
Proc. London Math. Soc. Page 1 of 35 C�2012 London Mathematical Society
doi:10.1112/plms/pdr062

C1,ω(·)-regularity and Lipschitz-like properties of subdifferential

A. Jourani, L. Thibault and D. Zagrodny

Abstract

It is known that the subdifferential of a lower semicontinuous convex function f over a Banach
space X determines this function up to an additive constant in the sense that another function
of the same type g whose subdifferential coincides with that of f at every point is equal to
f plus a constant, i.e., g = f + c for some real constant c. Recently, Thibault and Zagrodny
introduced a large class of directionally essentially smooth functions for which the subdifferential
determination still holds. More generally, for extended real-valued functions in that class, they
provided a detailed analysis of the enlarged inclusion

∂g(x) ⊂ ∂f(x) + γB for all x ∈ X,

where γ is a nonnegative real number and B is the closed unit ball of the topological dual space.
The aim of the present paper is to show how results concerning such an enlarged inclusion of
subdifferentials allow us to establish the C1 or C1,ω(·) property of an essentially directionally
smooth function f whose subdifferential set-valued mapping admits a continuous or Hölder
continuous selection. The C1,ω(·)-property is also obtained under a natural Hölder-like behaviour
of the set-valued mapping ∂f . Similar results are also proved for another class of functions
that we call ∂1,ϕ(·)-subregular functions. When X is a Hilbert space, the latter class contains
prox-regular functions and hence our results extend old and recent results in the literature.

1. Introduction

Let f, g : U → R ∪ {+∞} be two lower semicontinuous functions on a nonempty open convex
set U of a Banach space X. It is known that the subdifferential equality

∂g(x) = ∂f(x) for all x ∈ U (1.1)

entails that the functions f and g are equal up to an additive constant (i.e. f = g + c for some
real constant c) provided the functions f and g are convex. This has been first established by
Moreau [35] (see also [36]) when X is a Hilbert (or reflexive) space and it has been extended
to any Banach space by Rockafellar [44, 45]. If both functions are nonconvex and Fréchet
differentiable then (1.1) simply means that DF g(x) = DF f(x) for every x ∈ U , where DF

stands for the Fréchet derivative. There are several results in “classical” mathematical analysis
allowing us to state that if derivatives of two functions are equal on U then the functions are
equal up to an additive constant. Thus having the equality DF g(x) = DF f(x) for every x ∈ U ,
we know that the function g inherits regularity properties of f , in other words information
on regularity of f are saved in properties of its derivative. In the case of nondifferentiable
functions we also would like to know which regularity properties of the function are embedded
in its subdifferential, although subdifferentials usually are not single valued. Frequently we
are faced with the problem of evaluating subdifferential and it is often not possible to have
knowledge on the whole subdifferential, so conditions like in (1.1) can be awkward to check. For
this reason, we should look for new conditions more adapted to a subdifferential calculus. The
first candidate to relax (1.1) is the inclusion instead of the equality. Thibault and Zagrodny [53]

Received 10 January 2012.

2010 Mathematics Subject Classification Primary 49J52, 49J53, 46N10, 58C20; Secondary 28B20, 47H04,
49J50, 54C65.

 Proceedings of the London Mathematical Society Advance Access published February 6, 2012



Page 2 of 35 A. JOURANI, L. THIBAULT AND D. ZAGRODNY

began the study of the enlarged inclusion

∂g(x) ⊂ ∂f(x) + γBX∗ for all x ∈ U, (1.2)

where γ is a nonnegative real number and BX∗ denotes the closed unit ball of X∗ centred at
the origin. They showed that such an inclusion ensures that for all x ∈ U and y ∈ U ∩ dom f ,

f(x) − f(y) − γ‖x− y‖ � g(x) − g(y) � f(x) − f(y) + γ‖x− y‖ (1.3)

whenever the lower semicontinuous function f is convex. They proved later in [54] that conclu-
sion (1.3) is still true when f (instead of being convex) belong to the class of subdifferentially
stable functions (see [54] for the definition), see also [7] where primal lower nice functions in
Poliquin’s sense ([39]) are involved to get (1.3). Recently, Thibault and Zagrodny continued the
study of the enlarged inclusion above for the class of essentially directionally smooth functions;
see Definition 3.1 for the definition of essentially directionally smooth functions, eds in short.
The class of such functions includes convex functions, approximate convex functions, qualified
convexly composite functions, directionally regular functions, essentially smooth functions, and
so on; see Proposition 3.2 where the class is more specified. At this point it should be emphasized
that one needs additional properties of f in order to deduce (1.3) from (1.2). Indeed, it is known
(see, e.g., [12]) that the Clarke subdifferential or Mordukhovich subdifferential alone cannot
determine every Lipschitz continuous function up to an additive constant. In other words, (1.2)
with γ = 0 does not imply (1.3) when additional properties on f are not imposed.

Our first aim in the present paper is to study, through conclusion (1.3) for enlarged inclusions
of subdifferentials of essentially directionally smooth functions, the behaviour of functions f in
the latter class whose subdifferential ∂f admits a selection that is continuous, locally Hölder
continuous with power α > 0, or uniformly continuous with ω(·) as the modulus of uniform
continuity. We show that such a property of f ensures that it is C1, C1,α, or C1,ω(·). Doing so, we
obtain a partial extension of a result of P. Kenderov [31] as well as a partial extension Asplund
and Rockafellar [1, Theorem 3 and Corollary 2] to a large class of nonconvex functions. In fact,
due to the state of the art on subdifferential calculus, we can use less restrictive conditions
than that in (1.2) to get (1.3). So we are able to explore, employing (1.3), the integration of
subdifferentials or differential properties of f in more general cases. For example, even in the
case of convex continuous functions a better characterization of the Fréchet differentiability at
a given point than that in [1, Corollary 2] is established, see Corollary 4.2 for details. To make
things more understandable, let us point out that dealing with nondifferentiable functions it
is hard to expect that we can calculate the whole subdifferential, as said above. Sometimes we
have a knowledge on some parts of it. Hence, it seems that it is better, as a second candidate
for the relaxation of (1.1), to consider the condition

∂g(x) ∩ ∂f(x) 	= ∅ for every x ∈ Q,

instead of (1.1) whenever we integrate subdifferential, where Q is a dense subset of U . In
Section 4, we provide integration results where this condition is used and the function g is
either convex or DC; see Theorem 4.1 and Proposition 4.2. One of the important conclusions
from this method of integration of subdifferential of eds functions is that, for any eds function
and any selection of its Clarke subdifferential on Q, we have that the Clarke subdifferential
is singleton at all points of continuity of the selection relative to Q, see Corollaries 4.2 and
4.5(c)–(e). Consequently, the function f is strictly Fréchet differentiable at each point of a dense
set Q of U whenever ∂f admits a selection on Q that is continuous relative to Q (that is, with
respect to the induced topology on Q); see Corollary 4.5. Thus, for a continuous essentially
directionally smooth function and a dense subset of its domain a necessary and sufficient
condition for strict Fréchet differentiability on this set is the existence of a continuous selection
of the Clarke subdifferential on this set.
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Our second objective is to show how conclusion (1.3) allows us to establish the C1,1-property
of prox-regular functions (see Definition 5.1) whose subdifferentials enjoy the Aubin Lipschitz-
like property. Such results for prox-regular functions started with Levy and Poliquin [32]
through the study of single valuedness of hypomonotone set-valued mappings in finite-
dimensional spaces. Their result for this kind of behaviour of prox-regular functions has been
recently extended to Hilbert spaces by Bac̆ák, Borwein, Eberhard and Mordukhovich [3].
The method in [3] is strongly based on infimal convolution techniques related to Moreau
envelopes and proximal mappings of prox-regular functions in Hilbert spaces. Here, with
the use of conclusion (1.3) for enlarged inclusions of subdifferentials, we establish under the
same assumptions or other similar assumptions the C1,1 (or C1,ω(·)) property, respectively,
for the class of ∂1,ϕ(·)-subregular functions (see Definition 5.2) in any Banach space; see
Theorem 5.1. The class of ∂1,ϕ(·)-subregular functions encompass convex functions, qualified
convexly composite functions, prox-regular functions on Hilbert spaces, an so on. We thus
extend the results mentioned above for prox-regular functions on finite-dimensional or Hilbert
spaces to several classes of functions defined on general Banach spaces (instead of Hilbert
spaces). As already emphasized in [3], such results have many important consequences in
variational analysis (see, for example, [32, 34, 46, 47]) and in the theory of Robinson
generalized equations (see, for example, [34, 42, 43, 47]).

The paper is organized as follows. In Section 2, we recall some notions and their properties.
In Section 3, we state and recall the definition of essentially directionally smooth functions.
The class of these functions is significantly large to encompass several important classes of
functions. In this section, several examples of directionally essentially smooth functions, known
in the literature, are provided. The main result of Section 4 establishes the C1 or C1,1-property
of essentially directionally smooth function f whose subdifferential ∂f admits a continuous or
locally Lipschitz continuous selection. More generally, the C1 or C1,1-property is established
for such functions whose subdifferential set-valued mappings are Lipschitz-like continuous
or Aubin continuous. The use of the Aubin continuity of subdifferentials allows us also to
provide a characterization of the Fréchet differentiability of approximate convex functions
in terms of the inner (lower) semicontinuity of the subdifferential. In Section 5, results of
Section 4 are employed to get the C1,ω(·) continuity for prox-regular functions on Hilbert spaces
or ∂1,ϕ(·)-subregular functions on Banach spaces, under the Aubin or Lipschitz-like property
of subdifferentials; see Theorem 5.1 and Corollary 5.3.

In Section 6, basic information on C1,ω(·) continuity are pointed out. Additionally a charac-
terization of this continuity is given in terms of paraconvexity, see [27, 48–51] for several facts
on the class of paraconvex functions; see also [15] for the parent class of semiconvex functions.

2. Preliminaries

Throughout, unless otherwise stated, X is a real Banach space, X∗ its topological dual, and
B(x, δ) the open ball of centre x and radius δ. By BX and BX∗ we denote the closed unit
balls of X and X∗ respectively, centred at the origin. For an extended real-valued function
f : U → R ∪ {+∞} defined on a nonempty subset U of X, its effective domain is defined by
dom f := {x ∈ U : f(x) < +∞}. When dom f 	= ∅, the function f is said to be proper. In the
same way the effective domain of a set-valued mappingM : U ⇒ Y (from U into a nonempty set
Y ) is the set Dom M := {x ∈ U : M(x) 	= ∅}. For such a set-valued mapping one also defines its
graph as gphM := {(u, y)) ∈ U × Y : y ∈M(u)}. A typical example of set-valued mappings
with which we shall work in the next sections is the subdifferential in the sense of Convex
Analysis. In such a context the subdifferential ∂f(x) of a convex function f : X → R ∪ {+∞}
at x ∈ dom f is the set

∂f(x) := {x∗ ∈ X∗ : 〈x∗, u− x〉 + f(x) � f(u) ∀u ∈ X}. (2.1)
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It is also known that for any x ∈ dom f its directional derivative

f ′(x;h) := lim
t↓0

t−1[f(x+ th) − f(x)] (2.2)

exists whenever the convexity of f is assumed, and one also has f ′(x;h) = inft>0 t
−1[f(x+

th) − f(x)]. The latter equality ensures

∂f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 � f ′(x;h) ∀h ∈ X }, (2.3)

and whenever f is in addition continuous at x ∈ int dom f , the set ∂f(x) is nonempty and
w∗-compact, and f ′(x; ·) is the support function of the set ∂f(x), that is,

f ′(x;h) = max{〈x∗, h〉 : x∗ ∈ ∂f(x)} for all h ∈ X. (2.4)

Whenever nonconvex functions are considered, there are several ways to define their sub-
differential. It is then natural to work with an abstract general concept of subdifferential
allowing us to state many results in a general unified framework. Such a generality is achieved
through the concept of presubdifferential. Following [52, 53], a presubdifferential on X is an
operator ∂ that associates with any function f : X → R ∪ {+∞} and any x ∈ X a subset ∂f(x)
of X∗ and which satisfies the following properties:

(P1) ∂f(x) ⊂ X∗ and ∂f(x) = ∅ if x 	∈ dom f ;
(P2) ∂f(x) = ∂g(x) whenever f and g coincide on a neighbourhood of x;
(P3) ∂f(x) is equal to the subdifferential in the above sense (2.1) of Convex Analysis whenever

f is convex and lower semicontinuous;
(P4) if f is lower semicontinuous near x ∈ dom f , g is (finite) convex continuous near x, and

x is a local minimum point of f + g, then one has

0 ∈ w∗ − Lim sup
u→f x

∂f(u) + ∂g(x),

where u→f x means (u, f(u)) → (x, f(x)) and w∗ − Lim supu→f x ∂f(u) denotes the
weak* sequential outer (upper) limit of ∂f(u) as u→f x, that is, the set of all w∗-limits
limk u

∗
k of sequences (u∗k)k such that u∗k ∈ ∂f(uk) and uk →f x.

The graph of the presubdifferential set-valued mapping ∂f is the set

gph ∂f := {(x, x∗) ∈ X ×X∗ : x∗ ∈ ∂f(x)}.
When f : U → R ∪ {+∞} is defined on a subset U of X its presubdifferential ∂f(x) is defined
as the presubdifferential of the extension of f to X with the value +∞ outside of U .

We say that ∂ is a subdifferential with the exact inclusion sum rule when (P1)-(P3) hold
and instead of (P4) one requires:

(P4’) for any function g finite and locally Lipschitz continuous near x

∂(f + g)(x) ⊂ ∂f(x)+∂g(x),

and 0 ∈ ∂f(x) whenever x ∈ dom f is a local minimum of f .

Obviously, any such subdifferential is a presubdifferential. A first example of useful
presubdifferentials is the operator of proximal subgradients when X is a Hilbert space (see,
e.g., [17]). Another useful presubdifferential is the operator of Fréchet subgradients when X is
an Asplund space (see, for example, [34]). It will be used in many parts of the paper. We recall
that, for an extended real-valued function f defined on the Banach space X and x ∈ dom f ,
an element x∗ ∈ X∗ is a Fréchet subgradient of f at x ∈ dom f , and we write x∗ ∈ ∂F f(x),
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provided that, for each real ε > 0 there exists some neighbourhood U of x such that

〈x∗, u− x〉 � f(u) − f(x) + ε‖u− x‖ for all u ∈ U.

We also recall that the Banach space X is Asplund when the topological dual of any separable
subspace of X is separable. So, any reflexive Banach space is Asplund.

A first important example of subdifferentials with the exact inclusion sum rule which we
will deal with, is the Mordukhovich limiting subdifferential ∂L on Asplund spaces (see [34])
whose elements are w∗-limits of sequences of Fréchet subgradients; more precisely ∂Lf(x) is
the set of x∗ ∈ X∗ for which there are sequences xk →f x and x∗k

w∗
→ x∗ with x∗k ∈ ∂F f(xk).

It is worth emphasizing that ∂Lf(x) is nonempty and bounded whenever X is an Asplund
space and f is locally Lipschitz continuous near x. As two other important subdifferentials
with exact inclusion sum rule, we have the Ioffe (geometric) subdifferential on any Banach
space (see [27]), and the Clarke subdifferential on any normed vector space (see [16]). Besides
the above properties (P1)–(P3) and (P4’), some other properties of the Clarke subdifferential
will be involved in the development of the paper.

One of the best ways to introduce the Clarke subdifferential (called also the Clarke
generalized gradient) is to define it first for locally Lipschitz continuous functions via the
generalized directional derivative. Reacall that, for a locally Lipschitz continuous function
f : U → R on an open set U of X, its Clarke generalized directional derivative (see [16]) is
defined for x ∈ U by

fo(x;h) := lim sup
u→x;t↓0

t−1[f(u+ th) − f(u)]

and then its Clarke subdifferential at x can be defined similarly to the convex setting (see (2.3))

∂Cf(x) := {x∗ ∈ X∗ : 〈x∗, h〉 � fo(x;h) ∀h ∈ X }.
It is not difficult to see that, for a locally Lipschitz continuous function f , we have

fo(x;h) = lim sup
(u,w)→(x,h);t↓0

t−1[f(u+ tw) − f(u)],

and hence the function fo(·; ·) is upper semicontinuous on U ×X, we refer the reader to [16]
for details.

It is worth pointing out that, when X is Asplund, the Clarke subdifferential ∂Cf(x) is related
to the Mordukhovich limiting subdifferential ∂Lf(x) through the equality

∂Cf(x) = cl w∗co
(
∂Lf(x)

)
, (2.5)

where cl w∗co denotes the w∗-closed convex hull, we refer the reader to [34] for details.
We recall that a mapping G : U → Y from the open set U into a normed space Y is strictly

Fréchet differentiable at a ∈ U provided that there exists some continuous linear mapping
A : X → Y such that for each real ε > 0 there exists some neighbourhood U ′ ⊂ U of a such
that

‖G(x) −G(y) −A(x− y)‖ � ε‖x− y‖ for all x, y ∈ U ′;

in such a case G is obviously Fréchet differentiable at a and its Fréchet derivative DFG(a)
coincides with A (there are several notions of differentiability with a long history, for example,
strict Fréchet differentiability and Fréchet differentiability were known in the nineteenth
century; see [20] for some historical comments). When a function f : U → R is strictly Fréchet
differentiable at a ∈ U , it is easily seen that it is Lipschitz continuous near the point a and

∂F f(a) = ∂Lf(a) = ∂Cf(a) = {DF f(a)}. (2.6)

Through the Clarke subdifferential of the distance function dS(u) = infy∈S ‖y − u‖ to a
subset S ⊂ X the Clarke normal cone to S at x ∈ S is defined as the weak* closure of the cone
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generated by the Clarke subdifferential of the distance function, that is,

NC(S;x) := cl w∗([0,+∞[∂CdS(x))

and so the Clarke subdifferential may be extended to any function f : X → R ∪ {+∞} at
x ∈ dom f (see [16]) as

∂Cf(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ NC(epi f ; (x, f(x)))},
where epi f denotes the epigraph epi f = {(u, r) ∈ X × R : f(u) � r} of f .

A crucial property of the presubdifferential that will be considered later is that Dom ∂f is
graphically dense in dom f ; see, for example, [56]. For the sake of completeness and convenience
of the reader, we sketch a proof below. The proof is based on the Zagrodny mean value theorem
(proved for the first time in [58] for the Clarke subdifferential, but as pointed out in [52] the
same proof holds with a slight adaptation for any presubdifferential). We also refer the reader
to [22, 59, 60] for other related results.

Theorem 2.1. Let ∂ be a presubdifferential on a Banach space X, let f : X → R ∪ {+∞}
be a lower semicontinuous function, and let a, b ∈ X with a 	= b and a ∈ dom f . Then for any
real number r � f(b), there exist sequences xk →f c ∈ {a+ t(b− a) : t ∈ [0, 1[}, x∗k ∈ ∂f(xk)
such that the following properties hold:

(a) r − f(a) � limk→∞ 〈x∗k, b− a〉;
(b) (‖b− c‖/‖b− a‖)(r − f(a)) � limk→∞ 〈x∗k, b− xk〉;
(c) ‖b− a‖(f(c) − f(a)) � ‖c− a‖(r − f(a)).

We point out that the proof provided below for the graphical density of Dom ∂f in dom f
works for any operator for which the above mean value theorem holds.

Proposition 2.1. Let ∂ be a presubdifferential on X and f : X → R ∪ {+∞} be a proper
lower semicontinuous function. Then Dom ∂f is f -graphically dense in dom f , i.e., for any
a ∈ dom f there exists a sequence xk ∈ Dom ∂f such that xk →f a.

Proof. Fix any a ∈ dom f and ε > 0. Let a positive δ < ε/2 be such that f(a) − ε < f(x)
for all x ∈ B(a, δ) and let any b ∈ B(a, δ) with b 	= a. Fix a real number r � f(b) such that
r < f(a) + ε. Theorem 2.1 gives a sequence (xk)k with ∂f(xk) 	= ∅ and xk →f c ∈ B(a, δ),
where the point c satisfies the property (c) of the same Theorem 2.1. The latter and the
inequality r − f(a) < ε ensure that limk f(xk) = f(c) < f(a) + ε. We then deduce the existence
of some integer K such that ‖xK − a‖ < ε and |f(xK) − f(a)| < ε, which completes the proof.

Before passing to the next section, we recall that the lower Dini directional derivative of a
function f : U → R ∪ {+∞} at u ∈ dom f , where U is an open set of X, is given by

d−f(u;h) := lim inf
w→h;t↓0

t−1[f(u+ tw) − f(u)]

and when f is Lipschitz continuous near u we obviously have for all h ∈ X

d−f(u;h) = lim inf
t↓0

t−1[f(u+ th) − f(u)].

When f is Lipschitz continuous near u and fo(u; ·) = d−f(u; ·), the function f is said to be
directionally subregular (or Clarke regular) at the point u. It is not difficult to see that f is
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directionally subregular at u if and only if

fo(u;h) = lim
t↓0

t−1[f(u+ th) − f(u)] for all h ∈ X.

If the directional subregularity property of f holds for all u ∈ U , one says that f is directionally
subregular on U .

3. Essentially directionally smooth functions and enlarged inclusions of subdifferentials

In this section, we introduce the class of essentially directionally smooth functions. We need
first to recall some other concepts which motivated the study in [55] of essentially directionally
smooth functions and which will be involved in the present paper.

Throughout the section and others, unless otherwise stated, ∂ is a presubdifferential on a
Banach space X. Let U be a nonempty open convex subset of X and f, g : X → R ∪ {+∞} be
two functions that are proper on U . Assume that

∂g(x) = ∂f(x) for all x ∈ U. (3.1)

If f and g are lower semicontinuous (lsc, for short) and convex, then there exists a real constant
c such that

g(x) = f(x) + c for all x ∈ U ; (3.2)

this means that proper lsc convex functions are subdifferentially determined. This result was
obtained by Moreau when X is a Hilbert space (with a proof that is still valid for any reflexive
Banach space) (see [35, 36]), and extended by Rockafellar to any Banach space; see [44, 45].
As it is said in the introduction, more generally in place of the equality in (3.1), an enlarged
inclusion has been considered in [53] with the subdifferential of the convex function g, say

∂g(x) ⊂ ∂f(x) + γBX∗ for all x ∈ U. (3.3)

Correa and Jofre [19] also established that under condition (3.1) with the Clarke subdiffer-
ential the same conclusion (3.2) holds, provided that f, g are over U finite locally Lipschitz
continuous functions that are semismooth and whose Clarke subdifferential is single-valued
at any point of a dense subset D of U (see also [56] for the case of Lipschitz continuous
directionally subregular functions). The locally Lipschitz continuous function f is semismooth
at x ∈ U , if for each h ∈ X one has limy→h;t↓0 d−f(x+ ty;h) = d−f(x;h). Later, Borwein and
Moors [9, 11] showed with the Clarke subdifferential that the result also holds whenever the
locally Lipschitz continuous functions f and g are essentially smooth in the sense that they
introduced (see also [21]). So proper lsc convex functions and locally Lipschitz continuous
essentially smooth functions are subdifferentially determined. The locally Lipschitz continuous
function f is essentially smooth on the open set U when, for each nonzero vector h ∈ X, the set
N := {x ∈ U : fo(x;−h) 	= −fo(x;h)} is Haar-null in X in the sense that there exists a Radon
probability measure P on X such that P (N + y) = 0 for all y ∈ X. The essential smoothness
is not stable by composition, that is, there are locally Lipschitz continuous functions f and
mappings F with values in R

n that are essentially smooth (that is, each component of F is
essentially smooth) such that f ◦ F fails to be essentially smooth (see [10]).

That nonclosedness property under composition led Borwein and Moors [10] to introduce
for X = R

m, as a large subclass, the concept of arc-wise essentially smooth functions which is
in the line of Valadier’s sound functions (”fonctions saines” in French; see [57]) and which is
preserved under composition. Observing that the equality fo(x;−h) = −fo(x;h) is equivalent
to the existence of the limit limu→x;t↓0 t−1[f(u+ th) − f(u)], we may (as in [13, 14]) extend
the concept of essential smoothness to mappings F from an open subset V of a Banach
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space Z into U by requiring that, for each nonzero vector v ∈ Z, the set

{z ∈ V : lim
y→z;t↓0

t−1[F (y + tv) − F (y)] does not exist}

is Haar-null in Z. So, the locally Lipschitz continuous function f : U → R is arc-wise essentially
smooth if, for each locally Lipschitz continuous essentially smooth mapping x :]0, 1[→ U , the
set

{t ∈]0, 1[: fo(x(t);−x′(t)) 	= −fo(x(t);x′(t))} (3.4)

has null Lebesgue measure (or is equivalently Haar-null). When, for each (u, v) ∈ U × U and for
x(t) = u+ t(v − u), the set in (3.4) has null Lebesgue measure, we will say that f is segment-
wise essentially smooth. The last class obviously contains that of arc-wise essentially smooth
locally Lipschitz continuous functions.

The approaches in [11, 19, 35, 44] are all distinct. Further, the finiteness over U of the
locally Lipschitz continuous arc-wise essentially smooth functions makes clear that neither the
extended real-valued convex functions is included in that class nor the converse. The class of
essentially directionally smooth functions introduced in [55] allowed their authors on the one
hand, to unify several of the above results and, on the other hand, to identify many other
interesting amenable functions that are subdifferentially determined. As we shall see below,
the class even provides stronger results concerning enlarged inclusion (3.3). Before recalling
the definition, we denote, according to (2.2), by ϕ′(t; 1) the right derivative of a function ϕ at
t defined on an interval of R, whenever it exists, that is,

ϕ′(t; 1) := lim
τ↓0

ϕ(t+ τ) − ϕ(t)
τ

.

Definition 3.1 ([55]). Let U be a nonempty open convex subset of the Banach space X
and f : X → R ∪ {+∞} be a lsc function on U with U ∩ dom f 	= ∅ and let μ > 0 be fixed. Let
D be a subset of X with Dom ∂f ⊂ D ⊂ dom f . We say that the function f is essentially ∂,
μ-directionally smooth on U relative toD provided that, for each u ∈ U ∩ Dom ∂f , the following
conditions are satisfied.

(i) For each v ∈ U ∩ dom f the function fu,v(t) := f(u+ t(v − u)) is finite and continuous
on [0, 1].

(ii) For each v ∈ U ∩D there are real numbers 0 = t0 < · · · < tp = 1 such that the function
t �→ fu,v(t) is absolutely continuous on each closed interval included in [0, 1] \ {t0, t1, · · · , tp}.

(iii) For each v ∈ U ∩D with v 	= u there exists a subset T ⊂ [0, 1] of full Lebesgue measure
(that is, of Lebesgue measure 1) such that for every t ∈ T and every sequence ((xk, x

∗
k))k ⊂

gph ∂f with xk →x(t) := u+ t(v − u), there is some w ∈]x(t), v] for which

lim sup
k→∞

〈x∗k, w − xk〉 � ‖w − x(t)‖(‖v − u‖−1f ′u,v(t; 1) + μ).

Conditions (i) and (ii) are quite natural to have the subdifferential integration property. As
regards (iii), we refer the reader to [55, Section 4] for a large discussion and several particular
cases.

The function f will be said to be essentially ∂-directionally smooth on U relative to D
when it is essentially ∂, μ-directionally smooth on U relative to D for every μ > 0. We use the
abbreviation “∂-eds on U respectively to D” for this function.

The two most important cases correspond with D = dom f and D = Dom ∂f . When D =
dom f we shall omit writing “relative to dom f”, that is, we shall only say that f is essentially
∂, μ-directionally smooth or ∂-directionally smooth (∂, μ-eds or ∂-eds, for short) on U .
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Obviously for Dom ∂f ⊂ D ⊂ D′ ⊂ dom f , the essential ∂, μ-directional smoothness of f
relative to D′ entails the same property relative to D. Further, it is readily seen that f is
∂, μ-eds on U if and only if it is ∂, μ-eds on U relative to U ∩ dom f .

The class of eds functions is stable under addition according to the following result of
Thibault and Zagrodny [55].

Proposition 3.1 ([55, Proposition 4.3]). Let U be a nonempty open convex subset of
E and let fi : U → R ∪ {+∞} be a ∂, μi-eds function on U relative to dom fi for every i ∈
{1, · · · , n}, satisfying U ∩ ⋂n

i=1 dom fi 	= ∅. Assume that ∂ is any presubdifferential (fulfilling
(P1)–(P4)) and that

∂(f1 + · · · + fn)(x) ⊂ ∂f1(x) + · · · + ∂fn(x) for all x ∈ U.

Then the function f1 + · · · + fn is ∂, (μ1 + · · · + μn)-eds on U relative to dom (f1 + · · · + fn).

The proposition above and the next one show how large the class of eds functions is. Before
giving the proposition, recall that a function f : U → R ∪ {+∞} defined on an open convex
set U of X is approximate convex (see [37]) at a point a ∈ U , provided, for each real ρ > 0,
there exists some neighbourhood U ′ ⊂ U of a such that for all x, y ∈ U ′ and t ∈]0, 1[

f(tx+ (1 − t)y) � tf(x) + (1 − t)f(y) + ρt(1 − t)‖x− y‖. (3.5)

When f is approximate convex at each point of U , one says that f is approximate convex on U .

Proposition 3.2. Let U be a nonempty open convex subset of X and let f : U → R ∪
{+∞} be a proper lsc function. Then each one of the following conditions ensures that f is
∂-eds on U :

(a) f is convex on U ;
(b) f is locally Lipschitz continuous on U and segment-wise essentially smooth on U , and

the presubdifferential ∂f is included in the Clarke subdifferential of f ;
(c) f is locally Lipschitz continuous on U and directionally subregular on U , and the

presubdifferential ∂f is included in the Clarke subdifferential of f ;
(d) ∂ is a subdifferential included in the Clarke subdifferential with the exact subdifferential

sum rule (P4’) and f is DC on U , that is, for any x ∈ U there exist an open convex
neighbourhood U ′ ⊂ U of x, an lsc convex function f1 : U ′ → R ∪ {+∞} and a convex
continuous function f2 : U ′ → R such that f(u) = f1(u) − f2(u) for all u ∈ U ′.

Further, f is ∂-eds on U relative to D := Dom ∂f whenever f is approximate convex on U
and ∂ is included in the Clarke subdifferential.

Proof. The case of condition (a) corresponds to [55, Proposition 4.4] and the cases of
conditions (b)-(d) are established in Corollaries 4.9, 4.8 and 4.13, respectively, of the same
paper [55]. The final case of approximate convex function follows from, [54, Proposition 3.5]
and [55, Proposition 4.15].

4. Continuous-like and Lipschitz-like properties of subdifferentials of eds functions

The aim of this section is to show that several generalized continuity or Lipschitz properties of
the presubdifferential of an eds function ensure the C1- or C1,ω(·)-regularity of the function. More
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generally, we investigate the behaviour of an eds function f under the existence of some specific
selections of the presubdifferential set-valued mapping ∂f . Let us start with the following
theorem from which we will deduce a new simple criterion for the Lipschitz property of eds
functions. Let us first say that, for ε > 0, a set-valued mapping M : S ⇒ X∗ defined on a subset
S of the Banach space X is ε-hypomonotone with power 1 whenever

〈x∗1 − x∗2, x1 − x2〉 � −ε‖x1 − x2‖ for all xi ∈ S and x∗i ∈M(xi), i = 1, 2.

We also say that the set-valued mapping M is locally bounded provided that, for each x ∈ S
there are δ > 0 and β � 0 such that

‖y∗‖ � β for all y∗ ∈M(y) with y ∈ S ∩B(x, δ).

Theorem 4.1. Let X be a Banach space, U be a nonempty open convex subset of X, ∂ be
a presubdifferential and f : X → R ∪ {+∞} be a ∂, μ-eds function on U relative to Dom ∂f .
Let ε � 0, γ � 0, Q ⊂ U be given such that U ∩ cl dom f ⊂ clQ, where cl stands for the
closure with respect to the strong topology (the topology generated by the norm). Assume that
there is a set-valued mapping Mε : U ∩ clQ ⇒ X∗ with Mε(x) 	= ∅ for all x ∈ U ∩ clQ that is
ε-hypomonotone with power 1 and locally bounded on U ∩ clQ and such that

(∂f(q) + γBX∗) ∩Mε(q) 	= ∅ for every q ∈ Q. (4.1)

Then f is finite on U ∩ clQ and, for all v ∈ U , u ∈ U ∩ clQ, u∗ ∈Mε(u),

f(v) − f(u) + (μ+ 2ε+ γ)‖v − u‖ � 〈u∗, v − u〉
and

f(v) − f(u) + (μ+ ε+ γ)‖v − u‖ � 〈u∗, v − u〉,
whenever ∂f(u) 	= ∅.

Moreover, if Q is a dense subset of U and g : U → R is a convex continuous function such
that

(∂f(q) + γBX∗) ∩ ∂g(q) 	= ∅ for every q ∈ Q, (4.2)

then f is finite on U and

f(v) − f(u) + (μ+ γ)‖v − u‖ � g(v) − g(u) � f(v) − f(u) − (μ+ γ)‖v − u‖ for all u, v ∈ U.

Proof. Let us fix u ∈ U ∩ clQ and u∗ ∈Mε(u). In this part of the proof, let us also assume
that ∂f(u) 	= ∅. Take any v ∈ U ∩ Dom ∂f \ {u}. Since the function f is ∂, μ-eds on U relative
to Dom ∂f , there is a subset T ⊂ [0, 1] of full Lebesgue measure such that condition (iii)
of Definition 3.1 is satisfied. Fix any t ∈]0, 1] ∩ T and take a sequence (qk)k ⊂ Q such that
limk→∞ qk = u+ t(v − u) (keep in mind that by (i) of Definition 3.1 we get [u, v] ⊂ U ∩ dom f
and U ∩ cl dom f ⊂ clQ by the assumptions). By (4.1) there are q∗k ∈ (∂f(qk) + γBX∗) ∩
Mε(qk). By (iii) of Definition 3.1, for some w ∈]u+ t(v − u), v] (with w depending on t), we
have

lim sup
k→∞

(〈q∗k, w − qk〉 − γ‖w − qk‖
)

� ‖w − u− t(v − u)‖ (‖v − u‖−1f ′u,v(t; 1) + μ).

Observe that by the ε-hypomonotonicity we get

〈u∗, qk − u〉 − ε‖qk − u‖ � 〈q∗k, qk − u〉.
We know that there exists t′ ∈]t, 1] such that w = u+ t′(v − u) and hence (remembering
that (qk)k converges to u+ t(v − u) ∈ U ∩ clQ and Mε : U ∩ clQ ⇒ X∗ is locally bounded
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on U ∩ clQ)

lim sup
k→∞

〈q∗k, w − qk〉 = (t′ − t) lim sup
k→∞

〈q∗k, v − u〉.

We have also

〈u∗, w − u− t(v − u)〉 = (t′ − t)〈u∗, v − u〉 =
t′ − t

t
lim

k→∞
〈u∗, qk − u〉,

so

〈u∗, w − u− t(v − u)〉 =
t′ − t

t
lim

k→∞
〈u∗, qk − u〉

� t′ − t

t

(
lim sup

k→∞
(〈q∗k, qk − u〉 + ε‖qk − u‖)

)

=
t′ − t

t

(
t

(
lim sup

k→∞
〈q∗k, v − u〉 + ε‖v − u‖

))

= (t′ − t)
(

lim sup
k→∞

〈q∗k, v − u〉 + ε‖v − u‖
)

= lim sup
k→∞

〈q∗k, w − qk〉 + ε‖w − u− t(v − u)‖,

which implies

〈u∗, w − u− t(v − u)〉 − (ε+ γ)‖w − u− t(v − u)‖
� ‖w − u− t(v − u)‖ (‖v − u‖−1f ′u,v(t; 1) + μ).

By (ii) of Definition 3.1 take 0 = t0 < · · · < tp = 1 such that the function fu,v is absolutely
continuous on each closed interval included in [0, 1] \ {t0, · · · , tp}. Fix any positive real η <
1
2 min

1�i�p
(ti − ti−1). Observing that

‖v − u‖
‖w − u− t(v − u)‖ (w − u− t(v − u)) = v − u,

we see that

fu,v(ti − η) − fu,v(ti−1 + η) =
∫ ti−η

ti−1+η

f ′u,v(t; 1) dt

�
∫ ti−η

ti−1+η

(〈u∗, v − u〉 − (ε+ γ + μ)‖v − u‖) dt (4.3)

=
(〈u∗, v − u〉 − (ε+ γ + μ)‖v − u‖)(ti − ti−1 − 2η).

This yields
p∑

i=1

(
fu,v(ti − η) − fu,v(ti−1 + η)

)
�

(〈u∗, v − u〉 − (ε+ γ + μ)‖v − u‖)(tp − t0 − 2pη).

Using, by (i) of Definition 3.1, the continuity of fu,v on [0, 1] and taking the limit as η ↓ 0 we
obtain

fu,v(1) − fu,v(0) �
(〈u∗, v − u〉 − (ε+ γ + μ)‖v − u‖)(tp − t0), (4.4)

that is,

f(v) − f(u) � 〈u∗, v − u〉 − (ε+ γ + μ)‖v − u‖.
It then follows from Proposition 2.1 that

f(v) − f(u) � 〈u∗, v − u〉 − (μ+ ε+ γ)‖v − u‖ for all v ∈ U ∩ dom f.
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Now let us take any u ∈ U ∩ clQ, v 	= u, v ∈ U ∩ dom f , u∗ ∈Mε(u). Observe that the above
reasonings ensure

[q, v] ⊂ U ∩ dom f for all q ∈ Q,

so [u, v] ⊂ U ∩ cl dom f . Put ν := ‖v − u‖−1(v − u) and fix a sequence of positive numbers
sk ↓ 0 with skν + u ∈ [u, v] for all k. By the inclusions

[u, v] ⊂ U ∩ cl dom f ⊂ clQ

for each k we can choose uk ∈ Q such that ‖skν + u− uk‖ < s2k. Putting νk := s−1
k (uk − u),

we see that νk → ν and hence by what precedes we have, for every u∗k ∈ (∂f(uk) + γBX∗) ∩
Mε(uk),

〈u∗, uk − u〉 − ε‖uk − u‖ � 〈u∗k, uk − u〉
and

f(v) − f(uk) � 〈u∗k, v − uk〉 − (μ+ ε+ γ)‖v − uk‖.
Since ‖uk − u‖−1(uk − u) → ‖v − u‖−1(v − u) and uk → u, by the boundedness of the sequence
(u∗k)k and the lower semicontinuity of f , we get

f(v) � lim inf
k→∞

(
f(uk) + 〈u∗k, v − uk〉 − (μ+ ε+ γ)‖v − uk‖

)
� lim inf

k→∞
(
f(uk) + ‖v − u‖〈u∗k, ‖uk − u‖−1(uk − u)〉 − (μ+ ε+ γ)‖v − uk‖

)
� lim inf

k→∞
(
f(uk) + ‖v − u‖〈u∗, ‖uk − u‖−1(uk − u)〉 − (μ+ 2ε+ γ)‖v − uk‖

)
� f(u) + 〈u∗, v − u〉 − (μ+ 2ε+ γ)‖v − u‖.

Therefore, since u ∈ U ∩ clQ and v ∈ dom f , we get U ∩ clQ ⊂ U ∩ dom f and

f(v) − f(u) � 〈u∗, v − u〉 − (μ+ 2ε+ γ)‖v − u‖ for all v ∈ U, u ∈ U ∩ clQ. (4.5)

In order to finish the proof let us assume that g : U → R is a convex continuous function such
that

(∂f(q) + γBX∗) ∩ ∂g(q) 	= ∅ for every q ∈ Q.

For every u ∈ U let us put M0(u) := ∂g(u). It follows from (4.5) that

f(v) − f(u) � 〈u∗, v − u〉 − (μ+ γ)‖v − u‖ for all v, u ∈ U, u∗ ∈M0(u),

and so, at every point u ∈ U and every direction h such that f ′(u;h) exists, we get

f ′(u;h) � g′(u;h) − (μ+ γ)‖h‖,
since g′(u;h) = max

u∗∈∂g(u)
〈u∗, h〉 according to the continuity and convexity of g on U .

Fix any u ∈ U ∩ Dom ∂f and v ∈ U ∩ Dom ∂f \ {u} and by (ii) of Definition 3.1 take
0 = t0 < · · · < tp = 1 such that fu,v is absolutely continuous on each closed interval included
in [0, 1] \ {t0, · · · , tp}. Then, taking the local Lipschitz continuity of g into account, the
functions fu,v, gu,v, (f − g)u,v are absolutely continuous on each closed interval included in
[0, 1] \ {t0, · · · , tp}. Proceeding as for (4.3) and (4.4) with f − g in place of f and ε = 0, we
obtain for all u, v ∈ U ∩ Dom ∂f

(f − g)(v) − (f − g)(u) � −(μ+ γ)‖v − u‖, that is,
f(v) − f(u) + (μ+ γ)‖v − u‖ � g(v) − g(u).

Using Proposition 2.1 we see that the latter inequality holds for all u, v ∈ U , which completes
the proof of the theorem.

An immediate consequence of the theorem is that any ∂-eds function f on U relative to
Dom ∂f with a locally bounded monotone selection has to be convex, whenever γ = 0.
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Corollary 4.1. Let X be a Banach space, U be a nonempty open convex subset of X, ∂
be a presubdifferential and f : X → R ∪ {+∞} be a ∂-eds function on U relative to Dom ∂f .
Let Q ⊂ U be given such that clQ is a convex set and U ∩ cl dom f ⊂ clQ. Assume that there
is a set-valued mapping M : U ∩ clQ ⇒ X∗ that is monotone (i.e., it is ε-hypomonotone with
ε = 0) and locally bounded on U ∩ clQ and such that

∂f(q) ∩M(q) 	= ∅ for every q ∈ Q.

Then f is finite and convex on U ∩ clQ.

Proof. It follows from the preceding theorem that f is finite on U ∩ clQ and

f(v) − f(u) � 〈u∗, v − u〉 for all u, v ∈ U ∩ clQ,u∗ ∈M(u).

Let us fix any u, v ∈ U ∩ clQ, t ∈ [0, 1] and u∗t ∈M(u+ t(v − u)). Observe that we have

f(v) − f(u+ t(v − u)) � 〈u∗t , v − u− t(v − u)〉
and

f(u) − f(u+ t(v − u)) � 〈u∗t , u− u− t(v − u)〉,
which implies

tf(v) + (1 − t)f(u) � f(u+ t(v − u)).

It appears that the main advantages of conditions (4.1) and (4.2), when compared with
previous ones, are that it is enough to check whether the intersection is nonempty (we do not
have to check the inclusions, which is much more difficult to verify). It is in fact enough to
check the nonvacuity of this intersection on some dense subset of the interior of the domain,
which is more useful in the case where we have some information on the presubdifferential on
some generic set, for example, in Asplund spaces. In Proposition 4.2 (see also Remark 4.3) an
example showing that checking (4.2) on some dense subset is easier than on U is given in the
case of integration of DC functions. Moreover, in some cases we have that if (4.2) is satisfied
for some dense subset, then it is also satisfied for U . In order to observe this, let us recall,
following [26, D. page 150], the notion of bounded weak∗ topology, bw∗ in short. Namely, the
topology is defined on the topological dual space of X by defining bw∗ closed sets: a subset G
of X∗ is bw∗ closed if and only if its intersection with every weak∗-compact set is again weak∗-
compact or equivalently every bounded weak∗ converging net in G has its limit in G; see [30]
for the definition and properties of nets. If the graph of ∂f is ‖ · ‖ × bw∗-closed, then (4.2)
holds for some dense subset Q of U if and only if it holds for U . Indeed, fix any x ∈ U and
choose a sequence (qk)k∈N of Q converging to x, where Q is a dense subset of U such that (4.2)
holds true. By (4.2) choose q∗k ∈ ∂f(qk) and b∗k ∈ γBX∗ such that q∗k + b∗k ∈ ∂g(qk). Since ∂g is
locally bounded (g is locally Lipschitz) the sequences (q∗k)k and (b∗k)k admit subnets (q∗s(j))j∈J

and (b∗s(j))j∈J weak∗-converging (and hence also bw∗-converging, because of the boundedness)
to some q∗ and b∗, respectively. Put

p∗j := q∗s(j), d∗j := b∗s(j), and pj := qs(j).

By the assumption above on ∂f we have q∗ ∈ ∂f(x). On the other hand the convexity of g
ensures that

(q∗ + b∗) ∈ ∂g(x).

Consequently,

(q∗ + b∗) ∈ (∂f(x) + γB) ∩ ∂g(x),
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which entails the desired equivalence. Let us also observe that if M is a maximal monotone
set-valued mapping then a similar reasoning ensures that if (4.1) is satisfied for some dense
subset then it is also satisfied for U .

Remark 4.1. The last conclusion of Theorem 4.1 ensures in particular

f(tu+ (1 − t)v) � tf(u) + (1 − t)f(v) + 2(γ + μ)t(1 − t)‖v − u‖,
for all u, v ∈ U and t ∈]0, 1[, that is, f is strongly 1-paraconvex on U ; see the last section
for the definition of strongly 1−paraconvex functions. Indeed, according to the conclusion of
Theorem 4.1 and to the convexity of g, for ρ := γ + μ we have, for all t ∈]0, 1[ and x, y ∈ U ,

t[f(u+ (1 − t)(v − u)) − f(u)] + (1 − t)[f(u+ (1 − t)(v − u)) − f(v)]
� ρt(1 − t)‖v − u‖ + t[g(u+ (1 − t)(v − u)) − g(u)] + ρt(1 − t)‖v − u‖

+ (1 − t)[g(u+ (1 − t)(v − u)) − g(v)]
= 2ρt(1 − t)‖v − u‖ + [g(u+ (1 − t)(v − u)) − tg(u) − (1 − t)g(v)]
� 2ρt(1 − t)‖v − u‖,

and hence

f(tu+ (1 − t)v) � tf(u) + (1 − t)f(v) + 2(γ + μ)t(1 − t)‖v − u‖.
This proves the strong 1-paraconvexity of f on U .

Remark 4.2. Let g : X → R ∪ {+∞} be an lsc proper convex function on U and ε � 0
be given (in the reasoning below, ε under consideration is small). Put S(g) := gph ∂g =
{(x, x∗) ∈ X ×X∗ : x∗ ∈ ∂g(x)}, Sε(g) := {(w,w∗) ∈ X ×X∗ : ∀(x, x∗) ∈ S(g), 〈x∗ − w∗, x−
w〉 � −ε} and Tε(g) := {(w,w∗) ∈ X ×X∗ : ∀(x, x∗) ∈ S(g), 〈x∗ − w∗, x− w〉 � −ε‖x− w‖}.
It follows from [61, Property 3.3] that every pair from Sε(g) is not far from S(g), that is,

Sε(g) ⊂ (S(g) +
(
8
√
εBX∗ × 8

√
εBX∗

)
).

It seems that similar results between Tε(g) and S(g), more related to (4.2), should also be
valid, so it is natural to ask the following questions:

(1) presubdifferentials of which functions f have the property that there is a convex function
g such that gph ∂f ⊂ Sε(g) for a given ε � 0?

(2) presubdifferentials of which functions f have the property that there is a convex function
g such that gph ∂f ⊂ Tε(g) for a given ε � 0?

In the one-dimensional setting an answer to question (2) is given in [38, Theorem 5, p. 250].
Also Theorem 4.1 can be employed to get some answers to these questions in one-dimension.
For example, let p : R → R be a function and ∂ be a presubdifferential, f : R → R ∪ {+∞} be
a ∂-eds function on some open interval U relative to Dom ∂f such that for a dense subset Q
of U , we have

p(q) ∈ ∂f(q) for all q ∈ Q

and

sup
s∈Q∩ ]−∞,t]

p(s) < +∞ for all t ∈ U.

Putting

σ(t) := sup
s∈Q∩ ]−∞,t]

p(s),
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we know (see [47, 12.26 Exercise]) that there is a proper lsc convex function g : R → R ∪
{+∞} such that σ(q) ∈ ∂g(q) for every q ∈ Q (with the convention sup ∅ = −∞) and thus, by
Theorem 4.1, we get

| f(v) − f(u) − (g(v) − g(u)) |� sup
q∈Q∩Dom ∂f

d(σ(q), ∂f(q)) | v − u | for all u, v ∈ dom f ∩ U.

If the function f is not ∂-eds on U relative to Dom ∂f , then there are approximation techniques
for several classes of functions, for example, Moreau envelopes, Weierstrass approximation
theorem and the above method can be applied to an approximation of f .

In general, questions (1) and (2) are open. Answers to them should give us more information
how far the functions satisfying one of the inclusions from (1) or (2) are from convex functions.
These questions can be extended to larger classes, for example, to DC class; see Proposition 4.2.

We must also add that we do not know results concerning the inclusion

Tε(g) ⊂ S(g) + r(ε)BX∗ × r(ε)BX∗

where r(·) is a nonnegative continuous function on [0,+∞[ with r(0) = 0, so in our opinion it
is an open problem to have a good relation between Tε(g) and S(g) in the sense above.

The above integration property can be expanded to the DC function. In view of this, we
need the following property, which is an immediate consequence of [55, Corollary 4.10].

Proposition 4.1. Let X be a Banach space, U be a nonempty open convex subset of X
and f : U → R ∪ {+∞} be a ∂, μ-eds function on U relative to some set D with Dom ∂f ⊂
D ⊂ dom f , where ∂ is a subdifferential with the exact inclusion sum rule and included in the
Clarke subdifferential. Also let g2 : U → R be a continuous convex function. Then the function
f + g2 is ∂, μ-eds on U relative to D.

As a simple consequence of Theorem 4.1 and Proposition 4.1 we have the following
proposition.

Proposition 4.2. Let X be a Banach space, U be a nonempty open convex subset of X,
γ � 0 be given, ∂ be a subdifferential with the exact inclusion sum rule and included in the
Clarke subdifferential, f : X → R ∪ {+∞} be a ∂-eds function on U relative to Dom ∂f and
g : X → R be DC and continuous on U , that is, there are two continuous convex functions
g1, g2 : U → R such that g ≡ g1 − g2 on U . Assume that, for some dense subset Q of U , we
have

(∂f(q) + γBX∗) ∩ ∂g(q) 	= ∅ and ∂(f + g2)(q) = ∂f(q) + ∂g2(q) for all q ∈ Q. (4.6)

Then f is finite on U and

f(v) − f(u) + γ‖v − u‖ � g(v) − g(u) � f(v) − f(u) − γ‖v − u‖ for all u, v ∈ U.

Proof. Observe that, by Proposition 4.1, the function f + g2 is ∂-eds on U relative to
Dom ∂(f + g2). Assumption (4.6) and the inclusion of ∂ in ∂C ensure that

(
∂(f + g2)(q) +

γBX∗
) ∩ ∂g1(q) 	= ∅ for all q ∈ Q, and hence (4.2) is satisfied for f + g2 and g1 instead of f
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and g, respectively. Theorem 4.1 can be applied to these functions. Hence, f is finite on U and

f(v) − f(u) + g2(v) − g2(u) + γ‖v − u‖
� g1(v) − g1(u)
� f(v) − f(u) + g2(v) − g2(u) − γ‖v − u‖ for all u, v ∈ U,

which implies the statement.

Remark 4.3. Let us note that if ∂ is a subdifferential with the exact inclusion sum rule
such that ∂f contains the Fréchet subdifferential and is included in the Clarke subdifferential,
then by Proposition 4.4 recalled below, one sees that

∂f(u) = ∂(f + g2 − g2)(u) ⊂ ∂(f + g2)(u) +DF (−g2)(u) ⊂ ∂f(u) +DF g2(u) −DF g2(u),

so

∂(f + g2)(u) = ∂f(u) + ∂g2(u),

at any u ∈ U where g2 is Fréchet differentiable.

Whenever g is a continuous linear functional, then Theorem 4.1 yields the following
proposition.

Proposition 4.3. Let U be a nonempty open convex subset of a Banach space X, Q be a
dense subset of U , ∂ be a presubdifferential, and f : X → R ∪ {+∞} be a ∂, μ-eds function on
U relative to Dom ∂f . Let r, γ be nonnegative numbers and a∗ ∈ X∗ such that for all x ∈ Q

(a∗ + rBX∗) ∩ (∂f(x) + γBX∗) 	= ∅. (4.7)

Then f is finite on U and

|f(x) − f(y) − 〈a∗, x− y〉| � (r + γ + μ)‖x− y‖ for all x, y ∈ U.

Further, the function f is Lipschitz continuous on U with (‖a∗‖ + γ + r + μ) as a Lipschitz
constant on U .

Proof. Let us put g(x) := 〈a∗, x〉 for every x ∈ X, γ′ := r + γ and observe that condition
(4.2) is satisfied with γ′ instead of γ. Hence, the statement of the proposition follows from
Theorem 4.1.

Proposition 4.3 can be used to give sufficient conditions for the Fréchet differentiability at a
given point.

Corollary 4.2. Let U be a nonempty open convex subset of a Banach space X, x ∈ U
be given, Q be a dense subset of U , ∂ be a presubdifferential, f : X → R ∪ {+∞} be a ∂-eds
function on U relative to Dom ∂f and σ : Q ∪ {x} → X∗ be a continuous mapping relative to
Q ∪ {x} (the continuity means that σ is τQ∪{x}-to-norm continuous at x, where τQ∪{x} is the
induced topology from the strong topology of X). Assume that we have

σ(q) ∈ ∂f(q) for every q ∈ Q. (4.8)

Then f is strictly Fréchet differentiable at x with DF f(x) = σ(x).
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Proof. Let us put x∗ = σ(x) and apply Proposition 4.3. For this reason let us fix ε > 0 and
take δ > 0 such that ‖σ(q) − σ(x)‖ � ε for every q ∈ Q ∩B(x, δ). It is easy to observe that (4.7)
is satisfied with r := 0, γ := ε, a∗ = σ(x), U := B(x, δ) in place of U , and Q′ := Q ∩B(x, δ) in
place of Q. This implies that f is finite on B(x, δ) and

|f(v) − f(u) − 〈x∗, v − u〉| � ε‖v − u‖ for all u, v ∈ B(x, δ).

Since we can repeat this reasoning for arbitrary ε > 0, the above inequality yields the strict
Fréchet differentiability of f at x.

Before stating the second corollary let us recall that every lsc proper convex function on a
Banach space has the property that if it is Fréchet differentiable at a point from the interior of
its domain then it is strictly Fréchet differentiable at this point; namely we have the following
proposition.

Proposition 4.4. Let X be a Banach space and g : X → R ∪ {+∞} be an lsc convex
function that is Fréchet differentiable at x ∈ int dom g. Then for every ε > 0 there is δ > 0 such
that

∂g(y) ⊂ (DF g(x) + εBX∗) for every y ∈ B(x, δ). (4.9)

A proof of Proposition 4.4 can be found in [23, p. 147, Lemma].
Let us point out that if f is Fréchet differentiable at x, then, by (4.9) any selection σ of the

subdifferential of f satisfying (4.8) is continuous at x relative to Q ∪ {x}. Hence, if we know
that x ∈ int dom f , then the continuity at x of the selection relative to Q ∪ {x} is necessary
and sufficient for the Fréchet differentiability of f at x. The result when compared with
[1, Corollary 2, p. 460] needs to check the continuity of the subdifferential at x relative to
a dense subset, which is less demanding. We can now state the second corollary. It is a simple
consequence of Corollary 4.2.

Corollary 4.3. Let U be a nonempty open convex subset of a Banach space X, Q be
a dense subset of U , ∂ be a presubdifferential and f : X → R ∪ {+∞} be a ∂-eds function on
U relative to Dom ∂f . Assume that g : X → R is a convex continuous function on U that is
Fréchet differentiable at x ∈ U and such that

∂f(q) ∩ ∂g(q) 	= ∅ for every q ∈ Q. (4.10)

Then f is strictly Fréchet differentiable at x.

Proof. Let us put σ(x) := DF g(x). By (4.10), for every q ∈ Q we can choose a point σ(q) ∈
X∗ such that σ(q) ∈ ∂f(q) ∩ ∂g(q). By (4.9) the selection σ is continuous at x relative to
Q ∪ {x}. Now we can apply Corollary 4.2 to get the strict Fréchet differentiability of f at x.

As said above, we can derive from Proposition 4.3 the following corollary for the Lipschitz
property of an eds function.

Corollary 4.4. Let U be a nonempty open convex subset of X and f : X → R ∪ {+∞}
be a ∂-eds function on U relative to Dom ∂f . Then f is Lipschitz continuous on U with γ � 0
as a Lipschitz constant whenever there is a dense subset Q of U such that

0 ∈ ∂f(q) + γBX∗ for all q ∈ Q,
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that is, the set-valued mapping ∂f admits a selection σ(·) on Q such that ‖σ(q)‖ � γ for all
q ∈ Q.

Further, if ∂ satisfies (P4’) instead of (P4), then the condition is also necessary for the
Lipschitz property of f on U .

Proof. Applying Proposition 4.3 above with a∗ = 0 and r = 0, we see that the condition is
sufficient. Suppose now that ∂ satisfies (P4’) instead of (P4) and that f is finite and Lipschitz
continuous on U with γ as a Lipschitz constant. Then, for any fixed a ∈ U , the point a is a
minimum on U of the function f(·) + γ‖ · −a‖, and hence by (P4’) we have

0 ∈ ∂(f + γ‖ · −a‖)(a) ⊂ ∂f(a) + ∂(γ‖ · −a‖)(a).
The function γ‖ · −a‖ being convex continuous, (P3) entails ∂(γ‖ · −a‖)(a) = γBX∗ . This
completes the proof.

Theorem 4.1 gives us possibilities to investigate properties of eds functions through selections
of their presubdifferentials. In Corollary 4.2 it is shown that all points of continuity of a selection
form a set where the function is strictly differentiable. An obvious consequence of the corollary
above is that boundedness of a selection yields Lipschitzness of the function.

The next theorem shows that additional properties of the selection σ yield much more
regularity for the function f . This theorem involves, for the function f , the C1,ω(·) property
defined as follows.

Definition 4.1. Let

M := {ω : [0,+∞[→ [0,+∞[: ω(0) = 0, and ω continuous at 0 }. (4.11)

For ω(·) ∈ M one says that a mapping G : U → Y from an open set U of X into a normed
space Y is C1,ω(·) on U when G is Fréchet differentiable on U and, for each point a ∈ U , there
exist some neighbourhood U ′ ⊂ U of a and some real M � 0 such that

‖DFG(x) −DFG(y)‖ � Mω(‖x− y‖) for all x, y ∈ U ′. (4.12)

(Obviously one obtains an equivalent definition with the Gâteaux differentiability and Gâteaux
derivative of G). When, for some constant α > 0, one has ω(t) = tα, one just says that G is
C1,α instead of C1,ω(·) with ω(t) = tα.

In the case ω(t) = tα, inequality (4.12) means that DFG is locally Hölder continuous on U
with power α. So the C1,1 property of G on U corresponds to the local Lipschitz continuity of
DFG on U . Let us also point out that if α > 1 and U is open and convex, then (4.12) implies
that DFG is constant on U , so the most interesting case is when α ∈]0, 1].

Theorem 4.2. Let U be a nonempty open convex subset of X, Q be a dense subset of
U and f : X → R ∪ {+∞} be a ∂-eds function on U relative to Dom ∂f . Assume that there
exists some selection σ(·) of the set-valued mapping ∂f on Q such that

σ(y) ∈ ∂f(x) + ρ(x, y)BX∗ for all x, y ∈ Q, (4.13)

where ρ : Q×Q→ [0,+∞[ is a function such that ρ(x, x) = 0 and ρ(·, x) is continuous at x
relative to Q for any x ∈ Q. Then the following hold.

(a) The function f is strictly Fréchet differentiable at every q ∈ Q with σ(q) = DF f(q) for
all q ∈ Q.
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(b) If ∂f is included in the Clarke subdifferential, then ∂f is reduced to the Fréchet
derivative of f on Q, that is, ∂f(q) = {DF f(q)} for all q ∈ Q.
Moreover, if we additionally assume that we are able to extend ρ to U × U in such a way that
it satisfies: (1) ρ : U × U → [0,+∞[, (2) ρ(x, x) = 0, (3) ρ(·, ·) is continuous at (x, x) ∈ U × U
for any x ∈ U , then we have the following properties whenever ∂f is included in the Clarke
subdifferential.

(c) If inclusion (4.13) holds, then the function f is of class C1 on U and DF f(x) =
limQ
y→x σ(y) for all x ∈ U .

(d) If inclusion (4.13) holds on Q = U for ρ(x, y) = ω(‖x− y‖) with a function ω(·) ∈ M,
then the function f is C1,ω(·) on U . The same conclusion holds when Q 	= U but then ω(·) ∈ M
is additionally assumed to be upper semicontinuous. (When ω(t) = ctα with real constants
c � 0 and α > 1, this means that f is a continuous affine function on U).

Proof. (a) Fix any a ∈ Q and any real number η > 0. Choose some real δ > 0 such that
B(a, δ) ⊂ U and

ρ(x, a) < η for all x ∈ B(a, δ) ∩Q.
By (4.13) we have

σ(a) ∈ ∂f(x) + ηBX∗ for all x ∈ B(a, δ) ∩Q.
Applying Proposition 4.3 with r = 0 and a∗ = σ(a) we have

|f(x) − f(y) − 〈σ(a), x− y〉| � η‖x− y‖ for all x, y ∈ B(a, δ). (4.14)

This ensures that the function f is strictly Fréchet differentiable at a and DF f(a) = σ(a).
(b) Under the assumption of the inclusion of ∂f in the Clarke subdifferential of f , according

to (a), for all x ∈ Q, we have DF f(x) ∈ ∂f(x) ⊂ ∂Cf(x). Further, by (4.14) the function f
is locally Lipschitz continuous on U , which by the strict Fréchet differentiability ensures that
∂Cf(x) = {DF f(x)}. We then deduce that ∂f(x) = {DF f(x)}.

(c) Let us fix any x ∈ U . It follows from Proposition 4.3 that for any δ > 0 such that B(x, δ) ⊂
U , we have

|f(z) − f(y) − 〈σ(q), z − y〉| � sup
B(x,δ)×B(x,δ)

ρ(·, ·)‖z − y‖ (4.15)

for all y, z ∈ B(x, δ) and q ∈ B(x, δ) ∩Q. The function f being locally Lipschitz continuous on
U (as seen in the proof of (b) above), for δ > 0 sufficiently small we infer from (4.15) and from
the definition of f0(x; ·) that, for every x∗ ∈ ∂Cf(x)

‖x∗ − σ(q)‖ � sup
B(x,δ)×B(x,δ)

ρ(·, ·) for every q ∈ B(x, δ) ∩Q,

which ensures the existence of the limit limQ
q→x σ(q) =: τ(x) and

∂Cf(x) = {τ(x)}.
Using (4.15) again we obtain

|f(z) − f(y) − 〈τ(x), z − y〉| � sup
B(x,δ)×B(x,δ)

ρ(·, ·)‖z − y‖

for all y, z ∈ B(x, δ), and hence f is strictly Fréchet differentiable at x with DF f(x) = τ(x).
(d) Suppose that ρ(x, y) = ω(‖x− y‖). If Q = U , then, by (4.13) and (a), we have DF f(y) ∈

DF f(x) + ω(‖x− y‖)BX∗ for all x, y ∈ U , hence f is C1,ω(·) on U .
Suppose now that Q is dense in U with Q 	= U . Using (c) we obtain DF f(x) = limQ
q→x σ(q)

for every x ∈ U . By (4.13) and (a) we have, for all q, q′ ∈ Q,

σ(q′) ∈ σ(q) + ω(‖q′ − q‖)BX∗ , that is, ‖σ(q′) − σ(q)‖ � ω(‖q′ − q‖),
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which, according to the upper semicontinuity of ω and to the equalityDF f(u) = limQ
q→u σ(q)
for all u ∈ U , implies

‖DF f(y) −DF f(x)‖ � ω(‖y − x‖) for all x, y ∈ U.

This means that f is of class C1,ω(·) on U . The proof is then completed.

We have the following first corollary.

Corollary 4.5. Let U be a nonempty open convex subset of X, Q be a dense subset of U
and f : X → R ∪ {+∞} be a ∂-eds function on U relative to Dom ∂f . The following assertions
hold.

(a) If the set-valued mapping ∂f admits a selection on U that is continuous, then f is of
class C1 on U .

(b) If ∂f(·) ⊂ ∂Cf(·) and ∂f admits a selection on U that is locally Lipschitz continuous
on U , then f is of class C1,1 on U .

(c) If the set-valued mapping ∂f admits a selection on Q that is continuous relative to Q,
then f is strictly Fréchet differentiable at every point q ∈ Q with DF f(q) = σ(q), so it is of
class C1 relative to Q.

Moreover, assume that ∂f is included in the Clarke subdifferential; then the following
assertions hold.

(d) If the set-valued mapping ∂f admits a selection on Q that is also a continuous mapping
on U , then f is strictly Fréchet differentiable at every point x ∈ U with DF f(x) = σ(x), so it
is of class C1 on U .

(e) If the set-valued mapping ∂f admits a selection on Q that is also locally Lipschitz
continuous on U , then f is strictly Fréchet differentiable at every point x ∈ U with DF f(x) =
σ(x) and it is of class C1,1 on U .

Proof. (a) Denote by σ(·) a selection of ∂f on U that is continuous. Putting ρ(x, y) :=
‖σ(x) − σ(y)‖ for all x, y ∈ U , we see that ρ is continuous on U × U and ρ(x, x) = 0 for all
x ∈ U . Since

σ(y) ∈ ∂f(x) + ‖σ(x) − σ(y)‖BX∗ for all x, y ∈ U,

assertion (a) of the corollary is a consequence of assertion (a) of Theorem 4.2 (with Q = U).
(b) Let σ(·) be a selection of ∂f which is locally Lipschitz continuous on U . Assertions (a)

and (b) of Theorem 4.2 with Q = U give that f is differentiable on U with DF f(x) = σ(x) for
all x ∈ U . So, f is of class C1,1 on U .

(c) Denote by σ(·) : Q→ X∗ a continuous selection of the set-valued mapping ∂f on
Q, that is,

σ(q) ∈ ∂f(q) for every q ∈ Q.

It follows from Corollary 4.2 that, for every q ∈ Q, the function f is strictly Fréchet
differentiable at q with DF f(q) = σ(q), which gives the statement.

(d) and (e). Put ρ(x, y) := ‖σ(x) − σ(y)‖ for every x, y ∈ U . Observe that (d) and (e) are
consequences of (b), (c) and (d) of Theorem 4.2.

Another corollary involves a truncation of the presubdifferential of f .

Corollary 4.6. Let U be a nonempty open convex subset of X and f : X → R ∪ {+∞}
be a ∂-eds function on U relative to Dom ∂f . Let (a, a∗) ∈ gph ∂f with a ∈ U . Assume that
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there exists r > 0 such that

∂f(y) ∩ (a∗ + rBX∗) ⊂ ∂f(x) + ρ(x, y)BX∗ for all x, y ∈ U, (4.16)

where ρ : U × U → [0,+∞[ is a function such that ρ(x, x) = 0 and ρ(·, x) is continuous at x
for each x ∈ U . Then there exists a convex neighbourhood U ′ of a for which the following
assertions hold.

(a) The function f is of class C1 on the neighbourhood U ′ of a and DF f(x) ∈ ∂f(x) for all
x ∈ U ′.

(b) If ∂f is included in the Clarke subdifferential of f , then one has in addition ∂f(x) =
{DF f(x)} for all x ∈ U ′.

(c) If ∂f is included in the Clarke subdifferential and (4.16) holds for ρ(x, y) = ω(‖x− y‖)
with a function ω(·) ∈ M, then f is of class C1,ω(·) on the neighbourhood U ′ of the point a
(when ω(t) = ctα with real constants c � 0 and α > 1 it means that f is a continuous affine
function on U ′).

Proof. (a) By the continuity of the function ρ(·, a) at the point a, choose an open convex
neighbourhood U ′ ⊂ U of a such that ρ(x, a) < r for all x ∈ U ′. Observing that a∗ ∈ ∂f(a) ∩
(a∗ + rBX∗), assumption (4.16) gives that

a∗ ∈ ∂f(x) + ρ(x, a)BX∗ for all x ∈ U ′.

For each x ∈ U ′, combining the latter inclusion with the inequality ρ(x, a) < r, we see that
∂f(x) ∩ (a∗ + rBX∗) 	= ∅. This allows us to choose a mapping σ : U ′ → X∗ with σ(y) ∈
∂f(y) ∩ (a∗ + rBX∗) for all y ∈ U ′. The mapping σ(·) is then a selection of ∂f on U ′ and, by
assumption (4.16), we have

σ(y) ∈ ∂f(x) + ρ(x, y)BX∗ for all x, y ∈ U ′.

Applying assertion (a) of Theorem 4.2, we deduce assertion (a) of the corollary.
Assertions (b) and (c) of the corollary follow in a similar way.

The next corollary involves the Aubin Lipschitz-like property of the presubdifferential.

Definition 4.2. According to [2, 47] a set-valued mapping M : U ⇒ Y from an open set
U of X into a normed space Y satisfies the Aubin Lipschitz-like property at a point a ∈ U for
b ∈M(a) provided there are real numbers r > 0, γ � 0 and a neighbourhood U ′ ⊂ U of a such
that

M(y) ∩B(b, r) ⊂M(x) + γ‖y − x‖BY for all x, y ∈ U ′.

When, in place of ‖x− y‖BY in the second term, we put ‖x− y‖α
BY for some α > 0, we will

say that M satisfies the Aubin Hölder-like property with power α at a for b ∈M(a).

Corollary 4.7. Let U be a nonempty open convex subset of X and f : X → R ∪ {+∞}
be a ∂-eds function on U relative to Dom ∂f . Let (a, a∗) ∈ gph ∂f with a ∈ U . Assume that
the set-valued mapping ∂f has the Aubin Lipschitz-like property at a for a∗ and that the
presubdifferential ∂f is included in the Clarke subdifferential. Then f is C1,1 near the point a.

Proof. The corollary is a direct consequence of the definition of Aubin Lipschitz-like
property and of Corollary 4.6 applied with ρ(x, y) = γ‖x− y‖ and the neighbourhood U ′ ⊂ U
above chosen to be open and convex.
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For classes of functions distinguished in Proposition 3.2 we have (a)–(d) of Theorem 4.2 and
Corollary 4.6. This is gathered in the corollary below.

Corollary 4.8. Let U be a nonempty open convex set of X and f : X → R ∪ {+∞} be
a lsc function. Assume that (4.13) (or (4.16), respectively) is fulfilled. Then each one of the
following conditions ensure properties (a), (b), (c) and (d) in Theorem 4.2 (or Corollary 4.6,
respectively):

(a) f is convex on U ;
(b) f is locally Lipschitz continuous on U and segment-wise essentially smooth on U , and

the presubdifferential ∂f is included in the Clarke subdifferential of f ;
(c) f is locally Lipschitz continuous on U and directionally subregular on U , and the

presubdifferential ∂f is included in the Clarke subdifferential of f ;
(d) ∂ is a subdifferential included in the Clarke subdifferential with exact subdifferential

sum rule (P4’) and f is DC on U ;
(e) f is approximate convex on U and the presubdifferential ∂ is included in the Clarke

subdifferential.

Proof. Concerning (a)–(e), the results are direct consequences of Proposition 3.2,
Theorem 4.2 and Corollary 4.6.

Our next result relates the Fréchet differentiability of an eds function f to the inner
semicontinuity property of the subdifferential of f . Recall that a set-valued mapping M : X ⇒
Y (where Y is a Hausdorff topological space) is inner (lower) semicontinuous at a ∈ DomM :=
{x ∈ X : M(x) 	= ∅} for b ∈M(a) when, for any neighbourhood V of b, there exists some
neighbourhood U of a such that M(x) ∩ V 	= ∅ for all x ∈ U . When M is inner semicontinuous
at a for all b ∈M(a), one says that M is inner semicontinuous at a; in particular M is inner
semicontinuous at a whenever M(a) = ∅. Obviously, M is inner semicontinuous at a when, for
each open set V of Y with M(a) ∩ V 	= ∅, there exists someneighbourhood U of a such that
M(x) ∩ V 	= ∅ for all x ∈ U . Analogously, M is outer (upper) semicontinuous at a, provided
that, for each open set V containing M(a), there exists some neighbourhood U of a such that
M(x) ⊂ V for all x ∈ U . When the set-valued mappingM is both inner and outer semicontinous
at a, one says it is continuous at a.

Similarly, the Peano-Painlevé-Kuratowski inner (or inferior) limit Lim inf
x→a

M(x) is defined
by y ∈ Lim inf

x→a
M(x), provided that, for each neighbourhood V of y there exists some

neighbourhood U of a such that M(x) ∩ V 	= ∅ for all x ∈ U . One sees that M is inner semi-
continuous at a for b ∈M(a) if and only if b ∈ Lim inf

x→a
M(x). Further, when the set-valued

mapping M has closed value at a, then we have the inclusion Lim inf
x→a

M(x) ⊂M(a).

When Y is a topological dual space, we will write ‖ ‖Lim inf
x→a

M(x) to emphasize that the
inner limit is taken for Y endowed with the topology associated with the dual norm.

Proposition 4.5. Let f : X → R ∪ {+∞} be a ∂-eds function on an open convex set
U ⊂ X relative to Dom ∂f . Assume that ∂f is inner semicontinuous (for X∗ endowed with
the strong topology) at a ∈ U for some a∗ ∈ ∂f(a). Then the function f is strictly Fréchet
differentiable at the point a with DF f(a) = a∗. Further, the equality ‖ ‖Lim inf

x→a
∂f(x) = {a∗}

holds.

Proof. By the inner (lower) semicontinuity property, for any real ε > 0 there exists some
open convex neighbourhood U ′ of a with U ′ ⊂ U such that

(a∗ + εBX∗) ∩ ∂f(x) 	= ∅ for all x ∈ U ′.
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By Proposition 4.3 we then have U ′ ⊂ dom f and

|f(x) − f(y) − 〈a∗, x− y〉| � ε‖x− y‖ for all x, y ∈ U ′.

This means that f is strictly Fréchet differentiable at a with DF f(a) = a∗.
Concerning the equality involving the inner limit of ∂f(x) as x→ a, observe first that

a∗ ∈ ‖ ‖Lim inf
x→a

∂f(x) according to the inner semicontinuity assumption. Fix now any x∗ ∈
‖ ‖Lim inf

x→a
∂f(x). Our reasoning above gives that f is Fréchet differentiable at a with DF f(a) =

x∗. Therefore, we have x∗ = a∗ and hence ‖ ‖Lim inf
x→a

∂f(x) = {a∗}.

The preceding condition is in fact a characterization of differentiability for approximate
convex functions, as shown in the next theorem. Similar characterizations were previously
established by Asplund and Rockafellar in [1, Theorem 3 and Corollary 2] for convex functions
through the use of approximate ε-subdifferentials of convex functions. Characterizations in the
same line for convex functions also follow directly from a result of Kenderov [31].

Let f : X → R ∪ {+∞} be an extended real-valued function which is finite at a ∈ X and
approximate convex on some open convex set U � a. Recall (see, for example, [37] and [54,
Proposition 3.4]) that for each x ∈ U where f is finite, the directional derivative f ′(x; ·) exists
and is a positively homogeneous convex function. Further

∂Cf(x) = ∂F f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 � f ′(x;h) ∀h ∈ X}, (4.17)

and hence
∂Cf(x) = ∂F f(x) = {DGf(x)} (4.18)

whenever f is Gâteaux differentiable at x. Consider now any real ε > 0 and choose by (3.5)
some δ > 0 with a+ 2δBX ⊂ U and such that for all u, v ∈ a+ 2δBX and all λ ∈]0, 1[

f(λu+ (1 − λ)v) � λf(u) + (1 − λ)f(v) + ελ(1 − λ)‖u− v‖. (4.19)

Fix any x ∈ a+ δBX , any h ∈ BX and any positive t � δ. Take any r ∈]0, δ[. Writing

x = r(r + t)−1(x− th) + t(r + t)−1(x+ rh)

and using (4.19) with λ = r(r + t)−1 we obtain after computation for x ∈ dom f

−t−1[f(x− th) − f(x)] � r−1[f(x+ rh) − f(x)] + ε.

Since the directional derivative f ′(x; ·) exists, we deduce that

− t−1[f(x− th) − f(x)] � f ′(x;h) + ε. (4.20)

Consider now any s ∈]0, t[. Similarly, applying (4.19) with λ = s/t, x+ th in place of u, and x
in place of v, we get after computation (with the use of the inequality 1 − λ < 1)

s−1[f(x+ sh) − f(x)] � t−1[f(x+ th) − f(x)] + ε.

Consequently, we have
f ′(x;h) � t−1[f(x+ th) − f(x)] + ε. (4.21)

We are now ready to state and establish the theorem providing several characterizations of
Fréchet differentiability of approximate convex functions.

Theorem 4.3. Let f : X → R ∪ {+∞} be an lsc function that is approximate convex
on some neighbourhood of a point a ∈ int dom f . Assume that ∂f contains the Fréchet
subdifferential and is included in the Clarke subdifferential. Then the following are equivalent:

(a) the function f is Fréchet differentiable at the point a;
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(b) the function f is strictly Fréchet differentiable at the point a;
(c) ‖ ‖Lim inf

x→a
∂f(x) 	= ∅;

(d) ∂f(a) 	= ∅ and the set-valued mapping ∂f is inner semi-continuous at a for X∗ endowed
with the topology associated with the dual norm;

(e) ∂f(a) 	= ∅ and the set-valued mapping ∂f is continuous at a for X∗ endowed with the
topology associated with the dual norm;

(f) there are a neighbourhood U of a and a dense subset Q of U with a ∈ Q such that for
some mapping σ : Q→ X∗ we have σ is continuous at a relative to Q and σ(q) ∈ ∂f(q)
for every q ∈ Q.

Proof. Suppose that (c) holds and fix a∗ ∈ ‖ ‖Lim inf
x→a

∂f(x). Then a∗ ∈ ∂f(a) (because
∂f(a) is strongly closed according to (4.17)) and ∂f is inner semicontinuous (for X∗

endowed with the strong topology) at a for a∗ ∈ ∂f(a). Further, there exists an open convex
neighbourhood U of a such that f is approximate convex on U and hence ∂-eds on U relative
to Dom ∂f by Proposition 3.2. Thus the implication (c) ⇒ (b) follows from Proposition 4.5.

Let us show the implication (a) ⇒ (e) is true. Choose an open convex neighbourhood U of
a over which f is approximate convex. Fix any real ε > 0. By the Fréchet differentiability of f
at a take a real t > 0 such that a+ 2tBX ⊂ U and

− ε‖x− a‖ � f(x) − f(a) − 〈DF f(a), x− a〉 � ε‖x− a‖ ∀x ∈ a+ 2tBX . (4.22)

Then, for any x ∈ a+ tBX we have for h ∈ X, with ‖h‖ = 1, according to (4.20) and (4.22),
that

f ′(x;h) � t−1[f(x) − f(x− th)] − ε

= −ε+ t−1[f(x) − f(a)] + t−1[f(a) − f(x− th)]

� −ε+ t−1[〈DF f(a), x− a〉 − ε‖x− a‖] + t−1[−〈DF f(a), x− th− a〉− ε‖x− th− a‖]
� −ε+ t−1[〈DF f(a), x− a〉 − εt] + t−1[−〈DF f(a), x− th− a〉 − ε‖th‖ − ε‖x− a‖]
� −ε+ t−1[〈DF f(a), th〉 − 3εt]
� 〈DF f(a), h〉 − 4ε,

that is,

〈DF f(a), h〉 � f ′(x;h) + 4ε for all h ∈ X, with ‖h‖ = 1

or equivalently

〈DF f(a), h〉 � f ′(x;h) + 4ε‖h‖ for all h ∈ X.

The latter inequality means by (4.17) that

DF f(a) ∈ ∂f(x) + 4εBX∗ for all x ∈ a+ tBX . (4.23)

On the other hand, for any x ∈ a+ tBX we have in a similar way through (4.21) and (4.22)
that, for all h ∈ X with ‖h‖ = 1,

f ′(x;h) � t−1[f(x+ th) − f(x)] + ε

= t−1[f(x+ th) − f(a)] + t−1[f(a) − f(x)] + ε

� 〈DF f(a), h〉 + 4ε.

This yieds f ′(x;h) � 〈DF f(a), h〉 + 4ε‖h‖ for all h ∈ X and hence, by (4.17), we have ∂f(x) ⊂
DF f(a) + 4εBX∗ . Combining this with (4.23) and taking the equality ∂f(a) = {DF f(a)} into
account, we obtain that ∂f is inner and outer semicontinuous at a for X∗ endowed with the
dual norm topology. The desired implication (a) ⇒ (e) is then established.
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Observing that implications (e) ⇒ (d), (d) ⇒ (c), and (b) ⇒ (a) are obvious, we have at this
stage the equivalence between (a), (b), (c), (d), and (e).

Let us show the implication (f) ⇒ (b). There exists an open convex neighbourhood U of a
such that f is approximate convex on U and hence, by Proposition 3.2, f is ∂-eds on U relative
to Dom ∂f . Assuming (f) we may apply Corollary 4.2 to get (b).

In order to finish the proof, let us argue that the implication (e) ⇒ (f) is also valid. So
suppose (e) and note that we also have (b) by the equivalences shown above. Note also that
there exists an open convex neighbourhood U of a such that ∂f(x) 	= ∅ for every x ∈ U . Take
any selection σ of the presubdifferential ∂f on U . By (e), (b), and (4.18) we get (f), which
completes the proof.

5. Lipschitz-like properties of subdifferentials of prox-regular functions

This section is devoted to the study of Lipschitz-like properties of subdifferentials of prox-
regular functions. Let f : R

n → R ∪ {+∞} be a proper lsc extended real-valued function and
(a, a∗) ∈ gph ∂Lf ( gph ∂Lf stands for the graph of the Mordukhovich limiting subdifferential).
For any real λ > 0 the Moreau envelope eλ,a∗f and proximal (set-valued) mapping Pλ,a∗f
through the direction a∗ are defined for all x ∈ R

n by

eλ,a∗f(x) := inf
y∈Rn

[f(y) − 〈a∗, y〉 +
1
2λ

‖x− y‖2]

and

Pλ,a∗f(x) := {y ∈ R
n : f(y) − 〈a∗, y〉 +

1
2λ

‖x− y‖2 = eλ,a∗f(x)},
where ‖ ‖ is the Euclidean norm of R

n. Poliquin and Rockafellar [40] introduced a large class of
lsc extended real-valued functions f on R

n (including convex functions) for which there exists a
threshold λ0 such that, for each positive real number λ � λ0, there is some neighbourhood Uλ

of the point a over which the envelope eλ,a∗f is C1,1 and the proximal mapping Pλ,a∗f is single
valued and Lipschitz continuous. Because of that regularity of the proximal mapping Pλ,a∗ ,
the functions of the class are called prox-regular at the point a for the direction a∗ ∈ ∂f(a);
see also [41] for other results concerning second-order properties of such functions. Bernard
and Thibault showed in [5, 4] that the same properties still hold for eλ,a∗ and Pλ,a∗ when f
is any function of the same class but with a Hilbert space (H, ‖ ‖) in place of the Euclidean
space (Rn, ‖ ‖).

An interesting geometric way to characterize such a function f of that class (see [40])
corresponds to the existence of some reals ρ, δ > 0 such that, for all (x, s) ∈ epi f with
‖(x, s) − (a, f(a))‖ < δ and (x∗,−s∗) ∈ NL

(
epi f ; (x, s)

)
with ‖(x∗, s∗) − (a∗,−1)‖ < δ, one

has

Proj
(
epi f ; (x, s) + ρ(x∗, s∗)

)
= {(x, s)},

where Proj
(
epi f ;

)
denotes the metric projection on epi f with respect to the Euclidean norm

of R
n × R. Translating this analytically for R

n or the Hilbert space H gives the following
definition.

Definition 5.1 ([40]). Let U be an open convex set of a Hilbert space (H, ‖ ‖). Let
f : U → R ∪ {+∞} be an lsc function and (a, a∗) ∈ gph ∂Lf . Following [40], the function f
is prox-regular at the point a for the subgradient a∗ ∈ ∂Lf(a), provided there are some real
numbers r � 0 and δ > 0 such that for all y ∈ B(a; δ) ⊂ U and all (x, x∗) ∈ gph ∂Lf with
‖x− a‖ < δ, |f(x) − f(a)| < δ, and ‖x∗ − a∗‖ < δ, one has

f(y) + r‖y − x‖2 � f(x) + 〈x∗, y − x〉. (5.1)
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When the property holds for all subgradients a∗ ∈ ∂Lf(a), the function f is said to be prox-
regular at a ∈ Dom ∂Lf .

As observed in [39, 6], primal lower nice functions on Hilbert spaces are prox-regular. When
the involved space is neither a Hilbert space nor a space with differentiable norm (outside
zero), property (5.1) does not ensure in general the local Lipschitz continuity of the proximal
mapping Pλ,a∗f . Nevertheless, as it will be established below the regularity property in (5.1)
has other important consequences. Let us thus fix this property in the case of a general Banach
space in the definition below, where M (see (4.11)) denotes the set of functions ω(·) from
[0,+∞[ into [0,+∞[ that are continuous at 0 with ω(0) = 0.

Definition 5.2. Let X be a Banach space, ∂ be a presubdifferential and f : U → R ∪
{+∞} be an lsc function on an open set U , and let (a, a∗) ∈ gph ∂f . When there exist ϕ(·) ∈ M
and δ > 0 such that (similarly to (5.1)) for all y ∈ B(a, δ) ⊂ U and all (x, x∗) ∈ gph ∂f with
‖x− a‖ < δ, |f(x) − f(a)| < δ, and ‖x∗ − a∗‖ < δ, one has

f(y) + ‖y − x‖ϕ(‖y − x‖) � f(x) + 〈x∗, y − x〉, (5.2)

the function f will be called ∂1,ϕ(·)-subregular at a for a∗ ∈ ∂f(a).

Of course any convex function is ∂1,ϕ(·)-subregular, for any ϕ ∈ M. Another important
example of ∂1,ϕ(·)-subregular functions is given by the class of qualified convexly composite
functions, with ϕ(t) = ct for some constant c � 0. An lsc function f := g ◦G is convexly C1,1-
composite on an open convex set U of the Banach space X, provided g : Y → R ∪ {+∞} is
an lsc convex function from a Banach space Y into R ∪ {+∞} and the mapping G : X → Y
is C1,1 on U . The convexly composite function g ◦G is said to be qualified at the point a ∈
U ∩ dom (g ◦G) whenever the Robinson qualification condition holds at a, that is,

R+

(
dom g −G(a)

) −DG(a)(X) = Y.

Note that the Robinson qualification condition holds for all points of U in some neighbourhood
of a (see [18]). The prox-regularity of qualified convexly composite functions was first observed
by Poliquin and Rockafellar in [40, Proposition 2.5] in the context of finite-dimensional spaces.
It has been extended to any Hilbert space by Bernard and Thibault in [5, Proposition 2.4].

Finally, let us indicate that the class of ∂1,ϕ(·)-subregular functions is included in that of
weak-regular functions introduced and studied in Jourani [29].

When the convergence f(x) → f(a) is automatically fulfilled as (x, x∗) → (a, a∗) with
(x, x∗) ∈ gph ∂f , the condition |f(x) − f(a)| < δ may be obviously removed in the defini-
tion of prox-regularity or of ∂1,ϕ(·)-subregularity above. This observation led Poliquin and
Rockafellar [40] to introduce also the concept of subdifferentially continuous functions.

Definition 5.3. The function f is said to be subdifferentially (or ∂-subdifferentially)
continuous at the point a ∈ Dom ∂f for a subgradient a∗ ∈ ∂f(a) when the function from
gph ∂f to R ∪ {+∞} given by (x, x∗) �→ f(x) is continuous at (a, a∗) with respect to the induced
topology on gph ∂f , that is, for any real ε > 0 there exists some real δ > 0 such that

|f(x) − f(a)| < ε for all (x, x∗) ∈ gph ∂f with ‖x− a‖ < δ and ‖x∗ − a∗‖ < δ.

Any function which is continuous at a ∈ Dom ∂f is subdifferentially continuous at a for any
subgradient a∗ ∈ ∂f(a). It is also shown in [5, Proposition 2.3] that any lsc convex function
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f : U → R ∪ {+∞} is subdifferentially continuous at any a ∈ Dom ∂f for any subgradient a∗ ∈
∂f(a).

In the proposition below it is recalled that qualified convexly composite functions are prox-
regular and subdifferentially continuous functions on Hilbert spaces; see [40, 5] for the details.
The proof of Proposition 2.4 in [5] is still valid in the context of Definition 5.2 for any
Banach space, and it shows that any qualified convexly composite function f as above is
∂1,ϕ(·)-subregular at a with ϕ(t) = ct for some real constant c � 0.

Proposition 5.1. Let ∂ be a presubdifferential included in the Clarke subdifferential and
let f = g ◦G : U → R ∪ {+∞} be an lsc convexly C1,1-composite function as above that is
qualified at a ∈ Dom ∂f , where U is an open convex subset of the Banach space X. Then, for
any subgradient a∗ ∈ ∂f(a), the function f is subdifferentially continuous at a for a∗ and also
∂1,ϕ(·)-subregular at a for a∗. More precisely, inequality (5.2) holds with ϕ(t) = ct, for some
real constant c � 0.

For several other properties of prox-regular functions we refer the reader to [24, 33, 40, 41,
47] for the finite-dimensional setting and to [4–6, 8] for infinite dimensional spaces.

The theorem below concerning ∂1,ϕ(·)-subregular functions establishes in particular that
the Aubin Hölder-like property of the presubdifferential of such a function ensures the C1,α-
regularity of the function.

Theorem 5.1. Let ∂ be a presubdifferential included in the Clarke subdifferential and X
be a Banach space. Let f : X → R ∪ {+∞} be an lsc function that is ∂1,ϕ(·)-subregular at a
point a for some a∗ ∈ ∂f(a) and ϕ(·) ∈ M. Assume that f is subdifferentially continuous at a
for a∗ and that the set-valued mapping ∂f satisfies the Aubin uniform-like continuity property
with modulus ω(·) ∈ M at a for a∗, that is, there are some real ρ > 0 and some neighbourhood
U of a such that

∂f(x) ∩B(a∗, ρ) ⊂ ∂f(y) + ω(‖x− y‖)BX∗ for all x, y ∈ U. (5.3)

Then f is of class C1,ω(·) near a (when ω(t) = ctα with α > 1 it means that f is a continuous
affine function near a).

The proof of the theorem uses the next two lemmas.

Lemma 5.1. Let f : X → R ∪ {+∞} be a function that is lsc at a and subdifferentially
continuous at a for some a∗ ∈ ∂f(a). Assume that, for some ω(·) ∈ M, one has

d(a∗, ∂f(x)) � ω(‖x− a‖) for all x near a. (5.4)

Then f is finite near a and continuous at a.

Proof. Note first that f(a) is finite since ∂f(a) 	= ∅. Fix any ε > 0. The subdifferential
continuity property gives some δ > 0 such that

‖x− a‖ < δ, ‖x∗ − a∗‖ < δ and x∗ ∈ ∂f(x) ⇒ |f(x) − f(a)| < ε. (5.5)

By the continuity of ω(·) at 0 with ω(0) = 0 take some positive real number η < δ such that
ω(t) < δ for all nonnegative real numbers t < η. For any x ∈ B(a, η) inequality (5.4) gives
some x∗ ∈ ∂f(x) with ‖x∗ − a∗‖ < δ, and hence |f(x) − f(a)| < ε according to (5.5). This
corresponds to the continuity of f at a.
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The second lemma establishes the local Lipschitz continuity whenever the function f is (in
addition to the assumptions of the lemma above) ∂1,ϕ(·)-subregular.

Lemma 5.2. Let f : X → R ∪ {+∞} be a function which is finite at a and continuous at a.
Assume that the function f is ∂1,ϕ(·)-subregular for some ϕ(·) ∈ M at a for some a∗ ∈ ∂f(a)
and that (5.4) is fulfilled with a, a∗. Then f is finite and locally Lipschitz continuous near a.

Proof. Fix δ > 0 such that d(a∗, ∂f(x)) � ω(‖x− a‖) for all x ∈ B(a, δ) and

〈x∗, y − x〉 � f(y) − f(x) + ‖y − x‖ϕ(‖y − x‖) (5.6)

for all y ∈ B(a, δ) and (x, x∗) ∈ gph ∂f with x ∈ B(a, δ) and ‖x∗ − a∗‖ < δ. By the continuity
of ω(·) at 0 with ω(0) = 0, take some positive real number η < δ such that ω(t) < δ for
all nonnegative real numbers t < η. Fix any x ∈ B(a, η) and according to the inequalities
d(a∗, ∂f(x)) � ω(‖x− a‖) < δ choose some σ(x) ∈ ∂f(x) such that ‖σ(x) − a∗‖ < δ. By (5.6)
we have, for all y ∈ B(a, η),

f(y) � f(x) + 〈σ(x), y − x〉 − ‖y − x‖ϕ(‖y − x‖)
� f(x) − ‖σ(x)‖ ‖y − x‖ − ‖y − x‖ϕ(‖y − x‖)
� f(x) − (δ + ‖a∗‖)‖y − x‖ − ‖y − x‖ϕ(‖y − x‖).

This is easily seen to ensure the finiteness and local Lipschitz continuity of f near a, because
ϕ(‖y − x‖) � 1 for x and y close enough to a.

We can now prove the theorem relative to the Aubin property of the presubdifferential of a
∂1,ϕ(·)-subregular function.

Proof of Theorem 5.1. According to the Aubin uniform-like continuity property of ∂f and
to the ∂1,ϕ(·)-subregularity of f , fix δ, ρ > 0 such that

∂f(y) ∩B(a∗, ρ) ⊂ ∂f(x) + ω(‖y − x‖)BX∗ ∀x, y ∈ B(a, δ) (5.7)

and such that, for all y ∈ B(a, δ), x ∈ B(a, δ), x∗ ∈ ∂f(x) with ‖x∗ − a∗‖ < δ,

f(y) � f(x) + 〈x∗, y − x〉 − ‖y − x‖ϕ(‖y − x‖). (5.8)

By Lemmas 5.1 and 5.2 we may suppose that f is finite and Lipschitz continuous on B(a, δ)
with some Lipschitz constant K � 0. Choose a positive number η < δ such that ω(t) < ρ for
all nonnegative numbers t < η. By (5.7) observing for each x ∈ B(a, η) that

a∗ ∈ ∂f(x) + ω(‖x− a‖)BX∗ ,

we see that ∂f(x) ∩B(a∗, ρ) 	= ∅, and hence we can choose some σ(x) ∈ ∂f(x) ∩B(a∗, ρ). Now
fix any x ∈ B(a, η) and any h ∈ X. According to the Lipschitz property of f on B(a, η) and to
the definition of the Clarke directional derivative, take two sequences tk ↓ 0 and xk → x such
that xk + tkh ∈ B(a, η) for all k and such that

f0(x;h) = lim
k
t−1
k [f(xk + tkh) − f(xk)].

Putting yk := xk + tkh, inclusion (5.7) gives some y∗k ∈ ∂f(yk) such that

‖y∗k − σ(xk)‖ � ω(‖yk − xk‖) = ω(tk‖h‖).
By (5.8) we have for all integers k

f(xk) � f(yk) + 〈y∗k, xk − yk〉 − ‖xk − yk‖ϕ(‖xk − yk‖)
� f(yk) + 〈σ(xk), xk − yk〉 − tk‖h‖ω(tk‖h‖) − tk‖h‖ϕ(tk‖h‖),
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and hence

t−1
k [f(xk + tkh) − f(xk)] � 〈σ(xk), h〉 +

(
ω(tk‖h‖) + ϕ(tk‖h‖)

)‖h‖. (5.9)

The sequence (σ(xk))k being bounded (because ‖σ(xk)‖ � K), fix u∗ as one of its w∗-cluster
points. Using (5.8) with xk and σ(xk) in place of x and x∗ and passing to the limit along a
bounded subnet of (σ(xk))k w

∗-converging to u∗, we obtain, for all y ∈ B(a, η),

f(y) � f(x) + 〈u∗, y − x〉 − ‖y − x‖ sup
s∈]0, 2‖y−x‖ ]

ϕ(s). (5.10)

By the continuity of ϕ at zero (ϕ(t) →
t↓0

0, see the definition of M) it follows from (5.10)) that

〈u∗, h〉 � d−f(x;h). (5.11)

On the other hand, using the convergences ω(t) → 0 and ϕ(t) → 0 as t ↓ 0 we easily deduce
from (5.9) that

f0(x;h) � 〈u∗, h〉,
and hence taking (5.11) into account we deduce f0(x;h) � d−f(x;h), that is, f0(x;h) =
d−f(x;h). The Lipschitz function f on B(a, η) is then directionally subregular on B(a, η),
hence it follows from Corollary 4.8(c) that f is ∂-eds on B(a, η). Since

σ(y) ∈ ∂f(x) + ω(‖x− y‖)BX∗ for all x, y ∈ B(a, η),

Theorem 4.2(d) ensures that f is C1,ω(·) on B(a, η) and the proof is completed.

The first corollary concerns qualified convexly composite functions. It is a direct consequence
of Theorem 5.1 and Proposition 5.1.

Corollary 5.1. Let ∂ be a presubdifferential included in the Clarke subdifferential and U
be a nonempty open convex set of X. Let f : U → R ∪ {+∞} be an lsc convexly C1,1-composite
function that is qualified at a point a ∈ Dom ∂f . Assume that the set-valued mapping ∂f
satisfies the Aubin uniform-like continuity property with modulus ω(·) ∈ M at a for some
a∗ ∈ ∂f(a). Then f is C1,ω(·) near a.

The case of prox-regular functions follows also easily from Theorem 5.1.

Corollary 5.2. Let X be a Hilbert space, ∂ be a presubdifferential included in the Clarke
subdifferential, and U be a nonempty open set of X. Let f : X → R ∪ {+∞} be an lsc function
which is prox-regular at a point a ∈ U for some a∗ ∈ ∂f(a). Assume that f is subdifferentially
continuous at a for a∗ and that the set-valued mapping ∂f satisfies the Aubin uniform-like
continuity property with modulus ω(·) ∈ M at a for a∗. Then the function f is of class C1,ω(·)

near the point a.

The next corollary (which is a direct consequence of the previous one) considers the case
where the presubdifferentail of the prox-regular function is Aubin Lipschitz-like continuous. It
has been first established by Levy and Poliquin [32] in finite-dimensional spaces and recently
extended to Hilbert spaces by Bac̆ák et al [3].

Corollary 5.3 ([32, Theorem 3.1]; [3, Theorem 5.4]). Let X be a Hilbert space, ∂ be
a presubdifferential included in the Clarke subdifferential, and U be a nonempty open set of
X. Let f : X → R ∪ {+∞} be an lsc function that is prox-regular at a point a ∈ U for some



Page 30 of 35 A. JOURANI, L. THIBAULT AND D. ZAGRODNY

a∗ ∈ ∂f(a). Assume that f is subdifferentially continuous at a for a∗ and that the set-valued
mapping ∂f satisfies the Aubin Lipschitz-like property at a for a∗. Then the function f is of
class C1,1 near the point a.

6. Characterizations of Lipschitz and C1,ω(·) properties through paraconvexity

In the last two above sections, assertion (c) of Corollary 4.6 and Theorem 5.1 give a characteri-
zation of C1,α property of ∂-eds functions and ∂1,ϕ(·)-subregular functions, respectively, via the
Aubin Hölder-like property of ∂f . Our aim in this section is to provide for any function another
characterization of its C1,α property in terms of the concepts of paraconvexity. Let us first recall
the notions of paraconvexity and strong-paraconvexity introduced by S. Rolewicz [48] in 1979.

Definition 6.1. Let X be a normed space, γ > 0 be a given positive number and f : X →
R ∪ {+∞} be an extended real-valued function. Following [48] (or [49], respectively) we say
that the function f is γ-paraconvex (or strongly γ-paraconvex, respectively) on a convex set U
of X, provided there exists C � 0 such that, for all t ∈]0, 1[ and x, y ∈ U , we have

f(tx+ (1 − t)y) � tf(x) + (1 − t)f(y) + C‖x− y‖γ (6.1)

(or

f(tx+ (1 − t)y) � tf(x) + (1 − t)f(y) + Cmin{t, 1 − t}‖x− y‖γ), respectively . (6.2)

More generally, for ψ(·) ∈ M, according to [50] we say that f is ψ(·)-paraconvex (or strongly
ψ(·)-paraconvex, respectively) on U when, for some constant C � 0, we have, for all t ∈]0, 1[
and x, y ∈ U , that

f(tx+ (1 − t)y) � tf(x) + (1 − t)f(y) + Cψ(‖x− y‖) (6.3)

(or

f(tx+ (1 − t)y) � tf(x) + (1 − t)f(y) + Cmin{t, 1 − t}ψ(‖x− y‖)), respectively . (6.4)

Since t(1 − t) � min{t, 1 − t} � 2t(1 − t) for all t ∈ [0, 1], we see that f is strongly ψ(·)-
paraconvex on U if and only if for some real ρ � 0 we have for all t ∈]0, 1[ and x, y ∈ U

f(tx+ (1 − t)y) � tf(x) + (1 − t)f(y) + ρt(1 − t)ψ(‖x− y‖). (6.5)

When the latter is fulfilled for ψ(t) = tω(t) with ω(·) ∈ M, the function f is also called ω(·)-
semiconvex in the literature (see, for example, [15]).

Theorem 2 in Rolewicz [49] and Proposition 2.1 in Jourani [28] tell us that, for γ > 1, the
function f is γ-paraconvex on U if and only if it is strongly γ-paraconvex. Such an equivalence
does not hold for ψ(·)-paraconvexity (see [50]).

We say that f is paraconvex or semiconvex around a point a ∈ dom f when it is paraconvex
or semiconvex on a convex neighbourhood of a. Let us note that, following Rolewicz [50], f is
approximate convex at a ∈ dom f in some uniform way if and only if f is ψ(·)−paraconvex for
some function ψ(·) satisfying limt→0(ψ(t)/t) = 0. Further when X is a Hilbert space, it is not
difficult to show that f is strongly 2-paraconvex (or equivalently 2-paraconvex) on U with ρ
given by (6.5) and ψ(t) = t2 if and only if the function f + ρ‖ ‖2 is convex on U (see [49]).

Let us note that, for γ = 1, we obtain the following characterization of locally Lipschitz
continuous functions in terms of the strong paraconvexity.

Proposition 6.1. Let U be an open convex set of a normed space X and f : X → R be a
function. The following hold.
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(a) If the function f is Lipschitz continuous on U , then f and −f are strongly 1−paraconvex
on U .

(b) If f is strongly 1−paraconvex and bounded on U + rBX for some real r > 0, the
function f is Lipschitz continuous on U .

(c) The function f is Lipschitz continuous around a point a ∈ U if and only if f is bounded
around a, and f and −f are strongly 1−paraconvex around a.

Proof. (a) Let K be a Lipschitz constant of f over U and fix any x, y ∈ U and t ∈ [0, 1].
Then we have

f(y + t(x− y)) − f(y) + t(f(y) − f(x)) � Kt‖x− y‖ +Kt‖x− y‖ = 2Kt‖x− y‖
and

f(y + t(x− y)) − f(x) + (1 − t)(f(x) − f(y)) � 2K(1 − t)‖x− y‖,
hence

f(y + t(x− y)) − tf(x) − (1 − t)f(y) � 2Kmin{t, 1 − t}‖x− y‖,
and this translates the strong 1−paraconvexity of f on U . Since f is Lipschitz continuous on
U if and only if −f is Lipschitz continuous on U , we also obtain the strong 1−paraconvexity
of −f on U .

(b) As in [28, Proposition 2.2] we follow the standard method of convex functions. Let
μ be an upper bound of |f | on U + rBX . Fix x, y ∈ U with x 	= y. Put z := y + r((y −
x)/‖y − x‖) and observe that z ∈ U + rBX . Further, for ρ � 0 given by (6.5) and for t :=
(‖y − x‖)/(r + ‖y − x‖) we have

f(y) = f(tz + (1 − t)x) � tf(z) + (1 − t)f(x) + ρt‖z − x‖,
hence

f(y) − f(x) � t(f(z) − f(x)) + ρ‖y − x‖ �
(
ρ+

2μ
r

)
‖y − x‖,

which says that f is Lipschitz continuous on U .
(c) Assertion (c) is a direct consequence of (a) and (b).

Now, we state a Rolewicz’s characterization (Theorem 4 in [49]) of C1,α functions on normed
spaces in terms of strong paraconvexity or equivalently semiconvexity. For the convenience of
the reader, a simple proof will be given for the more general C1,ω(·) property. Note that, when
X is a Hilbert space and α = 1, this Rolewicz result has been independently obtained in [25]
through Moreau decomposition techniques. In the same Hilbert setting and with α = 1 another
proof has been given recently in [3] via the Alexandrov theorem on almost everywhere twice
differentiability of convex functions.

In the proof below we use the following description of ∂Cf established in [28, 50] for strongly
ψ(·)-paraconvex functions: For f Lipschitz continuous and satisfying (6.5) on U = B(a, δ) with
ρ � 0 and ψ(t) = tω(t) where ω(·) ∈ M, one has for all x ∈ U

∂Cf(x) = {x∗ ∈ X∗ : 〈x∗, h〉 � f(x+ h) − f(x) + ρψ(‖h‖) ∀h ∈ B(0, δ − ‖x− a‖)}. (6.6)

Theorem 6.1. Let f : U → R be a function from an open subset U of a normed space X
into R and let ψ(·) be convex and nondecreasing and ψ(t) = tω(t) for t � 0, with ω ∈ M. The
following hold.

(a) If f and −f are strongly ψ(·)−paraconvex around a and f is bounded around a, then
f is of class C1,ω(2·) around a.
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(b) If f is of class C1,ω(·) around a, then f and −f are strongly ψ(·)−paraconvex around a
and f is bounded around a.

In particular, f is C1,α around a for some real α > 0 if and only if f and −f are strongly
(1 + α)-paraconvex around a and f is bounded around a.

Proof. (a) So suppose that f and −f are ψ(·)−paraconvex around a and f is bounded
around a. Then there exists δ > 0 and ρ > 0 such that f is Lipschitz continuous on B(a, δ) and
simultaneously f and −f satisfy relation (6.6) for all x ∈ B(a, δ). The nonvacuity of ∂Cf(x)
and ∂C(−f)(x) along with equality (6.6) imply that ∂Cf(x) is a singleton for every x ∈ B(a, δ),
say ∂Cf(x) = {DGf(x)}, and

|f(x+ h) − f(x) − 〈DGf(x), h〉| � ρψ(‖h‖) (6.7)

for all x ∈ B(a, δ) and h ∈ B(0, δ − ‖x− a‖). Fix t ∈]0, δ
2 [ and h ∈ X, with ‖h‖ = 1, and

let x, y ∈ B(a, δ
4 ), x 	= y. Taking into account the convexity of the function u �→ ψ(‖u‖),

relation (6.7) ensures

〈DGf(x), h〉 � t−1[f(x) − f(x− th)] − ρω(t)

= t−1[f(x) − f(y)] + t−1[f(y) − f(x− th)] − ρω(t)

� t−1[〈DGf(y), x− y〉 − ρψ(‖x− y‖)]
+ t−1[−〈DGf(y), x− th− y〉 − ρψ(‖x− th− y‖)] − ρω(t)

� −ρt−1ψ(‖x− y‖) + 〈DGf(y), h〉 − ρt−1ψ(‖x− th− y‖) − ρω(t)

� −ρt−1ψ(‖x− y‖) + 〈DGf(y), h〉 − ρt−1[‖x− y‖ω(2‖x− y‖) + tω(2t)] − ρω(t).

For t = ‖x− y‖ we obtain

〈DGf(x), h〉 � 〈DGf(y), h〉 − 2ρ(ω(‖x− y‖) + ω(2‖x− y‖))
� 〈DGf(y), h〉 − 4ρω(2‖x− y‖).

The last inequality follows from the nondecreasing property of ψ(·). Since h is arbitrary, we
get

‖DGf(x) −DGf(y)‖ � 4ρω(2‖x− y‖) ∀x, y ∈ B

(
a,
δ

4

)
.

(b) Suppose that f is of class C1,ω(·) around a. Then f is Fréchet differentiable around a and
there exists δ > 0 and ρ > 0 such that

‖DF f(x) −DF f(y)‖ � ρω(‖x− y‖) ∀x, y ∈ B(a, δ).

Fix any x, y ∈ B(a, δ) and any t ∈]0, 1[. We have

f(x+ t(y − x)) − f(x) + t(f(x) − f(y))

= t

∫1

0

〈DF f(x+ st(y − x)), y − x〉 ds− t

∫1

0

〈DF f(x+ s(y − x)), y − x〉 ds

= t

∫1

0

〈DF (x+ st(y − x)) −DF f(x+ s(y − x)), y − x〉 ds

� ρt‖x− y‖
∫1

0

ω(s(1 − t)‖x− y‖) ds

=
∫1

0

ρt

s(1 − t)
ψ(s(1 − t)‖x− y‖) ds � ρtψ(‖x− y‖).
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The last inequality is due to the convexity of ψ(·) and ψ(0) = 0. A similar inequality being
true with 1 − t in place of t in the last member above, we obtain

f(ty + (1 − t)x) − tf(y) − (1 − t)f(x) � ρmin(t, 1 − t)ψ(‖x− y‖)
� 2ρt(1 − t)ψ(‖x− y‖),

and this completes the proof.

Paraconvex functions enjoy (see [15, 28, 48–51] and references therein) several other remark-
able properties. In particular for a presubdifferential ∂ included in the Clarke subdifferential,
it is worth emphasizing that, whenever f is lsc on a Banach space X and γ > 1, according to
[28, Theorem 7.1 and Corollary 7.1], f is γ-paraconvex around a if and only if there exists
δ > 0 such that the presubdifferential ∂f is hypomonotone with power γ on B(a, δ), that is,
there exists ρ � 0 such that

〈x∗ − y∗, x− y〉 � −ρ‖x− y‖γ (6.8)

whenever x, y ∈ B(a, δ), x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y). So, as a direct consequence of this and
the above theorem, we have the following result providing one more characterization of C1,α

property in terms of hypomonotonicity of subdifferentials.

Theorem 6.2. Let X be a Banach space and ∂ be a presubdifferential included in the
Clarke subdifferential. Let f : U �→ R be a continuous function from an open subset U of X
into R and let α > 0 be a positive real number. Then f is of class C1,α around a ∈ U if and
only if ∂f and ∂(−f) are hypomonotone with power γ := 1 + α around a.
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14. M. Bounkhel, ‘On arc-wise essentially smooth mappings between Banach spaces’, Optimization 51 (2002)

11–29.
15. P. Cannarsa and C. Sinestrari, ‘Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal
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