to know whether the first component is
relevant or not. This paper takes a worst-case approach:

– How to characterize a solution x� such that the support of D∗x� is maximal?
– Is it possible to give an algorithm to determine it?

We will provide a geometrical characterization of this specific notion of maximality,
and we will show that an interiorpoint method gives a maximal solution, without any
constraint on the initialization.

1 We come back in Sect. 6 to this example.
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3 Contributions

In all this paper, we consider the following hypothesis of restricted injectivity

Ker D∗ ∩ Ker Φ = {0} , (5)

It is not difficult to show that this condition is equivalent to the well-definedness
and boundedness of Xλ (it is equivalent to the coercivity of the objective function).
In Sect. 4, we review some properties of the solution set. We prove in particular that
Xλ is a polytope, i.e., a bounded polyhedron.

Our main contribution is proved in Sect. 5. It consists in providing a geometrical
interpretation of a solution with a maximal D-support, namely the fact that such a
solution lives in the relative interior of the solution set.

Definition 3.1 A vector x+ ∈ R
n is a solution of maximal D-support if x+ is a

solution, i.e., x+ ∈ Xλ, and for all x ∈ Xλ, ‖D∗x‖0 ≤
∥∥D∗x+

∥∥
0.

The set of solution of (3) which have maximal D-support will be denoted by Sλ.

Relation (5) ensures that this set is well-defined and is contained in Xλ.
Now, we are able to give a characterization of solutions with maximal D-support.

Theorem 3.1 Let x̄ ∈ Xλ. Then x̄ is a maximally D-supported solution if, and only if,
x̄ ∈ ri Xλ (or equivalently if x̄ ∈ ri Sλ). In other words,

Sλ = ri Sλ = ri Xλ.

Thus, our theorem gives not only a geometrical characterization of Sλ but also a
topological one namely the relative openness of Sλ. We recall that for any set S, the
relative interior ri S of S is defined as its interior with respect to the topology of the
affine hull of S.

Using this theorem, we provide a way to construct such maximal solutions. In
Sect. 6, we show that with the help of the classical barrier penalization, we build a
path which converges to a point in the relative interior of Xλ. We defer the precise
statement of this construction to Sect. 6.

4 The Solution Set

This section reviews some properties of the solution setXλ. The following proposition
shows that even if Xλ is not reduced to a singleton, its image by Φ or the analysis-�1-
norm is single-valued.

Proposition 4.1 (Unique image) Let x1, x2 ∈ Xλ. Then,

1. They share the same image by Φ, i.e., Φx1 = Φx2;
2. They have the same analysis-�1-norm, i.e.,

∥∥D∗x1
∥∥
1 =

∥∥D∗x2
∥∥
1.

A proof of this statement can be found for instance in [5] and Corollary A.2 in
“Appendix”.
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It is known that the standard �2-regularization suffers from sign inconsistencies,
i.e., two different solutions can be of opposite signs at some index. The following
proposition gives another important information: the cosign of two solutions cannot
be opposite.

Proposition 4.2 (Consistency of the sign) Let x1, x2 ∈ Xλ. Then,

∀i ∈ {1, . . . , p} , u1i u
2
i ≥ 0,

where uk = D∗xk for k = 1, 2.

Proof The proof of this statement follows closely the proof found in [18] for �1.
Suppose there exists i such that u1i and u2i have opposite signs. Then, one has

|u1i + u2i | < |u1i | + |u2i |. (6)

Let z = 1
2

(
x1 + x2

)
. Using the convexity of x 
→ ‖y −Φx‖22 and inequality (6), we

get

1

2
‖y −Φz‖22 + λ

∥∥D∗z
∥∥
1 ≤

1

2

[
1

2

∥∥∥y −Φx1
∥∥∥
2

2
+ 1

2

∥∥∥y −Φx2
∥∥∥
2

2

]

+ λ

2

n∑

j=1
|u1j + u2j |

<
1

2

[
1

2

∥∥∥y −Φx1
∥∥∥
2

2
+ 1

2

∥∥∥y −Φx2
∥∥∥
2

2

]

+ λ

2

n∑

j=1
|u1j | +

λ

2

n∑

j=1
|u2j |

= 1

2

(
1

2

∥∥∥y −Φx1
∥∥∥
2

2
+ λ

∥∥∥D∗x1
∥∥∥
1

)

+ 1

2

(
1

2

∥∥∥y −Φx2
∥∥∥
2

2
+ λ

∥∥∥D∗x2
∥∥∥
1

)

= min
x∈Rn

1

2
‖y −Φx‖22 + λ

∥∥D∗x
∥∥
1 ,

which is a contradiction. �

As it is said in the beginning of this section, condition (5) ensures non-emptiness,

convexity and compactness of Xλ. In fact, as stated in the following proposition, the
solution set Xλ is a polytope.

Proposition 4.3 Xλ is a polytope (i.e., a bounded polyhedron).

Proof It is a consequence of Proposition A.1 in “Appendix”. �
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Owing to Proposition 4.3, we can rewrite the set Xλ as the convex hull of k points
in R

n as
Xλ = conv {a1, . . . , ak} ,

where ai are the extremal points of Xλ. Observe that each ai lives on the boundary
of the analysis-�1-ball of radius ‖D∗ x̄‖1 where x̄ is any element of Xλ. Naturally, we
can even rewrite the solution as

Xλ = AΔk = {Az : z ∈ Δk} ,

where A is a matrix n × k such that its columns are the vectors ai and the n-simplex
Δn of R

n is defined as

Δn :=
{
x ∈ R

n :
n∑

i=1
xi = 1 and ∀i, xi ≥ 0

}
= conv {e1, . . . , en} ,

where (e1, . . . , en) is the canonical basis of R
n . Since ai are the extremal points of

Xλ, the matrix A has a maximal rank. Observe in particular that the lines of the matrix
D∗A have same signs according to Proposition 4.2.

5 Maximal Support and Proof of Theorem 3.1

The following proposition proves that the D-maximal support is indeed uniquely
defined.

Proposition 5.1 Let x ∈ Xλ. Then the two following assertions are equivalent.

1. x is a solution of maximal D-support, i.e., x ∈ Sλ.
2. For any x̄ ∈ Xλ, supp(D∗ x̄) ⊆ supp(D∗x).

In particular, two solutions of maximal support share the same D-support.

Proof The two directions are proved separately.
1. ⇒ 2.: Suppose there exists i0 ∈ {1, . . . , p} such that i0 ∈ supp(D∗ x̄) and

i0 /∈ supp(D∗x). Observe that x̃ = 1
2 (x̄ + x) is also an element of Xλ by convexity of

Xλ. Using Proposition 4.2, we get

supp(D∗ x̃) ⊇ supp(D∗ x̄) ∪ supp(D∗x).

In particular, supp(D∗ x̃) ⊇ supp(D∗x) ∪ {i0} � supp(D∗x). Hence,

Card(supp(D∗ x̃)) > Card(supp(D∗x)),

which contradicts the fact that x has maximal D-support.
2.⇒ 1.: This implication is obvious. �
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For x ∈ Sλ, we set

m = Card(supp(D∗x)). (7)

Note that, by definition of Sλ, m does not depend on the choice of x ∈ Sλ but only on
Sλ .

We start by a technical corollary of Proposition 4.2.

Corollary 5.1 Let x+ be an element of Sλ. Let Σ̃ be the permutation matrix associated
to a permutation σ̃ which maps supp(D∗x+) to {1, . . . ,m}. Define the permutation
σ : {1, . . . , p} → {1, . . . , p} by

σ(i) :=
{

σ̃ (i), if i ∈ {1, . . . ,m} ,
i, if i ∈ {m + 1, . . . , p} .

Let Σ be the permutation matrix associated to σ . Then there exists a matrix
Λ = diag(λi )i=1,...,p with λi ∈ {−1, 1} for i ∈ {1, . . . ,m} and λi = 0 for
i ∈ {m + 1, . . . , p} such that for Γ = ΛΣ , one has

Γ D∗Xλ ⊂ (R+)m × {0}p−m .

Moreover, for all x ∈ aff Xλ, ‖Γ D∗x‖1 = ‖D∗x‖1.
Proof Define the matrix Λ by its diagonal by

∀i ∈ {1, . . . ,m} , λi :=
{
1, if (D∗x+)σ−1(i) > 0,

−1, if (D∗x+)σ−1(i) < 0,

and λi = 0 for i ∈ {m + 1, . . . , p}.
Now, take any solution x ∈ Xλ and consider the vector u = Γ D∗x . Let i ∈

{1, . . . ,m}, then
ui =

〈
ei , ΛΣD∗x

〉
.

Since Λ is self-adjoint, one has

ui =
〈
Λei , ΣD∗x

〉
.

As Λ is diagonal, we get
ui = λi

〈
ei , ΣD∗x

〉
.

Using the fact that Σ is a permutation matrix, we have Σ∗ = Σ−1, that is,

ui = λi

〈
Σ−1ei , D∗x

〉
.

The permutation σ associated to Σ leads to

ui = λi
〈
eσ−1(i), D∗x

〉 = λi (D
∗x)σ−1(i).
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According to Proposition 4.2, one has (D∗x)σ−1(i)(D∗x+)σ−1(i) ≥ 0. Moreover,
λi has the same sign as (D∗x+)σ−1(i). Thus, ui = λi (D∗x)σ−1(i) ≥ 0. For
i ∈ {m + 1, . . . , p}, λi = 0 and hence ui = 0.

The equality ‖Γ D∗x‖1 = ‖D∗x‖1, with x ∈ Xλ, follows from the inclusion
supp(D∗x) ⊆ supp(D∗x+) and the fact that the �1-norm is invariant by permutation
and change of signs. �

Note that the matrix Λ and Σ are not uniquely defined. Corollary 5.1 allows us to
work only on m−dimensional positive vectors.

We will also need to exclude at some point the case where a solution x lives in the
kernel of D∗. The following lemma shows that if this is the case, then the solution set
Xλ is a singleton.

Lemma 5.1 If Ker D∗ ∩ Xλ �= ∅, then Xλ is a singleton.

Proof Let x ∈ Ker D∗ ∩ Xλ. We recall that Xλ ⊂ x + Ker Φ. Pick x̄ ∈ Xλ, and
rewrite it as x̄ = x + h where h ∈ Ker Φ. Then, according to Proposition 4.1, one
has ‖D∗ x̄‖1 = ‖D∗x‖1 = 0. In particular, ‖D∗x + D∗h‖1 = ‖D∗h‖1 = 0. Using
hypothesis (5), we get h = 0. �


We can now provide the proof of Theorem 3.1.

Proof of Theorem 3.1 We exclude here the case whereXλ is a singleton, since the result
is then trivially verified. Let us prove both direction separately.

(⇐: ri Xλ ⊆ Sλ). First, we recall that ri Xλ = ri (AΔk) = A ri Δk . Let x̄ ∈ ri Xλ.
We have

x̄ = Az̄ with
k∑

i=1
z̄i = 1 and z̄i > 0.

Given i ∈ {1, . . . ,m} we shall prove (Γ D∗ x̄)i �= 0. So suppose the contrary, i.e.,
(Γ D∗ x̄)i = 0. Then we have

(Γ D∗ x̄)i = (Γ D∗Az̄)i =
〈
ei , Γ D∗Az̄

〉 = 〈ei , ΛΣD∗Az̄
〉
,

where x+, m, Γ and Σ are given by Corollary 5.1. Using the fact that Λ is a diagonal
matrix and Σ is a permutation matrix, we obtain

(Γ D∗ x̄)i = λi

〈
DΣ−1ei , Az̄

〉
.

As Σ−1ei = eσ−1(i), where σ is the permutation associated to Σ , we get

0 = (Γ D∗ x̄)i = λi
〈
(D∗A)∗eσ−1(i), z̄

〉
.

By construction of Λ, we have λi ∈ {−1, 1} and hence

〈
(D∗A)∗eσ−1(i), z̄

〉 = 0.
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By definition of z̄, z̄ j > 0, ∀ j ∈ {1, . . . , k}, and according to Proposition 4.2, we
necessarily have

0 = ((D∗A)∗eσ−1(i)
)
j
= 〈(D∗A)∗eσ−1(i), e j

〉 = 〈eσ−1(i), D∗a j
〉
,

for any extremal point a j of Xλ. Thus
〈
eσ−1(i), D∗x

〉 = 0, ∀x ∈ Sλ(⊂ Xλ), which
contradicts the fact that i belongs to {1, . . . ,m}. Thus (Γ D∗ x̄)i �= 0 and this asserts
that σ−1(i) ∈ supp(D∗ x̄) because (Γ D∗ x̄)i = λi (D∗ x̄)σ−1(i).

Hence, supp(D∗ x̄) ⊇ supp(D∗x+) and then x̄ ∈ Sλ.

(⇒: Sλ ⊆ ri Xλ). We are going to prove that Sλ = ri Sλ. Indeed, according to
(⇐), ri Xλ ⊆ Sλ. Moreover, since every element of Sλ is also an element of Xλ, we
have ri Xλ ⊆ Sλ ⊆ Xλ. In particular, aff Xλ = aff Sλ.
Let x+ ∈ Sλ and let Γ be its associated matrix (see Corollary 5.1). Put

α = min
i∈supp(D∗x+)

|(D∗x+)i | = min
i∈{1,...,m}(Γ D∗x+)i .

Since Xλ is not reduced to a singleton and non-empty, then supp(D∗x+) has cardinal
greater than 1, hence α > 0.

Now take any u ∈ B∞(x+, r) ∩ aff Xλ where B∞(x+, r) is the �∞-ball centered
at x+ with radius r defined by

r = α − ε

‖Γ D∗‖∞,∞
and

∥∥Γ D∗
∥∥∞,∞ = max‖z‖∞≤1

∥∥Γ D∗z
∥∥∞ ,

for ε ∈]0, α[.
Let’s prove first that Γ D∗u ∈ (R∗+)m × {0}p−m . From the definition of u, we get

∥∥Γ D∗u − Γ D∗x+
∥∥∞ ≤

∥∥Γ D∗
∥∥∞,∞

∥∥u − x+
∥∥∞ ≤ α − ε.

For i ∈ {1, . . . ,m}, one has |(Γ D∗u)i − (Γ D∗x+)i | ≤ α − ε, in particular

(Γ D∗u)i − (Γ D∗x+)i ≥ −α + ε ⇔ (Γ D∗u)i ≥ (Γ D∗x+)i − α + ε.

Since (Γ D∗x+)i − α ≥ 0 and ε > 0, we conclude that (Γ D∗u)i > 0. Thus,
(Γ D∗u)i > 0 for i ∈ {1, . . . ,m} and (Γ D∗u)i = 0 for i /∈ {1, . . . ,m}.

It remains to prove that u is a solution of (3), i.e., u ∈ Xλ. Since u ∈ aff Xλ, there
exist t ∈ R and x ∈ Xλ such that

u = x+ + t(x − x+).

From this equality, we get

∥∥D∗u
∥∥
1 =

∥∥Γ D∗u
∥∥
1 =

p∑

i=1
(Γ D∗u)i according to Corollary 5.1
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=
p∑

i=1
(1− t)(Γ D∗x+)i + t(Γ D∗x)i

= (1− t)
∥∥Γ D∗x+

∥∥
1 + t

∥∥Γ D∗x
∥∥
1

= ∥∥D∗x+∥∥1 because
∥∥D∗x+

∥∥
1 =

∥∥D∗x
∥∥
1 .

Moreover, Φu = Φx+ + t(Φx −Φx+) = Φx+. Thus, u is a solution and the proof
is completed. �


6 Finding aMaximal Solution

Using the classical barrier function, in this section we show how to get a path that
converges to a relative interior point of Xλ, which turns out to be the analytic center
of Xλ.

6.1 A Barrier Approach

Setting Q = Φ∗Φ being the Gram matrix and c = Φ∗y, we start by rewriting our
initial problem Equation (3) as an augmented quadratic program under constraints,
i.e.,

min
x∈Rn ,t∈Rp

1

2
〈Qx, x〉 − 〈c, x〉 + λ

p∑

i=1
ti subject to

{
−t ≤ D∗x ≤ t

t ≥ 0
,

witch also can be rewritten as

min
x∈Rn ,t∈Rp

1

2
〈Qx, x〉 − 〈c, x〉 + λ

p∑

i=1
ti subject to

⎧
⎪⎨

⎪⎩

−t + s = D∗x
t − s′ = D∗x
t ≥ 0, s ≥ 0, s′ ≥ 0

.

Now observe that t = 1

2
(s + s′). Then setting z = 1

2

(
s
s′
)
, Ip the p by p iden-

tity matrix, Ĩ = (
Ip −Ip

)
and e = (1, · · · , 1) ∈ R

2p, we come to the following
equivalent formulation of the problem

min
x∈Rn ,z∈R2p

f (x, z) subject to z ∈ [0,+∞[2p (8)

where

f (x, z) =
{ 1

2
〈Qx, x〉 − 〈c, x〉 + λ 〈e, z〉 , if D∗x + Ĩ z = 0,

+∞, elsewhere,
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or equivalently

f (x, z) =
{ 1

2
‖Φx − y‖2 − 1

2
‖y‖2 + λ 〈e, z〉 , if D∗x + Ĩ z = 0,

+∞, elsewhere.

Its classical dual is

max
x∈Rn ,s∈R2p,u∈Rp

g(x, s, u) subject to s ∈ [0,+∞[2p (9)

where

g(x, s, u) =
{
−1

2
〈Qx, x〉, if Du + c − Qx = 0, s = λe − Ĩ ∗u,

−∞, elsewhere.

We set S(P) [resp. S(D)] the optimal solution set of problem (8) [resp. problem (9)].
We know thatXλ is non-empty and so S(P). Since, in addition (8) is a convex problem
with polyhedral constraints, S(D) is non-empty and there is no duality gap. We denote
by α the optimal value of the two problems and recall for all the following that given
a lower semicontinuous real-valued extended convex function h on R

l , its recession
function can be defined by (Theorem 8.5 of [19])

h∞(d) := lim
λ↑+∞

h(z + λd)− h(z)

λ
, ∀(z, d) ∈ dom(h)× R

l .

Proposition 6.1 1. The optimal solution S(P) of the problem (8) is bounded or equiv-
alently the set {(dx , dz) : f∞(dx , dz) ≤ 0, dz ≥ 0} = {0},

2. S(., (D)) = {(s, u) : ∃x ∈ R
n such that (x, s, u) ∈ S(D)} is bounded, in other

words, the dual feasible solution set is bounded in (s, u).

Proof 1. Because of relation (5), it is not difficult to show that the optimal solution
S(P) of the problem (8) is bounded.

2. Let (xk, sk, uk) be a sequence of the dual feasible solution set. We have sk =
λe − Ĩ ∗u =

(
λep

λep

)
−
(
uk

−uk
)
≥ 0, where ep = (1, . . . 1) ∈ R

p. It follows that

−λep ≤ uk ≤ λep. Hence (uk) and then (sk) are bounded. �


Using the classical logarithmic barrier function introduced by Frish [20], we deal
with the family of problems (Pμ)μ>0 given by

θ(μ) = min
x∈Rn ,z∈R2p

Fμ(x, z) = f (x, z)+ ζ(z, μ),
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where

ζ(z, μ) =
⎧
⎨

⎩

μξ (z/μ) , if μ > 0,
ξ∞(z), if μ = 0,
+∞, elsewhere,

ξ(z) =
{− ln ϕ(z), if ϕ(z) > 0,
+∞, elsewhere,

and ϕ(z) =

⎧
⎪⎨

⎪⎩

(
2p∏
i=1

zi

) 1
2p

, if z ≥ 0,

−∞, elsewhere.

Note that the function ϕ is strictly quasiconcave and then according to Lemma 1 of
[21], for every μ > 0, the function ζμ : z 
→ ζ(z, μ) is strictly convex on ]0,+∞[2p.

Proposition 6.2 For every μ > 0, the function Fμ is inf-compact on R
n × R

2p and
strictly convex on R

n×]0,+∞[2p.
Proof Let us show that

ξ∞(d) =
{
0 if d ≥ 0,
+∞ elsewhere.

(10)

Let (z, d) ∈ dom(ξ)× R
2p. We have necessarily z > 0. First, we observe that when

d /∈ [0,+∞[2p, z + λd /∈ [0,+∞[2p for λ large enough and then ξ∞(d) = +∞.
Now, consider the case d ≥ 0. Since z > 0 we have necessarily z + d > 0. The
concave gauge function ϕ is monotone with respect to its domain, the positive orthant.
Then, Proposition 2.1 of [22],

0 < ϕ(z + d) ≤ ϕ(z + λd) ≤ ϕ(λz + λd) = λϕ(z + d)

for λ large enough. It follows that

0 = lim
λ↑+∞

ln ϕ(z + d)− ln ϕ(z)

λ
≤ lim

λ↑+∞
ln ϕ(z + λd)− ln ϕ(z)

λ

≤ lim
λ↑+∞

ln λϕ(z + d)− ln ϕ(z)

λ
= 0,

and hence lim
λ↑+∞

ln ϕ(z + λd)− ln ϕ(z)

λ
= 0. Consequently ξ∞(d) = 0.

By Proposition 6.1, we have {(dx , dz) : f∞(dx , dz) ≤ 0, dz ≥ 0} = {(0, 0)}. Thus
{(dx , dz) : Fμ∞(dx , dz) ≤ 0, dz ≥ 0} = {(0, 0)}, or equivalently, Fμ is inf-compact.

Now let us proceed to prove the strict convexity of Fμ. Take (x, z) �= (x ′, z′)
in R

n×]0,+∞[2p and t ∈]0, 1[. In the case where z �= z′, by strict convexity of
ζμ on ]0,+∞[2p we have necessarily Fμ(t(x, z) + (1 − t)(x ′, z′)) < t Fμ(x, z) +
(1 − t)Fμ(x ′, z′). Assume that z = z′. Using (5) and the definition of f , we obtain
Φx �= Φx ′ and the result follows by using the strict convexity of ‖.‖22. �
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Propositions 6.2 and 6.1 assert that for every μ > 0 there is a unique optimal solution
(x(μ), z(μ)) to (Pμ). Moreover using the fact that Fμ(x, ·) is a barrier function for
every x ∈ R

n , z(μ) > 0. Consider the function γ : R
n × [0,+∞[2p×[0,+∞[→

R ∪ {+∞} defined by

γ (x, z, μ) = Fμ(x, z).

Then we have the following proposition.

Proposition 6.3 The function γ is convex and lsc on R
n × R

2p × [0,+∞[. It is inf-
compact on R

n × R
2p × [0, μ], for all μ > 0 being fixed. Moreover, θ is convex

and continuous on [0,+∞[, θ(0) = α and f (x, z) = γ (x, z, 0), for all (x, z) ∈
R
n×]0,+∞[2p.

Proof It is known that the function ζ is convex on R
2p × [0,+∞[ and so is γ .

The function θ is then convex on [0,+∞[ as the infimum over (x, z) of a convex
function in (x, z, μ). Now, the function ζ(z, .) is continuous on [0,+∞[ and, because
of (10), ζ(z, 0) = 0 for all z ∈]0,+∞[2p. Thus f (x, z) = γ (x, z, 0) for all (x, z) ∈
R
n×]0,+∞[2p and therefore θ(0) = α [the optimal value of problem (8)]. Set γ̃ =

γ|Rn×R2p×[0,μ] the restrictionofγ to the setRn×R
2p×[0, μ]. Then, byProposition6.1,

{(dx , dz, μ) : γ̃∞(dx , dz, μ) ≤ 0, dz ≥ 0, μ = 0}
= {(dx , dz, 0) : f∞(dx , dz) ≤ 0, dz ≥ 0}
= {(0, 0, 0)}.

The function γ is then inf-compact on R
n × R

2p × [0, μ]. Consequently, there is
a compact S̃ such that (x(μ), z(μ)) ∈ S̃, ∀μ ∈]0, μ], i.e., (x(μ), z(μ))μ∈(0,μ) is
bounded. We established that θ is convex on [0,+∞[. It is then continuous on
]0,+∞[. Let us show now that lim

μ↓0 θ(μ) = θ(0) = α. In this respect, we shall

prove that lim
μ↓0μ ln

(
ϕ(z(μ))

μ

)
= 0. Let (μk)k∈N be a positive sequence such that

lim
k↑+∞μk = 0. We established that (x(μ), z(μ))μ∈]0,μ] is bounded. It follows that the

set {(x(μk), z(μk))} contains a subsequence converging to a point (x̃, z̃). In the case,
where z̃ > 0 the result is obvious. Assume that ϕ(z̃) = 0. Then, for k sufficiently
large, one has

α − μk ln

(
ϕ(z)

μk

)
≤ θ(μk) = f

(
x(μk), z(μk)

)
− μk ln

(
ϕ(z(μk))

μk

)

≤ f (x, z)− μk ln

(
ϕ(z)

μk

)
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for every (x, z) satisfying z > 0. Since lim
k↑0 μk ln

(
ϕ(z)

μk

)
= 0, we have

α ≤ lim inf
k↑+∞ θ(μk) ≤ f (x, z)

and then

α ≤ lim sup
k↑+∞

θ(μk) ≤ inf
x,z
{ f (x, z) : z > 0} = inf

x,z
{ f (x, z) : z ≥ 0} = α.

Consequently, lim
k↑+∞ θ(μk) = α. �


Given μ > 0, the KKT optimality conditions for the problem (Pμ) can be formu-
lated, for some u ∈ R

p, as

Qx(μ)− c − Du = 0,

λe − μ

2p
(Z(μ))−1e − Ĩ ∗u = 0,

D∗x(μ)+ Ĩ z(μ) = 0,

where Z(μ) = diag(z(μ)). Observe that u is necessarily unique. Put

u = u(μ) and s(μ) = μ

2p
Z−1(μ)e.

We rewrite the KKT conditions as

Qx(μ)− c − Du(μ) = 0, (E1)
λe − s(μ)− Ĩ ∗u(μ) = 0, (E2)

Z(μ)s(μ) = μ

2p
e, (E3)

D∗x(μ)+ Ĩ z(μ) = 0. (E4)

Proposition 6.4 For every μ > 0, (s(μ), u(μ)) is a feasible solution to (9) and(
(s(μ), u(μ)

)
μ∈]0,μ] is bounded.

Proof By (E1), (E2) and the fact that s(μ) = μ

2p
(Z(μ))−1e > 0, (u(μ), s(μ)) is

a feasible solution to (9). The boundedness of (s(μ), u(μ))μ∈(0,μ] is due to Proposi-
tion 6.1. �


Set I =
⋃

z∈S(.,(P))

I (z) and J =
⋃

s∈S(.,(D))

J (s), where

S(., (P)) = {z : ∃x ∈ R
n such that (x, z) ∈ S(P)

}
,

S(., (D)) = {s : ∃u ∈ R
p such that (s, u) ∈ S(D)

}
,
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and I (z) = {i : zi > 0} and J (s) = {i : si > 0} are the supports of z and s,
respectively.

Lemma 6.1 There is at least one couple (ẑ, ŝ) ∈ S(., (P)) × S(., (D)) such that
I = I (ẑ) and J = J (ŝ).

Proof We have I a subset of a finite set {1, . . . , 2p}. Let us consider the k-tuple
(z1, z2, . . . , zk) ∈ S(., (P))k , for some k ∈ {1, 2, . . . , 2p} satisfying I = I

(
z1
) ∪

I
(
z2
) ∪ · · · ∪ I

(
zk
)
. Set ẑ = 1

k

(
z1 + z2 + · · · + zk

)
. Since S(., (P)) is convex

ẑ ∈ S(., (P)). So it is easy to see that I (zi ) ⊂ I (ẑ), ∀i ∈ {1, 2, . . . , k}. The result
then follows. The vector ŝ is constructed in a similar way. �

Observe that every optimal solution (x, z) of the problem (8) satisfying I (z) = I
is in the relative interior of S(P). Similarly, every optimal solution (x, s, u) of the
problem (9) satisfying J (s) = J is in the relative interior of S(D).

Set

(x, z) =
argmax

{
ϕI (zI ) :

1

2
〈Qx, x〉 − 〈c, x〉 + λ〈e, z〉 = α, D∗x + Ĩ z = 0, z J = 0

}
,

where

ϕI (zI ) =

⎧
⎪⎨

⎪⎩

(
∏

i∈I
zi

) 1
Card(I )

, if z J ∈]0,+∞[Card(J ),

−∞, elsewhere.

Symmetrically, we set

(s, u) = argmax
{
ϕJ (sJ ) : s = λe − Ĩ ∗u, Du + c − Qx = 0, sI = 0

}
,

where

ϕJ (sJ ) =

⎧
⎪⎨

⎪⎩

(
∏

i∈J
si

) 1
Card(J )

, if sJ ∈]0,+∞[Card(J ),

−∞, elsewhere.

(x, z) is called the analytic center2 of (8) and (x, s, u) the analytic center of (9).
The uniqueness is ensured by the strict quasiconcavity of functions ϕI and ϕJ on the
interior of their respective domain and the assumption (5).

2 A generalization of the central path and the analytic center is proposed in [21] by using the so-called
concave gauge functions.
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6.2 Convergence to aMaximal Solution

We now give an important result concerning the convergence of the path toward an
element of the relative interior of the solution set. Its proof is inspired in part by those
of Theorems I.7 and I.9 in [23].

Theorem 6.1 Under assumption (5), we have

lim
μ↓0(x(μ), z(μ), s(μ), u(μ)) = (x, z, s, u).

Moreover, (x, z) and (x, s, u) belong to the relative interior of S(P) and S(D), respec-
tively.

Proof According to Propositions 6.3 and 6.4, the nets
(
(x(μ), z(μ)

)
μ∈]0,μ] and

(
(s(μ), u(μ)

)
μ∈]0,μ] are bounded. Let (μk)k∈N a positive increasing sequence sat-

isfying

lim
k↑+∞μk = 0 and lim

k↑+∞

(
x(μk), z(μk), s(μk), u(μk)

)
= (x̃, z̃, s̃, ũ).

Then replacing μ by μk in (E1)−(E4) and letting k tend to+∞, we observe that the
pair {(x̃, z̃), (x̃, s̃, ũ)} satisfies the KKT optimality conditions of (8) and then it is a
primal-dual optimal solution pair of (8). Let us show now that I (z̃) = I and J (s̃) = J .
Now by (E1), (E2) and (E4) we have

(
x(μk)− x
z(μk)− z

)
∈ Ker

(
D∗ Ĩ

)
and

(
Q(x(μk)− x)
−(s(μk)− s)

)
∈ �
(
D
Ĩ ∗
)

.

Then using the following orthogonality property

Ker
(
D∗ Ĩ

) =
[
�
(
D
Ĩ ∗
)]⊥

, (11)

(E3) and the fact that 〈z, s〉 = 〈z̃, s̃〉 = 0 we have

〈z, s(μk)〉 + 〈s, z(μk)〉 = μk − 〈Q(x(μk)− x), x(μk)− x〉.
Since in addition I (z) = I , J (s) = J and Q is positive semi-definite we get

∑

i∈I
zi s(μ

k)i +
∑

i∈J
si z(μ

k)i = μk − 〈Q(x(μk)− x̃), x(μk)− x̃〉 ≤ μk .

But from (E3), z(μk)i s(μk)i = μk

2p
, for all i . It follows that

∑

i∈J

si
s(μk)i

+
∑

i∈I

zi
z(μk)i

≤ 2p.
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Now, let k tending to +∞, we get on the one hand

0 <
∑

i∈J

si
s̃i
+
∑

i∈I

zi
z̃i
≤ 2p < +∞

and then, by construction of I and J , we have necessarily I (z̃) = I and J (s̃) = J .
On the other hand, using the arithmetic-geometric mean inequality we get

⎛

⎝
∏

i∈J

s

s̃i

∏

i∈I

z

z̃i

⎞

⎠

1
2p

≤ 1

2p

⎛

⎝
∑

i∈J

s

s̃i
+
∑

i∈I

z

z̃i

⎞

⎠ ≤ 1

and then

ϕJ (s J )ϕI (z I ) ≤ ϕJ (s̃J )ϕI (z̃ I ).

But, by definition of (x, z, s, u), ϕJ (s̃J ) ≤ ϕJ (s J ) and ϕI (z̃ I ) ≤ ϕI (z I ). The result
then follows. �


Consequently, the following corollary holds

Corollary 6.1 Under assumption (5), we have lim
μ↓0 x(μ) = x̄ ∈ ri Xλ.

Proof By Theorem 6.1, (x, z) belongs to the relative interior of S(P) and hence
x belongs to the linear projection of the relative interior of S(P), which is equal to
ri Xλ. �

Using this analysis, we propose an algorithm directly adapted from the Predictor-
corrector Mehrotra’s algorithm [24]. The pseudo-code is given in Algorithm 1. The
user is expected to give an initialization point (x0, z0, u0, s0) satisfying z0 > 0 and
s0 > 0, the scenario Φ, D∗, y, a stopping criterion ε > 0, and a relaxation parameter
η ∈]0, 1[.

6.3 Non-uniqueness Examples

We now provide examples of non-uniqueness and discuss the behavior of the proposed
algorithm.
Example for the Lasso. To illustrate our theoretical results, we consider at first a very
simple scenario in R

2 to R. Let D = Id2, Φ = (1 1), y = 1 and λ > 0. The
first-order conditions read as follow

x1 + x2 − 1+ λs1 = 0 and x1 + x2 − 1+ λs2 = 0

where s ∈ ∂‖ · ‖1. We can rewrite it as

s1 = − x1 + x2 − 1

λ
and s2 = − x1 + x2 − 1

λ
.
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Algorithm 1 Adapted predictor–corrector Mehrotra’s algorithm

Input: (x0, z0, u0, s0), Φ, D∗, y, ε > 0, η ∈]0, 1[
Q ← Φ∗Φ, c← Φ∗y
Set complementarity measure

r1 ← Qx − c − Du, r2 ← λe − s − Ĩ∗u, r3 ← Zs, r4 ← D∗x + Ĩ z.

μ ← 〈z, s〉
2p

while max{‖r1‖2, ‖r2‖2, ‖r3‖2, ‖r4‖2} > ε do
Compute the affine scaling direction (dax , daz , dau , das ) by solving the system

Qdax − Ddau = −r1
−das − Ĩ∗dau = −r2
Sdaz + Zdas = −r3
D∗dax + Ĩ daz = −r4,

tamax ← max{t ≥ 0 : z + tdaz ≥ 0, s + das ≥ 0}
μa ← 〈z + tamaxd

a
z , s + tamaxds 〉
2p

σ ←
(

μa

μ

)3
" centering parameter

Compute corrector and centering direction (dcx , d
c
z , d

c
u , dcs ) by solving

Qdcx − Ddcu = 0
−dcs − Ĩ∗dcu = 0
Sdcz + Zdcs = −Da

z d
a
s + σμe

D∗dax + Ĩ daz = 0,

where Da
z = diag(daz )

(dx , dz , du , ds )← (dax , daz , dau , das )+ (dcx , d
c
z , d

c
u , dcs ) " predictor direction

tmax ← max{t ≥ 0 : z + tdz ≥ 0, s + ds ≥ 0}
(x, z, u, s) ← (x, z, u, s)+ ηtmax(dx , dz , du , ds )
Update complementarity measure

r1 ← Qx − c − Du, r2 ← λe − s − Ĩ∗u, r3 ← Zs, r4 ← D∗x + Ĩ z.

end while

Using the classical criterion, we know that for λ ≥ ‖Φ∗y‖∞, the unique solution of
the problem is equal to zero. Here,Φ∗y = (1 1)∗. Hence, for any λ > 1, the solution
is (0, 0). Thus, we restrict our attention to λ ∈]0, 1[. Observe that for any λ ∈]0, 1[,
the vectors (1− λ 0)∗ and (0 1− λ)∗ are solutions. Now, since any solution shares
the same image by Φ and the same �1-norm, we have that for any x ∈ Xλ,

x1 + x2 = 1− λ and |x1| + |x2| = x1 + x2 = 1− λ.

It means that the solution set is the segment defined by (1− λ 0)∗ and (0 1− λ)∗.
Figure 1 represents the evolution of the primal iterate on the plane R

2 for λ = 1
2 . We

remark that contrary to other algorithms which are sensitive to the initialization (such
as an iterative soft–thresholding), the proposed barrier method converges to a solution
in the relative interior, independently of the initialization.
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(a) (b)

Fig. 1 Algorithm path. The red line corresponds to the solution set Xλ, the blue line is the algorithm path
for x0 = (0.7 0)∗ and the green line for x0 obtained by a least-square approximation

When D is not the identity Let us consider now the following scenario in R
3. Let

D∗ =
⎛

⎝
1 1 0
1 0 1
2 1 1

⎞

⎠ , Φ =
⎛

⎝
1 1 1
3 1 1√
2 0 0

⎞

⎠ , y =
⎛

⎝
1
1
0

⎞

⎠ and λ = 1

2
. (12)

We prove that a necessary and sufficient condition that x is an optimal solution is that
x1 = 0, x2 + x3 = 1

2 , x2 ≥ 0 and x3 ≥ 0. So we get

Xλ = conv

{(
0

1

2
0

)∗
,

(
0 0

1

2

)∗}
.

Obtaining Examples in Higher DimensionsWe know explain how the example in the
introduction was constructed. It is easy to see that if

Φ =
(

Φ1 0
0 Φ2

)
, D∗ =

(
D∗1 0
0 D∗2

)
, and y =

(
y1
y2

)
,

then the solution set Xλ is given by

X1
λ ⊗ X2

λ =
{
(x1, x2) ∈ R

n1+n2 : x1 ∈ X1
λ, x2 ∈ X2

λ

}
,

whereXi
λ ⊆ R

ni is the solution of min
x

1

2
‖yi −Φi x‖22+λ

∥∥D∗i x
∥∥
1. Now, take λ = 1

2 ,

Φ1, D∗1 and y1 as explicited in (12), and take k ≥ 2,

123



Journal of Optimization Theory and Applications

(a) (b)

Fig. 2 Behavior of Algorithm 1 for p = 3000 with 100 realizations of random initializations. aMean values
of the objective function (blue), dual gap (orange), primal satisfiability norm (green) and dual satisfiability
(red) toward convergence in log scale. b Box plot of the dual satisfiability in log scale. Green line indicates
the mean value, black line min and max value, and the box indicates the empirical standard deviation

Φ2 = Idk, D∗2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 . . . . . . 0

0 1 −1 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . . 1 −1 0

0 . . . . . . 0 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and y2 =
⎛

⎜⎝
1
...

1

⎞

⎟⎠ . (13)

Clearly,X2
λ = {y2}. Thus, taking the product betweenX1

λ andX
2
λ, we obtain solutions

such as described in the introduction.
The behavior of the Interiorpoint Method Thanks to the previous remark, we build an
artificial example where the scenario is 1000 partial copy of (13), where we change
the value Φ3,1, i.e.,

D∗ =
1000⊗

i=1

⎛

⎝
1 1 0
1 0 1
2 1 1

⎞

⎠ , Φ =
1000⊗

i=1

⎛

⎝
1 1 1
3 1 1√
1+ i 0 0

⎞

⎠ , y =
1000⊗

i=1

⎛

⎝
1
1
0

⎞

⎠ ,

hence y ∈ R
3000, D, Φ ∈ R

3000×3000. Analytically, we show that the solution Xλ is
given by

Xλ =
1000⊗

i=1
conv

{(
0

1

2
0

)∗
,

(
0 0

1

2

)∗}
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= conv

{
1000⊗

i=1

(
0

1

2
0

)∗
,

1000⊗

i=1

(
0 0

1

2

)∗}
.

During the execution of the algorithm,wemonitor several values: value of the objective
function h(x) = 1

2 ‖y −Φx‖22 + λ ‖D∗x‖1, value of the dual gap, feasibility of the
primal problem (‖r4‖) and feasibility of the dual problem (max(‖r1‖ , ‖r2‖)). We
show in Fig. 2 the decay of these values with respect to 100 realizations of a Gaussian
random vector as initialization. We observe an empirical fast convergence rate, and
the algorithm satisfies the stopping criterion around iteration 13.

7 Conclusions

As we can see, the geometric characterization of Xλ, the optimal solution set of (3),
played a central role in the topological characterization of Sλ, the maximal D-support
optimal solution set of (3). The topological characterization of Sλ via Theorem 3.1
is particularly interesting in practice. Indeed, to determine an element of Sλ, the fact
that Sλ = ri Xλ, our main result, has naturally suggested turning to a method of the
interior points type, well known to be effective and robust in linear and quadratic
programming.

Appendix

In this section, we propose to express some of our results in a general framework.
More precisely, we consider the following optimization problem

min
x∈E{ f (x)+ g(x)}. (14)

where E is a Banach space, f , g : E 
→ R∪ {+∞} are convex lower semicontinuous
functions. The dual space of E and the pairing between E and E∗ will be denoted by
E∗ and 〈·, ·〉, respectively. The Fenchel subdifferential of f at x̄ is defined by

∂ f (x̄) := {x∗ ∈ E∗ : 〈x∗, x − x̄〉 ≤ f (x)− f (x̄)∀x ∈ E}.

The aim of the following proposition is to give a characterization of solutions of the
problem (14).

Proposition A.1 Let x̄ ∈ E be a fixed solution of the problem (14) and x∗ ∈ ∂g(x̄) be
such that −x∗ ∈ ∂ f (x̄). Then the following assertions are equivalent:

(1) u is a solution of the problem (14),
(2) g(u) ≤ g(x̄)+ 〈x∗, u − x̄〉 and u is a solution of the problem

min
x∈E{ f (x)+ 〈x

∗, x〉}. (15)
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Consequently, if {x ∈ E : g(x) ≤ g(x̄) + 〈x∗, x − x̄〉} is a polyhedral set and the
function f is polyhedral (supremumof a finite affine family), then so isArgmin

x∈Rn
{ f (x)+

g(x)}.

Proof Since the implication (2) %⇒ (1) is obvious, wewill establish only the implica-
tion (1) %⇒ (2). First note that, because of our assumptions, assertion (2) is equivalent
to say that x∗ ∈ ∂g(u) and −x∗ ∈ ∂ f (u). So if u is a solution of the problem (14),
we have

f (u)+ g(u) = f (x̄)+ g(x̄). (16)

Since x∗ ∈ ∂g(x̄) and −x∗ ∈ ∂ f (x̄), we easily obtain, by using relation (16), that
x∗ ∈ ∂g(u) and −x∗ ∈ ∂ f (u) and the proof is completed. �


A particular and interesting case is the Hilbert setting with a special form of g.

Corollary A.1 Suppose that E (resp. F) is a Hilbert endowed with a scalar product
denoted by 〈·, ·〉 and the associated norm ‖ · ‖. Let Φ : E 
→ F be a linear continuous
operator and y ∈ F. Define the function g : E 
→ R by

g(x) = 1

2
‖Φx − y‖2.

Let x̄ ∈ E be a fixed solution of the problem (14) and put x∗ = Φ∗(Φ x̄ − y). Then
the following assertions are equivalent:

(1) u is a solution of the problem (14),
(2) Φu = Φ x̄ and u is a solution of the problem

min
x∈E{ f (x)+ 〈x

∗, x〉}. (17)

Consequently, each solution u of the problem (14) satisfies Φu = Φ x̄ and f (u) =
f (x̄).

Proof It suffices to see that the (in)equality g(u) ≤ g(x̄) + 〈x∗, u − x̄〉 is equivalent
to Φu = Φ x̄ and to apply Proposition A.1. �


The following corollary asserts that knowing one solution of (14), we can determine
all the other ones.

Corollary A.2 Let the assumptions of Corollary A.1 be satisfied. Then

Argmin
x∈Rn

{ f (x)+ g(x)} = {x ∈ E : Φx = Φ x̄, f (x) = f (x̄)}.
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