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Introduction.
For our introduction, we begin with some examples of applications which motivate our

study of the notion of locally compact cones and their role in nonsmooth analysis. To do
this, we let X, Y be Banach spaces and X∗ and Y ∗ their topological duals endowed with
the weak-star topology w∗ where ⟨·, ·⟩ means the canonic pairing. The distance function
d(x,C) to a set C at x is defined by

d(x,C) = inf
u∈C

∥ x− u ∥ .

A set K∗ ⊂ X∗ is said to be (weak-star) locally compact if for each point x∗ in K∗

there exists a weak-star neighbourhood V of x∗ such that cl∗V ∩K∗ is weak-star compact.
Here ”cl∗” denotes the weak-star topological closure. Many important properties of these
sets are listed in section 2. We give one of them, because we use it in our examples. If
K∗ ⊂ X∗ is a locally compact cone and (x∗i ) ⊂ K∗ is a net, then (Loewen [40])

(1.1) x∗i
w∗

→0 ⇐⇒∥ x∗i ∥→ 0.

Example 1. (Separation theorems). We know that in finite dimensional spaces every
proper convex set has a supporting hyperplane at given point of its boundary. In the
infinite dimensional case, this result is no longer true. Indeed in any infinite separable
Banach space we construct (Borwein [3]) such a set by taking a sequence (bn) is dense in
the closed unit ball. Let

C = clco{ bn
2n
,
−bn
2n

}.

Then C is a compact symmetric convex set. Moreover C has no supporting hyperplane at
the boundary point 0 ∈ C. Indeed if there exists x∗ ∈ X∗ such that

⟨x∗, u⟩ ≤ 0, ∀u ∈ C

we get x∗ = 0.
In [29], we showed that if there exist a locally compact cone K∗ ⊂ X∗ and a neigh-

bourhood W of x ∈ C such that

∂d(u,C) ⊂ K∗, ∀u ∈W ∩ C

we have that x is a boundary point of C iff C has a supporting hyperplane at x. Here
∂f(x) denotes the subdifferential in the sense of convex analysis of f at x. In fact we
established this result in the nonconvex case for the so called extremal systems by means
of an abstract subdifferential.

Example 2. (Closure of the sum).Given two closed convex cones K1 ⊂ X and K2 ⊂ X
denote by K0

1 and K0
2 their negative polars. We know that in a finite dimensional space

the following equality holds true

(1.2) (K1 ∩K2)
0 = K0

1 +K0
2
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if K0
1 ∩ (−K0

2 ) = {0}. This result is not valid in infinite dimensional situation. But if we
assume that K0

1 is a locally compact cone and K0
1 ∩ (−K0

2 ) = {0} then (1.2) holds. Indeed
it suffices to show that

cl∗(K0
1 +K0

2 ) = K0
1 +K0

2

since (K1 ∩K2)
0 = cl∗(K0

1 +K0
2 ). So let x∗ ∈ cl∗(K0

1 +K0
2 ) there are nets (u∗i ) ⊂ K0

1 and

(v∗i ) ⊂ K0
2 such that u∗i + v∗i

w∗

→x∗.
We claim that (u∗i ) is bounded. Suppose for some subnet (u∗j ) of (u

∗
i ) that ∥ u∗j ∥→ ∞,

and set q∗j :=
u∗
j

∥u∗
j
∥ and p∗j :=

v∗
j

∥u∗
j
∥ . Extracting subnets if necessary we may assume that

(q∗j )
w∗

→q∗ and (p∗j )
w∗

→− q∗ and by (1.1) q∗ ̸= 0 and q∗ ∈ K0
1 ∩ (−K0

2 ), a contradiction.
So (u∗i ) is bounded and has a weak-star convergent subnet with limit u∗ and hence

some subnet of (v∗i ) must weak-star converges to x∗ − u∗.

Example 3. (Necessary conditions for optimality). Consider the following optimization
problem

(P ) min{f(x) : g(x) ∈ D}

where f : X → IR and g : X → Y are differentiable mappings and D is a nonempty subset
of Y . In the case where Y is finite dimensional the following result holds for any closed set
D : if x0 is a local minimum for (P ) then there are λ ≥ 0 and y∗ ∈ N(D, g(x0)) such that

(1.3) (λ, y∗) ̸= (0, 0)

(1.4) λf ′(x0) + y∗ ◦ g′(x0) = 0.

Here N(D, g(x0)) denotes some normal cone toD at g(x0) (say, for example, Clarke normal
, approximate normal cone, etc· · ·). This result is not true in the infinite dimensional case.
Let, for example (Brokate [9]), X = Y = l2 be the Hilbert space of square summable
sequences, with (ek) its canonical orthonormal base and let the operator A : l2 → l2 be
defined by

A(
∑

xiei) =
∑

21−ixiei.

Then A is not surjective and Im(A) is a proper dense subspace of l2. The adjoint A∗ is
injectif but not surjectif. So let x∗ /∈ Im(A∗) and set f = x∗, g = A and D = {0}. Then
0 is only the feasible point and it is the optimum for this problem. Moreover there is no
(λ, y∗) ̸= (0, 0) satisfying (1.4).

In infinite dimension, most of the authors assumed that D is a closed convex cone
with nonempty interior or D = D1×{0}, where D1 is a closed convex cone with nonempty
interior and {0} ⊂ IRn. The first result which gives condition in the case of closed sets is
due to Jourani and Thibault [30] where it assumed that the system g(x) ∈ D is metrically
regular. This condition is expressed metrically in terms of g and D and implies that λ
is not equal to zero. In [27] we showed that relations (1.3) and (1.4) subsist in the case
where f is vector-valued and D epi-Lipschitz-like in the sense of Borwein [3]. In [32-33]
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we gave general conditions ensuring (1.3) and (1.4). More precisely, we may show that if
x0 is a local minimum for (P ) and if there exist a locally compact cone K∗ ⊂ Y ∗ and a
neighbourhood V of g(x0) such that

∂Ad(u,D) ⊂ K∗, ∀u ∈ V ∩D

then there exists λ ≥ 0 and y∗ ∈ IR+∂Ad(g(x0), D), with (λ, y∗) ̸= (0, 0) such that

λ∂Af(x0) + ∂A(y
∗ ◦ g)(x0)

where f and g are locally Lipschitzian mappings at x0, with g strongly compactly Lips-
chitzian at x0 ([30]). Here ∂Af(x) denotes the approximate subdifferential of f at x (see
Ioffe [18-19]).

Our aim in this paper is to explore further properties of locally compact cones and to
examine the fundamental role that play these cones in the following situations :

. Subdifferential calculus for limiting Fréchet subdifferentials and approximate subd-
ifferentials;

. Relationships between limiting Fréchet subdifferentials, approximate subdifferentials
and other subdifferentials considered here;

. Metric inequalities;

. Normal cones formulae;

. Tangent cones formulae;

. Characterization of interior points of closed sets.
The limiting Fréchet subdifferentials [38] is obtained as a weak-star sequential upper

limit of ε− Fréchet subdifferentials while the approximate subdifferential [18-19] is obtained
as a weak-star topological upper limit of (lower) subdifferentials. Both are infinite dimen-
sional extensions of the nonconvex construction by Mordukhovich [41-42] and Ioffe [17].
Note that this finite construction is minimal (as sets) among all possible subdifferentials
satisfying one or another set of conditions. This make it the finest possible instrument in
certain applications of nonsmooth analysis. The nonconvex limiting Fréchet subdifferential
construction in Asplund Banach spaces inherits these properties and is always contained
in the Clarke subdifferential [10]. The approximate subdifferential is defined for functions
on locally convex spaces, and can contain strictly the Clarke subdifferential and limit-
ing Fréchet subdifferentials. In Banach spaces, Ioffe [19] considered functions on Banach
spaces and for them he defined a generated approximate subdifferential (G-subdifferential).
This later construction is expressed geometrically, in the spirit of the original definition
of the Clarke subdifferential of non-Lipschitz functions, in terms of the weak-star closure
of the cone generated by the approximate subdifferential of the distance function of the
epigraph. It is always contained in the Clarke subdifferential and contains the limiting
Fréchet subdifferentials.

Chain rules for these subdifferentials have been established in the papers [36-37], [18-
19], [46-48], [31], [34], and references therein. In this paper, we give more calculus rules for
limiting Fréchet subdifferentials and approximate subdifferential by using locally compact
cones. Our approach benefits from Fabian’s characterization of Asplund spaces [15-16]
and the definition of the weak trustworthy spaces by Ioffe [20]. We establish more general

4



formulae for limiting Fréchet subdifferentials by mean of metric inequality of sets which is
a consequence of the notion of metric regularity. These results include, in particular, those
of Kruger [36], Mordukhovich and Shao [47-48].

We investigate relationships between all these subdifferentials and some other ones
considered here. Indeed, invoking recent results by Jourani and Thibault [35] which use
weak-star sequential compactness theorem by Borwein and Fitzpatrick [4], we show that,
under some assumptions expressed in terms of locally compact cones, the limiting Fréchet
subdifferentials, approximate subdifferential, G-subdifferential and sequential approximate
subdifferential constructions coincide for non-Lipschitz functions on weakly compactly gen-
erated Asplund spaces.

We establish the corresponding normal cones formulae. We show, in particular, that
the notion of the b−normal cones to a set, introduced jointly with Thibault in [25], co-
incides with the previous ones in the case where the set satisfies a condition which is
formulated in terms of locally compact cones. Therefore we show that under this condi-
tion, the approximate normal cone, which can be in general greater than the Clarke normal
cone in infinite dimension, is equal to the so called G−normal, i.e., the cone generated by
the approximate subdifferential of the distance function and this allows us to show that
the Clarke normal cone is the closed convex hull of the approximate normal cone. This
result has been established by Ioffe [18-19] for sets which are epi-lipschitz and our condi-
tion is automatically satisfied for these sets. The metric inequalities are the key in the
establishment of these formulae.

We use the Ekeland variational principle [14] to show that, when the space is Asplund,
the Clarke tangent cones [10] contains the limits inferior of the closed convex hull of the
weak contingent cones. This result has been established by Borwein and Strojwas [7] in
the case where the space is reflexive and by Aubin and Frankowska [2] in the case where
the space is uniformly smooth and the norm of its topological dual is Fréchet differentiable
off the origin. Note that both situations imply that the space is Asplund. We prove that
the equality holds under conditions expressed in terms of locally compact cones. More
precisely we show that these conditions ensure that the Clarke tangent cone is exactly the
limits inferior of the closed convex hull of the contingent or Bouligand cone and the limits
inferior of the closed convex hull of the weak contingent.

Our notation is basically standard. For any Banach space X and its topological dual
X∗ we denote by BX and BX∗ their closed unit balls. The abbreviations “cl∗”, “int” and
“co” are for weak-star closure, interior and convex hull. As usual, domf and epif of an
arbitrary extended real-valued function f stand for the domain and the epigraph

domf = {x : f(x) < +∞}

epif = {(x, r) : f(x) ≤ r}.

The indicator function of an arbitrary set C is defined by ΨC(x) = 0 if x ∈ C and
ΨC(x) = +∞ if x /∈ C. The negative polar of a set K is the set

K0 = {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ 0 ∀h ∈ K}.

2. Some properties of locally compact cones
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Recall that a set K∗ in X∗ is weak-star locally compact (for short locally compact) if
every point of K∗ lies in a weak-star open set V such that cl∗(V )∩K is weak-star compact.
We begin this section by recalling the following important results concerning these cones.

Proposition 2.1 (Borwein 3]). Let X be a normed vector space. Let Ω be a closed convex
subset of X and suppose that Ω contains zero. The following assertions are equivalent :

(a) 0 ∈ int (Ω +H) for some (pre-) compact convex set H ;
(b) 0 ∈ int(Ω + Σ) for some finite dimensional compact convex set Σ ;
(c) the polar set Ω0 is locally compact.

Proposition 2.2 (Loewen [40]). Let K∗ ⊂ X∗ be a locally compact cone. For a net (x∗i )
in K∗, one has

x∗i
w∗

−→0 ⇔∥ x∗i ∥−→ 0.

Remark. In fact this result is given by Loewen in reflexive Banach spaces and for
sequences instead of nets. But its proof works in general Banach spaces and for nets.

In [40], Loewen gave the following important example of locally compact cones.

Proposition 2.3 (Loewen [40]). Let H ⊂ X be a norm-compact set. Then the following
cone

c(H) = {x∗ ∈ X∗ :∥ x∗ ∥≤ max
h∈H

⟨x∗, h⟩}

is weak-star closed and locally compact.

Proposition 2.4 (Jourani [28]). Let K ⊂ X be a closed convex cone. Then the following
assertions are equivalent :

(a) K0 is locally compact ;
(b) there exists a norm compact set H ⊂ X such that K0 ⊂ c(H) ;
(c) there exists a norm compact set H ′ ⊂ X such that 0 ∈ int(K +H ′).

In the case of reflexive Banach spaces we obtain the following characterization.

Proposition 2.5. Let K be a closed convex cone of a reflexive Banach space X. Then the
following assertions are equivalent :

(a) J(K) is weak-star locally compact ;
(b) K is weak locally compact ;
(c) there exists a norm compact set H∗ ⊂ X∗ such that

K ⊂ c(H∗).

Here J denotes the canonical injection from X into X∗∗, where X∗∗ denotes the topological
bidual of X.
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It is easy to verify the following result.

Proposition 2.6. Let K ⊂ X be a cone. Then the following are equivalent :
(a) intK0 ̸= ∅.
(b) there exists x∗ ∈ X∗ such that

K ⊂ {x ∈ X : ∥ x ∥≤ ⟨x∗, x⟩}.

Note also that the negative polar of any closed convex cone with nonempty interior is
weak-star locally compact.

A subset K of X is called a Bishop-Phelps cone if there are some x∗ ∈ −K0, an
equivalent norm ∥ ∥′ and α ∈ (0, 1] such that

K = {x ∈ X : α ∥ x ∥′≤ ⟨x∗, x⟩}.

It is easy to see (via Proposition 2.5) that when X is a reflexive Banach space then
the Bishop-Phelps cone is weak locally compact.

Note that this cone may have non interior.

Example. The cone

C = {x ∈ L2[a, b] : x(t) ≥ 0 a.e. on [a, b]}

has an unbounded base

B = {x ∈ C :

∫ b

a

x(t)dt = 1}.

So, by Theorem 3.2 in [51], C is not representable as a Bishop-Phelps cone. But if we
consider (Jahn [23]) the cone generated by the set

Bα = {x ∈ B :

∫ b

a

(x(t))2dt ≤ α},

then it is representable as a Bishop-Phelps cone and its interior is empty.

We may also establish the following proposition by using the result in [51].

Proposition 2.7. Let K be a closed convex cone in X with K ̸= {0}. Then the following
assertions are equivalent :

(a) int K0 ̸= ∅;
(b) K is representable as a Bishop-Phelps cone.

Proof. (b) =⇒ (a): is obvious.
(a) =⇒ (b) : Let x∗ ∈ X∗ be such that x∗ +BX∗ ⊂ K0. Then

K ⊂ {x ∈ X : ∥x∥ ≤ ⟨−x∗, x⟩}.
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Set B = {x ∈ K : ⟨−x∗, x⟩ = 1}. Then B is a closed bounded base of K and hence, by
Theorem 3.2 in [51], K is representable as a Bishop-Phelps cone.

To end up with this section let us establish the following theorem which gives complete
characterization of locally compact cones.

Theorem 2.8. Let K∗ ⊂ X∗ be a cone and consider the following conditions :
(a) K∗ is locally compact;
(b) there exists a finite dimensional space L ⊂ X such that L⊥ ∩K∗ = {0};
(c) there exist h1, · · · , hk ∈ X and an integer n such that

K∗ ⊂ {x∗ ∈ X∗ : ∥x∗∥ ≤ n max
i=1,···,k

|⟨x∗, hi⟩|}.

Then (a) ⇒ (b). If K∗ is closed we have (a) ⇔ (c).
where L⊥ is an annihilator of L, i.e., L⊥ = {x∗ ∈ X∗ : ⟨x∗, h⟩ = 0, ∀h ∈ L}.

Proof. (a) ⇒ (b) : Suppose the contrary. Then for all finite dimensional space L ⊂ X
there exists x∗L ∈ L⊥ ∩K∗ such that ∥ x∗L ∥= 1. So (x∗L) is a net in K∗ which is locally

compact and extracting subnet we may assume that x∗L
w∗

−→x∗. As x∗L ∈ L⊥, for all finite
dimensional space L ⊂ X we conclude that x∗ = 0. Thus, by Proposition 2.2, ∥ x∗L ∥→ 0
and this contradiction completes the proof of this implication.

(c) ⇒ (a) : follows from Proposition 2.3.
(a) ⇒ (c) : since (a) ⇒ (b) there exists a finite dimensional space L with basis

h1, · · · , hk such that L⊥ ∩K∗ = {0}. We claim that there exists an integer n such that

K∗ ⊂ {x∗ ∈ X∗ : ∥x∗∥ ≤ n max
i=1,···,k

|⟨x∗, hi⟩|}.

Suppose the contrary. Then for all integer n there exists x∗n ∈ K∗ such that

∥x∗n∥ > n|⟨x∗n, hi⟩|, ∀i = 1, · · · , k.

We may assume that ∥x∗n∥ = 1, for all n, and (x∗n) has some subnet converging to x∗ ∈ K∗

with x∗ ̸= 0 (since K∗ is locally compact and closed). Thus for all n

1

n
> |⟨x∗n, hi⟩|, ∀i = 1, · · · , k

and hence ⟨x∗, hi⟩ = 0 for i = 1, · · · , k, or equivalently x∗ ∈ L⊥ and this contradicts the
fact that L⊥ ∩K∗ = {0}.

Remark. Let K∗ be a closed convex locally compact cone. Set K∗ = K0 where K is a
closed convex cone. Then [28] the following are equivalent

(a) L⊥ ∩K∗ = {0}
(b) L+K = X

where L is a finite dimensional subspace of X.
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3. Subdifferential calculus
It is well known in the litterature that some spaces can be characterized or expressed

in terms of fuzzy sum rules related to some subdifferentials. Let us give two examples
of such spaces. The first one concerns Asplund spaces [1], i.e., Banach spaces on which
every continuous convex function is Fréchet differentiable at a dense set of points. We refer
the reader, for example to the papers by Fabian [15-16], and references therein. One of
the most characterizations is the following one which is expressed in terms of the Fréchet
ε-subdifferential ∂Fε f(x) of some extended real-valued function f on X at x

∂Fε f(x) = {x∗ ∈ X∗ : lim inf
h→0

f(x+ h)− f(x)− ⟨x∗, h⟩
∥ h ∥

≥ −ε}

if x ∈dom f and ∂Fε f(x) = ∅ if x /∈ domf . The following assertions are equivalent (Fabian
[15-16])

(i) X is Asplund;
(ii) for any ε ≥ 0, δ > 0, γ > 0 and any extended real-valued lower semicontinuous

functions f1 and f2 on X and x0 ∈ dom f1 ∩ dom f2 with f1 locally Lipschitzian at x0,
one has

∂Fε (f1 + f2)(x0) ⊂ {∂̂F f1(x1) + ∂̂F f(x2) : xi ∈ x0 + δBX ,

|fi(xi)− fi(x0)| < δ, i = 1, 2}+ (ε+ γ)BX∗ .

where ∂̂f(x) is equal to ∂Fε f(x) for ε = 0.

Note that this class of spaces includes all spaces with Fréchet differentiable renorms
as well as those of separable duals (see Diesel [13]). The second example, which is also
very interesting, is the weak-trusworthy spaces (for short WT-spaces) introduced by Ioffe
[20]. The definition of these spaces is given in terms of the Dini ε-subdifferential ∂−ε f(x)
of extended real-valued functions f on X at x

∂−ε f(x) = {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ lim inf
t→0+

u→h

t−1(f(x+ tu)− f(x)) + ε ∥ h ∥; ∀h ∈ X}

if x ∈ dom f and ∂εf(x) = ∅ if x /∈ dom f . A space X is said to be a WT-space if for each
extended real-valued lower semicontinuous functions f1 and f2 on X, x ∈ domf1 ∩ domf2
and ε > 0

(3.1) ∂−ε (f1 + f2)(x) ⊂ lim sup

xi

fi−→x
i=1,2

(∂−ε f1(x1) + ∂−ε f2(x2)).

This class of spaces contains the previous one and every Banach space with Gateaux
differentiable renorms is a WT -space (see Ioffe [20]). So these fuzzy sum rules give us an
idea in the introduction by Kruger and Mordukhovich [38] of the notion of the limiting
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Fréchet ε-subdifferential ∂F f(x0) and by Ioffe [18-19] of the notion of the approximate
subdifferential ∂Af(x0) which have exact calculus rules

∂F f(x0) = seq- lim sup
x

f
−→x0

ε−→0+

∂Fε f(x)

and
∂Af(x0) =

∩
L∈F(X)

lim sup
x

f
−→x0
ε→0+

∂−ε fx+L(x)

where fS(x) = f(x) if x ∈ S and fS(x) = +∞ otherwise and F(X) denotes the collection
of all finite dimensional subspaces of X. In the case where X is Asplund, we easily show
that when f1 is locally Lipschitzian at x0 and f2 is lower semicontinuous

(3.2) ∂F (f1 + f2)(x0) ⊂ ∂F f1(x0) + ∂F f2(x0).

When X is a WT-space we obtain (Ioffe [18]) the following simple definitions of approxi-
mate subdifferentials for an extended real-valued lower semicontinuous function f on X

∂Af(x0) = lim sup
x

f
−→x0
ε→0+

∂−ε f(x).

As for the limiting Fréchet ε-subdifferential, the approximate subdifferential obeys to
the following : if f1 is locally Lipschitzian at x0 and f2 is l.s.c. then

(3.3) ∂A(f1 + f2)(x0) ⊂ ∂Af1(x0) + ∂Af2(x0).

To see the difficulty in the case where neither f1 nor f2 is locally Lipschitzian let us

give the proof of (3.3) in WT-spaces. For x∗ ∈ ∂A(f1 + f2)(x0), there are nets xi
f1+f2−→ x0,

εi → 0+, x∗i
w∗

→x∗ such that
x∗i ∈ ∂−εi(f1 + f2)(xi)

and, by (3.1), there are nets ui
f1→x0, vi

f2−→x0, u
∗
i ∈ ∂−εif1(ui), v

∗
i ∈ ∂−εif2(vi) such that

u∗i + v∗i
w∗

→x∗.

So since f1 is locally Lipschitz, (u∗i ) is bounded and as the unit ball of X∗ is weak-star

compact, extracting subnet we may assume that u∗i
w∗

→u∗ and hence v∗i
w∗

→x∗ − u∗. Thus
x∗ ∈ ∂Af1(x0) + ∂Af2(x0).

Our aim is to give weaker assumptions ensuring the boundedness of (u∗i ). In other
word, we are concerning with finding (weaker) assumptions ensuring the following inclu-
sions

lim sup
u
C
→x0

v
D
→x0

(F (u) +G(v)) ⊂ lim sup

u
C→x0

F (u) + lim sup

v
D→x0

G(v)
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where F and G are multivalued mappings defined respectively on metric spaces C and D.
But first let us give a nonsmooth characterization of Asplund spaces. For this, we consider
the sets (Ioffe [19])

S1 = {(x, α, β) ∈ X × IR× IR : f1(x) ≤ α}

S2 = {(x, α, β) ∈ X × IR× IR : f2(x) ≤ β}

S = {(x, α, β) ∈ X × IR× IR : f1(x) + f2(x) ≤ α+ β}

for extended real-valued functions f1 and f2 on X.

Lemma 3.1. Let q > 0, (xi, αi, βi) ∈ Si and (x∗i , α
∗
i , β

∗
i ) ∈ ∂̂F d((xi, αi, βi), Si), i = 1, 2,

with |α∗
1| ≥ q (resp. |β2| ≥ q). Then α1 = f1(x1) (resp. β2 = f2(x2).

We say that f1 and f2 satisfies the metric inequality (MI) at x0 if there exist r > 0
and a > 0 such that

d((x, α, β), S1 ∩ S2) ≤ a[d((x, α, β), S1) + d((x, α, β), S2)]

for all x ∈ x0 + rBX , α ∈ f1(x0) + rBIR and β ∈ f2(x0) + rBIR.

In order to state our nonsmooth characterization of Asplund spaces we recall the
following result.

Proposition 3.2. (Jourani and Thibault [31]). Let C be a nonempty closed subset of X
and x /∈ C. Then for all ε ∈]0, 1[ and x∗ ∈ ∂Fε d(x,C)

1− ε ≤∥ x∗ ∥ .

Proposition 3.3. Let X be a Banach space. Then the following assertions are equivalent
(i) X is Asplund.
(ii) For every extended real-valued lower semi-continuous functions f1 and f2 on X

and x0 ∈ domf1 ∩ dom f2 satisfying the metric inequality (MI) at x0, we have

x∗ ∈ ∂̂(f1 + f2)(x0) ⇒ ∀γ > 0, ∀δ > 0,∀b1 > a ∥ x∗ ∥ +1, b2 > 2a ∥ x∗ ∥ +3

∃xi ∈ x0 + γBX , fi(xi) ∈ fi(x0) + γBIR, and

x∗i ∈ ∂̂fi(xi), ∥ x∗i ∥≤ 2bi, i = 1, 2 such that

∥ x∗ − x∗1 − x∗2 ∥≤ 2δ(1 + b1 + b2).

11



Proof. (i) ⇒ (ii) : Let x∗ ∈ ∂̂F (f1 + f2)(x0). Then for all δ > 0 there exists r > 0 such
that

f1(x) + f2(x)− f1(x0)− f2(x0)− ⟨x∗, x− x0⟩ ≥ −(
δ

2
) ∥ x− x0 ∥,∀x ∈ B(x0, γ).

So for all (x, α, β) ∈ S ∩ (x0 + rBX)× (f1(x0) + rBIR)× (f2(x0) + rBIR)

α+ β − f1(x0)− f2(x0)− ⟨x∗, x− x0⟩ ≥ −(
δ

2
) ∥ x− x0 ∥ .

Taking into account the simple fact that S1 ∩S2 ⊂ S and the metric inequality we get the
existence of s > 0 such that for all b1, b2 > a ∥ x∗ ∥ +3

b1d(x, α, β, S1)+ b2d(x, α, β, S2)+α+β− f1(x0)− f2(x0)−⟨x∗, x−x0⟩ ≥ −(
δ

2
) ∥ x−x0 ∥

for all x ∈ x0 + sBX , α ∈ f1(x0) + sBIR, β ∈ f2(x0) + sBIR. Since X is Asplund it follows
that for all γ > 0

(x∗,−1,−1) ∈ ∂̂δ/2(b1d(., S1) + b2d(., S2))(x0, f1(x0), f2(x0))

⊂
∪

{b1∂̂F d(x1, α1, β1, S1) + b2∂̂F d(x2, α2, β2, S2) : xi ∈ x0 + γBX ,

αi ∈ f1(x0) + γBIR, βi ∈ f2(x0) + γBIR i = 1, 2}+ δ(BX∗ ×BR ×BR).

So there exist xi ∈ x0 + γBX , αi ∈ f1(x0) + γBIR, βi ∈ f2(x0) + γBIR, (x
∗
i , α

∗
i , β

∗
i ) ∈

bi∂̂d(xi, αi, bi, Si), i = 1, 2, such that

(3.4) ∥ x∗ − x∗1 − x∗2 ∥≤ δ

(3.5) ∥ α∗
1 + 1 ∥≤ δ

(3.6) ∥ β∗
2 + 1 ∥≤ δ

α∗
2 = 0, β∗

1 = 0, ∥ x∗i ∥≤ bi

First (x1, α1, β1) ∈ S1 because otherwise, by Proposition 3.2

(1− γ) ≤ 1

b1
(∥ x∗1 ∥ +|α∗

1|+ |β∗
1 |),

and since ∥ x∗1 ∥≤∥ x∗ ∥ + ∥ x∗2 ∥ +ε+ δ+ γ ≤∥ x∗ ∥ +b2 + δ+ ε+ γ and b1 is arbitrary we
obtain a contradiction. We also show that (x2, α2, β2) ∈ S2. By lemma 3.1, α1 = f1(x1)

and β2 = f2(x2) and hence
x∗
i

−α∗
i
∈ ∂̂fi(xi) and the proof is terminated since

∥ x∗ + x∗1
α∗
1

+
x∗2
α∗
2

∥≤ δ +
∣∣α∗

1 + 1

α∗
1

∣∣b1 + ∣∣α∗
2 + 1

α∗
1

∣∣b2
12



≤ 2δ(1 + b1 + b2).

(ii) ⇒ (i) : It suffices to invoque the following result by Fabian [15-16]
X is Asplund iff
(ii′) for every extended-real valued functions f1 and f2 in X, x0 ∈ dom f1 ∩ dom f2

with f2 locally Lipschitzian at x0 , for all ε ≥ 0, γ > 0

∂Fε (f1 + f2)(x0) ⊂ {∂̂F f1(x1) + ∂̂f2(x2) : xi ∈ x0 + γBX∗

fi(xi) ∈ fi(x0) + γBIR}+ (ε+ γ)B∗
X

and to show that (ii) ⇒ (ii′).

Theorem 3.3. Let X be Asplund space and f1 and f2 two extended real-valued lower semi-
continuous functions on X satisfying the metric inequality (MI) at x0 ∈ domf1∩domf2.
Then

∂F (f1 + f2)(x0) ⊂ ∂F f1(x0) + ∂F f2(x0).

Let U and V be topological spaces and F : U→
→V be a multivalued mapping. The

singular multivalued mapping (or the recession multivalued mapping) F∞ of F at x0 is
defined by

F∞(x0) = lim sup
x
U
→x0

λ→0+

λF (x).

Note that if F is bounded on some neighbourhood of x0, then F
∞(x0) = {0}.

Theorem 3.4. Let C and D be metric spaces and F : C→
→X∗, G : D→

→X∗ be
multivalued mappings. Suppose that

(a) there exist a locally compact cone K∗ ⊂ X∗, a bounded set B∗ ⊂ X∗ and a
neighbourhood V of x0 such that

F (x) ⊂ K∗ +B∗, ∀x ∈ V ∩ C

(b) F∞(x0) ∩ (−G∞(x0)) = {0}.
Then

lim sup
v

D
−→x0

u
C

−→x0

(F (u) +G(v)) ⊂ lim sup

u
C→x0

F (u) + lim sup

v
D→x0

G(v).

If in addition X is Asplund

seq − lim sup
u
C
→x0

v
D
→x0

(F (u) +G(v)) ⊂ seq − lim sup

u
C→x0

F (u) + seq − lim sup

v
D→x0

G(v).
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Proof. Let x∗ ∈ lim sup
u
C
→x0

v
D
→x0

(F (u) + G(v)). Then there are nets ui
C→x0, vi

D→x0, u
∗
i ∈ F (ui)

and v∗i ∈ G(vi) such that u∗i + v∗i
w∗

→x∗.
We claim that (u∗i ) is bounded. So suppose the contrary and without loss of generality

we assume ∥ u∗i ∥→ +∞. Set x∗i =
u∗
i

∥u∗
i
∥ , y

∗
i =

v∗
i

∥u∗
i
∥ . Since (x∗i ) is bounded we may assume

x∗i
w∗

→x∗ and hence y∗i
w∗

→ − x∗. Now, by assumptions x∗i ∈ K∗ + 1
∥u∗

i
∥B

∗ and since K∗ is

locally compact we get x∗ ̸= 0. It follows that

x∗ ∈ F∞(x0) ∩ (−G∞(x0))

and this contradiction completes the proof of the first part of the theorem for the second
one it suffices to use the fact that the closed unit ball of the dual of an Asplund space is
sequentially weak-star compact.

Now we use this result and Proposition 3.2 to give the following chain rules for ap-
proximate subdifferentials and limiting Fréchet subdifferentials.

Theorem 3.5. Let f1 and f2 be two extended real-valued lower semicontinuous functions
on X and let x0 ∈ dom f1 ∩ dom f2. Suppose that

(i) X is a WT-space (resp. an Asplund space) ;
(ii) there exist a locally compact cone K∗, a bounded set B∗ and r > 0 such that

∂−ε f1(x) ⊂ K∗ +B∗,∀x ∈ x0 + rBX

( resp ∂̂F d(x, α, epif1) ⊂ K∗ × IR, ∀(x, α) ∈ (x0 + rBX)× (f1(x0) + rBIR) ∩ epif1)

(iii) ∂∞A f1(x0) ∩ (−∂∞A f2(x0)) = {0}. ( resp. ∂∞F f1(x0) ∩ (−∂∞F f2(x0)) = {0}). Then

∂A(f1 + f2)(x0) ⊂ ∂Af1(x0) + ∂Af2(x0),

( resp. ∂F (f1 + f2)(x0) ⊂ ∂F f1(x0) + ∂F f2(x0)).

Proof. Let us prove the second inclusion. Set C = graph (f1), D = graph (f2),

F (x, α) = ∂̂F f1(x), G(x, α) = ∂̂F f2(x). The assumption (ii) implies that

F (x, α) ⊂ K∗, ∀(x, α) ∈ (x0 + rBx)× (f1(x0) + rBR) ∩ C,

and (iii) ensures that

F∞(x0, f1(x0)) ∩ (−G∞(x0, f2(x0)) = {0}.

14



So Theorem 3.4 implies that

seq- lim sup
(v,β)

D
−→(x0,f2(x0))

(u,α)
C

−→(x0,f1(x0))

[F (u, α) +G(v, β)) ⊂

seq- lim sup

(u,α)
C−→(x0,f1(x0))

F (u, α) + seq- lim sup

(v,β)
D−→(x0,f2(x0))

G(v, β)

or equivalently

seq- lim sup

v
f2−→x0

u
f1−→x0

(∂̂F f1(u) + ∂̂F f2(v)) ⊂ seq- lim sup

u
f1−→x0

∂̂F f1(u) + seq- lim sup

v
f2−→x0

∂̂F f2(v).

The proof is terminated by using Theorem 2.9 in [47] and Proposition 3.2.

Remark. The results of Theorem 3.4 remain true if we replace X∗ by any reflexive Banach
space, the local weak-star compactness by the local weak-compactness and the weak-star limit
superior by the weak limit superior.

4. Relationships between limiting Fréchet subdifferentials and approximate
subdifferentials

In this section we establish a connection between limiting Fréchet subdifferentials, ap-
proximate subdifferential and the following sequential constructions of approximate subd-
ifferential considered in [47]

∂σ1

A f(x0) = seq− lim sup
ε−→0+

x
f

−→x0

∂−ε f(x)

and
∂σ2

A f(x0) = seq − lim sup

x
f−→x0

∂−f(x).

Using some recent results of Borwein and Fitzpatrick [4], Mordukhovich and Shao [47]
showed that in Asplund space and for a locally Lipschitz function f at x0

(4.1) cl∗(∂F f(x0)) = cl∗(∂σ1

A f(x0)) = ∂Af(x0).

They showed that in weakly compactly generated Asplund spaces the following equalities
hold

(4.2) ∂F f(x0) = ∂σ1

A f(x0) = ∂Af(x0)

for a locally Lipschitz function f at x0.

Recall that X is weakly compactly generated (WCG) if there exists a weakly compact
set K such that X = cl(span(K)). Clearly all reflexive Banach spaces and all separable
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Banach spaces are weakly compactly generated. For the case of Asplund spaces, there are
precise characterization of the WCG property (see [12-13]) which implies, in particular,
the existence of a Fréchet differentiable renorms and the weak-star sequential compactness
of the closed unit ball of its topological dual.

Using Proposition 3.1 in [35], we easily show that

(4.3) ∂Af(x0) = ∂σ1

A f(x0)

provided that X is a W C G space and there exist a locally compact cone K∗ and r > 0
such that

(4.4) ∂−ε f(x) ⊂ K∗ + ρ(ε)BX∗ , ∀x ∈ x0 + rBX , ∀ε ∈]0, r[.

where ρ(ε) → 0 as ε→ 0+.

Our aim in this section is to use this result to extend that of Mordukhovich and Shao
[47] to the non-Lipschitz case.

Theorem 4.1. Let X be Asplund space and f be an extended real-valued lower semi-
continuous function on X. Let K∗ be a closed and locally compact cone and let r > 0.
Then

(4.5) cl∗(∂σ1

A f(x0)) = cl∗(∂σ2

A f(x0)) = cl∗(∂F f(x0))

provided that

(4.6) ∂F d(x, α; epi f) ⊂ K∗ × IR,∀(x, α) ∈ (x0 + rBX)× (f(x0) + rBIR) ∩ epif.

If X is WCG and

(4.7) ∂−ε ψ epif (x, α) ⊂ K∗ × IR, ∀(x, α) ∈ (x0 + rBX)× (f(x0) + rBIR ∩ epif .

we have

(4.8) ∂Af(x0) = ∂F f(x0) = ∂σ1

A f(x0) = ∂σ2

A f(x0).

Note that (4.6) and (4.7) are equivalent in Asplund spaces (see Theorem 5.6).

Proof. (1) It suffices to show in (4.5) that

∂σ1

A f(x0) ⊂ cl∗(∂F f(x0))

because, by Theorem 2.9 in [47],

(4.9) ∂F f(x0) = seq− lim sup

x
f−→x0

∂̂F f(x)
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and
∂F f(x0) ⊂ ∂σ2

A f(x0) ⊂ ∂σ1

A f(x0).

So let x∗ ∈ ∂σ1

A f(x0). Then there are sequences xn
f−→x0, εn → 0+ and x∗n

w∗

−→x+ such that

x∗n ∈ ∂−εnf(xn), for all n.

Let V be a weak-star neighbourhood of 0. Then by Theorem 2.8, there exists a finite
dimensional subspace L of X such that L⊥ ⊂ V and

(4.10) L⊥ ∩K∗ = {0}.

Since x∗n ∈ ∂−εnf(xn), the function

x→ f(x) + ψxn+L(x)− ⟨x∗n, x− xn⟩+ 2εn ∥ x− xn ∥

attains a local minimum at xn (Lemma 1 in [17]). It follows from (4.7) and (4.10) that
∂F f(xn)∩L⊥ = {0} and Theorem 3.5 implies the existence of u∗n ∈ ∂F f(xn) and v

∗
n ∈ L⊥

such that

u∗n + v∗n
w∗

−→x∗.

Note that, by (4.10), (u∗n) is bounded. So since the closed unit ball in X∗ is weak-star

sequentially compact (because X is Asplund), we may assume that u∗n
w∗

−→u∗ and hence
v∗n → x∗ − u∗. Thus

x∗ ∈ ∂F f(x0) + L⊥ ⊂ ∂F f(x0) + V

and hence x∗ ∈ cl∗∂F f(x0). For the second part it suffices to use (4.5), (4.7), (4.3) and
the following consequence of Proposition 3.1 in [35]

∂F f(x0) = lim sup
ε→0+

x
f

−→x0

∂Fε f(x).

5. Metric inequality
In section 3 we used metric inequalities for functions to characterize Asplund spaces.

This concept terms out to be important for many applications some of which are considered
in this paper. The aim of this section is to present conditions ensuring this metric inequality
for sets and functions. Our results in this section are expressed in terms of an abstract
subdifferential ∂, called presubdifferential [55], satisfying the following conditions.

Let f : X → IR, g : X → IR and h : Y → IR be locally Lipschitzian functions with g
convex.

a1) ∂f(x) ⊂ X∗;
a2) ∂f(x) = ∂g(x) whenever f is convex and f and g coincide around x. Here the

subdifferential of g is taken in the sense of convex analysis;
a3) 0 ∈ ∂f(x) whenever f attains a local minimum at x;
a4) for h(x, y) = f(x) + h(y), ∂h(x, y) ⊂ ∂f(x)× ∂h(y);
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a5) ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x);
a6) ∂f(x) = lim sup

u
f→x

∂f(u) (resp. ∂f(x) = seq − lim sup

u
f→x

∂f(u) in the case where the

space is Asplund).

The approximate subdifferential and the Clarke subdifferential are presubdifferentials
and in Asplund spaces the limiting Fréchet subdifferentials is a presubdifferential.

Theorem 5.1. Let C be a closed subset of X containing x and let H∗ be a weak-star
closed subset of X∗ be such that

(1) ∂d(C, x) ∩H∗ = {0}.

Suppose that there exist a locally compact cone K∗ ⊂ X∗ and r > 0 such that

(2) ∂d(C, u) ⊂ K∗,∀u ∈ C ∩ (x+ rBX).

Then there exist s > 0 and a > 0 such that for each family D of closed subsets D of X
containing 0 and satisfying

(3) ∂d(w,D) ⊂ −H∗, ∀w ∈ D ∩ sBX

we have

(5.1) d(u,C ∩ (v +D)) ≤ ad(u− v,D)

for all u ∈ C ∩ (x+ 1
aBX), v ∈ x+ 1

aBX and D ∈ D.

Proof. Suppose the contrary. Then for all integer n there exists a family Dn of closed
sets D containing 0 and satisfying (3) and such that (5.1) does not hold. So there exist
un ∈ C ∩ (x+ 1

nBX), vn ∈ (x+ 1
nBX) and Dn ∈ Dn such that

d(un, C ∩ (vn +Dn)) > nd(un − vn, Dn)

Let wn ∈ Dn with

(5.2) ∥ un−vn−wn ∥< d(un−vn, Dn)+
1

n
min (

1

n
, d(un, C∩(vn+Dn))−nd(un−vn, Dn)).

Consider the function fn(u,w) =∥ u−vn−w ∥ and set ε2n = fn(un, wn), λn = min(nε2n, εn).
Note that ε2n > 0 and εn → 0+. The function fn verifies

fn(un, wn) ≤ inf
(u,w)∈C×Dn

fn(u,w) + ε2n

and hence, by Ekeland’s variational principle [14], there exist u′n ∈ C and w′
n ∈ Dn such

that (for sn =
ε2n
λn

= max ( 1n , εn))

(5.3) ∥ un − u′n ∥ + ∥ wn − w′
n ∥≤ λn.
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fn(u
′
n, w

′
n) ≤ fn(u,w) + sn(∥ u− u′n ∥ + ∥ w − w′

n ∥), ∀(u,w) ∈ C ×Dn.

So by Proposition 2.3.4 in [10]

fn(u
′
n, w

′
n) ≤ fn(u,w) + sn(∥ u− u′n ∥ + ∥ w − w′

n ∥) + (1 + sn)(d(u,C) + d(w,Dn))

for (u,w) near (u′n, w
′
n). Thus, by a1)− a5) of the definition of the presubdifferential ∂,

(0, 0) ∈ ∂ ∥ .− vn − . ∥ (u′n, w
′
n) + (1 + sn)(∂d(C, u

′
n)× ∂d(D,w′

n)) + sn(BX∗ ×BX∗).

Since u′n − vn − w′
n ̸= 0 (because otherwise u′n − vn ∈ Dn and hence by (5.2) and (5.3)

∥ un − u′n ∥≤ λn ≤ nε2n < d(un, C ∩ (vn +Dn)) ≤∥ un − u′n ∥, a contradiction)

∂ ∥ .− vn − . ∥ (u′n, w
′
n) ⊂ {(x∗,−x∗) : ∥ x∗ ∥= 1}.

So there exists x∗n ∈ X∗, ∥ x∗n ∥= 1, u∗n ∈ ∂d(C, u′n) and w
∗
n ∈ ∂d(Dn, w

′
n) such that

∥ x∗n + (1 + sn)u
∗
n ∥≤ sn

∥ x∗n − (1 + sn)w
∗
n ∥≤ sn.

Since ∥ x∗n ∥= 1, then extracting subnet if necessary we assume that x∗n
w∗

−→x∗ and hence

u∗n
w∗

−→x∗ and w∗
n

w∗

−→ − x∗. Now, by (2) and Proposition 2.2, x∗ ̸= 0. Thus, by (2) and
a6), x

∗ ∈ ∂d(C, x) and, by (3), −x∗ ∈ −H∗ and this contradicts (1) and the proof is
terminated.

The proof of the following two theorems is similar.

Theorem 5.2. Let C and D be closed subsets of X, with x ∈ C ∩D, be such that

(1′) ∂d(C, x) ∩ (−∂d(D,x)) = {0}.

Suppose that there exist a locally compact cone K∗ and r > 0 such that (2) of Theorem 5.1
holds. Then there exists a > 0 such that

d(u,C ∩ (v +D)) ≤ ad(u− v,D)

for all u ∈ C ∩ (x+ 1
aBX) and v ∈ 1

aBX .

Theorem 5.3. (Uniform metric inequality ). Let K∗ ⊂ X∗ be a locally compact cone and
H∗ be a closed subset of X∗, with

K∗ ∩H∗ = {0},

and let x ∈ X. Then there exist s > 0 and a > 0 such that for all family C of closed sets
C ⊂ X containing x and satisfying

∂d(C, u) ⊂ K∗, ∀u ∈ C ∩ (x+ sBX)
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and all family D of closed sets D ⊂ X containing 0 and satisfying

∂d(D,u) ⊂ −H∗, ∀u ∈ D ∩ sBX

we have
d(u,C ∩ (v +D)) ≤ ad(u− v,D)

for all C ∈ C, D ∈ D, u ∈ C ∩ (x+ 1
aBX) and v ∈ x+ 1

aBX .

Corollary 5.4. Let C be a closed subset of X containing x. Suppose that there exist a
locally compact cone K∗ ⊂ X∗ and r > 0 such that (2) of Theorem 5.1 holds. Then there
exist a finite dimensional subspace L of X and a > 0 such that

(1”) L⊥ ∩K∗ = {0}

and for all L′ ∈ DL (:= the set of all closed subspaces of X containing L), u ∈ C∩(x+ 1
aBX)

and v ∈ x+ 1
aBX

d(u,C ∩ (v + L′)) ≤ ad(u− v, L′).

In the following corollary we give conditions ensuring the metric inequality for func-
tions.

Corollary 5.5. Let f1 and f2 be extended real-valued lower semicontinuous functions on
X, with f1(x), f2(x) ∈ IR, satisfying

(5.4) ∂∞A f1(x) ∩ (−∂∞A f2(x)) = {0}.

Suppose that there exist a locally compact cone K∗ ⊂ X∗ and r > 0 such that

(5.5) ∂Ad( epi f1, u, α) ⊂ K∗ × IR, ∀(u, α) ∈ (x+ rBX)× (f1(x) +BIR).

Set S1 = {(x, α, β) ∈ X×IR×IR : f1(x) ≤ α} and S2 = {(x, α, β ∈ X×IR×IR : f2(x) ≤ β}.
Then there exists a > 0 such that

d(u, α, β, S1 ∩ S2) ≤ a d(u, α, β, S2)

for all (u, α, β) ∈ S1 ∩ (x, f1(x), f2(x)) + r(BX ×BIR ×BIR).

Proof. It is enough to show that (5.4) yieds

∂Ad(x, f1(x), f2(x);S1) ∩ (−∂Ad(x, f1(x), f2(x), S2)) = {0}

and (5.5) implies

∂Ad(S1, u, α, β) ⊂ K∗ × IR× IR, ∀(u, α, β) ∈ S1 ∩ (x, f1(x), f2(x)) + r(BX ×BIR ×BIR)
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and to apply Theorem 5.2.

Theorem 5.6. Let C be a closed subset of X, with x ∈ C and K∗ be a locally compact
cone. Consider the following assertions

(i) there exists a neighbourhood V1 of x such that

∂Ad(C, u) ⊂ K∗, ∀u ∈ V1 ∩ C;

(ii) there exist a neighbourhood V2 of x and r2 > 0 such that

∂−ε ψC(u) ⊂ K∗ + 2εBX∗ , ∀u ∈ V2 ∩ C and ε ∈]0, r2[;

(iii) there exists a neighbourhood V3 of x such that

∂F d(C, u) ⊂ K∗, ∀u ∈ V3 ∩ C;

(iv) there exists a neighbourhood V4 of x such that

∂−ΨC(u) ⊂ K∗, ∀u ∈ V4 ∩ C.

Then
a) (i) ⇒ (ii);
b) if K∗ is closed and X is a WT-space, (ii) ⇒ (i).
c) if K∗ is closed and X is Asplund, (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).

Note that b) holds in any Banach space (see Remark following Theorem 6.2).

Proof. a) By Theorem 2.8, there exists a finite dimensional subspace L of X such that
L⊥ ∩K∗ = {0}. Corollary 5.4 yields the existence of a > 0 and a neighbourhood V ′ of x,
with V ′ ⊂ V1 such that for all finite dimensional space L′ of X containing L

(5.6) d(u,C ∩ (v + L′)) ≤ ad(u− v, L′)

for all u, v ∈ C ∩ V ′. Let r > 0, V2 ⊂ V ′, ε ∈]0, r[, u ∈ V2 ∩ C and x∗ ∈ ∂−ε ψC(u). Then,
by Lemma 1 in [17], we have for all L′ satisfying (5.6), the function

z → −⟨x∗, z − u⟩+ 2ε ∥ z − u ∥

attains a local minimum at u on C ∩ (u+ L′) and hence the function

z → −⟨x∗, z − u⟩+ 2ε ∥ z − u ∥ +2a(2ε+ ∥ x∗ ∥)(d(C, z) + d(L′ + u, z))

attains a local minimum at u. Thus by subdifferential calculus

x∗ ∈ 2a(2ε+ ∥ x∗ ∥)∂Ad(C, u) + 2εBX∗ + L′⊥

and hence
x∗ ∈ 2a(2ε+ ∥ x∗ ∥)∂Ad(C, u) + 2εBX∗
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which implies, by (i), that x∗ ∈ K∗ + 2εBX∗ .
b) It suffices to see that, when X is a WT-space

∂Ad(C, u) ⊂ lim sup
ε→0+

z
C

−→u

∂−ε ψC(z).

c) As in a) we show that (iii) ⇒ (ii), and since ∂F d(C, u) ⊂ ∂Ad(C, u), we have
(i) ⇒ (iii). Similary (as in a)) we show that (iii) ⇒ (iv) and since

∂F d(C, u) ⊂ lim sup

z
C−→u

∂−ΨC(z)

we obtain (iv) ⇒ (iii), this terminates the proof.

Remark. It follows from this theorem and Theorem 2.8 that C is normally compact in
the sense of Loewen [40] and Mordukhovich and Shao [47], that is,

∂F d(C, u) ⊂ {x∗ ∈ X∗ :∥ x∗ ∥≤ max
j=1,···,m

⟨x∗, hi⟩}, ∀u ∈ V

iff (i) of Theorem 5.6 holds for some locally compact closed cone K∗ provided that the
space X is Asplund.

Remark. The difference between Theorems 5.1 and 5.3 is that the real a in Theorem 5.3
is not depending on C but only on x.

6. Normal cones
Let C be a nonempty closed subset of X containing x. The contingent cone K(C, x)

to C at x is the set of all h ∈ X for which there exist sequences tn → 0+ and hn → h such
that

x+ tnhn ∈ C, ∀n.

Using the approximate subdifferential of Lipschitz continuous distance functions, Ioffe
[19] introduced the generated normal cone (G-normal) to C at x given by

NG(C, x) = cl∗(N̂G(C, x))

where the construction
N̂G(C, x) = IR+∂Ad(C, x)

is called the nucleus of NG(C, x). To these cones, he associated the G−subdifferential

∂Gf(x) and the G-nucleus ∂̂Gf(x)

∂Gf(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ NG( epif ;x, f(1))}.

∂̂Gf(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N̂G( epif ;x, f(x))}

if x ∈ domf and ∂Gf(x) = ∅ and ∂̂Gf(x) = ∅ whenever x /∈ domf .
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In a joint work, with Thibault (see Chapter 3, p. 20), we considered the notion of b-
approximate normal cone N b

A(C, x) to C at x in the following manner : x∗ ∈ N b
A(C, x) iff

for each L ∈ F(X) there exist nets εi → 0+, xi
C−→x, x∗i

w∗

−→x∗ and c > 0 satisfying for all i

∥ x∗i ∥≤ c and x∗i ∈ ∂−εiψS∩(xi+L)(xi).

It is a very slight variant of Ioffe’s original definition and it is always contained in the
approximate normal cone NA(C, x) to C at x

NA(C, x) = ∂AψC(x).

Following Kruger and Mordukhovich [38], the limiting Fréchet normal cone to C at x
is the set

NF (C, x) = ∂FψC(x).

This cone can be characterized in terms of the subdifferential of the distance function (see
Thibault [54]) as follows

NF (C, x) = IR+∂F d(C, x).

The reader can easily see that the following inclusions are always true

NF (C, x) ⊂ N̂G(C, x) ⊂ N b
A(C, x) ⊂ NA(C, x).

To the σ1-approximate subdifferential and σ2-approximate subdifferential we can as-
sociate the corresponding cones

Nσ1

A (C, x) = ∂σ1

A ψC(x) and N
σ2

A (C, x) = ∂σ2

A ψC(x).

It is also easy to see that

Nσ2

A (C, x) ⊂ Nσ1

A (C, x) ⊂ N b
A(C, x) ⊂ NA(C, x).

Our aim in this section is to give conditions ensuring equalities of these cones. We
begin with the relationship between N b

A(C, x) and N̂G(C, x).

Theorem 6.1. Suppose that there exist a locally compact cone K∗ ⊂ X∗ and a neighbour-
hood V of x such that

(6.1) ∂Ad(C, u) ⊂ K∗, ∀u ∈ V ∩ C.

Then
N b

A(C, x) = N̂G(C, x).

Proof. Since K∗ is locally compact, Theorem 2.8 implies the existence of a finite dimen-
sional space L ⊂ X such that

L⊥ ∩K∗ = {0}.
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Let a > 0 be as in Corollary 5.4 and V be a weak-star neighbourhood of 0 in X∗ containing
L′⊥ for some finite dimensional space L′ ⊂ X containing L. Let x∗ ∈ N b

A(C, x). Then there

are nets xi
C−→x0, εi → 0+, x∗i

w∗

−→x∗ and c > 0 such that for all i

∥ x∗i ∥≤ c and x∗i ∈ ∂−εiψC∩(xi+L′)(xi).

Thus for all ε > 0, the function

x→ −⟨x∗i , x− xi⟩+ (εi + ε) ∥ x− xi ∥

attains a local minimum on C∩(xi+L
′) at xi (Lemma 1 in [17]) and hence, by Proposition

2.4.3 in [10], the function

z → −⟨x∗i , z − xi⟩+ (εi + ε) ∥ z − xi ∥ +(c+ ε+ εi)d(z, C ∩ (xi + L′))

attains a local minimum at xi. Now, by Corollary 5.4, xi is a local minimum of the function

z → −⟨x∗i , z−xi⟩+(ε+εi) ∥ z−xi ∥ +a(c+ε+εi)d(z, xi+L
′)+(a+1)(c+ε+εi)d(z, C).

Thus
x∗i ∈ (a+ 1)(c+ ε+ εi)∂Ad(C, xi) + L′⊥ + (ε+ εi)BX∗

and hence
x∗ ∈ (a+ 1)c∂Ad(C, x) + L

′⊥ ⊂ (a+ 1)c∂Ad(C, x) + V.

As ∂Ad(C, x) is weak-star closed, we get x∗ ∈ (a+ 1) ⊂ ∂Ad(C, x).

Theorem 6.2. Let C be a closed subset of X, with x ∈ C, and let K∗ be a closed and
locally compact cone. Suppose that (6.1) holds. Then

NA(C, x) = N̂G(C, x).

Proof. Since K∗ is locally compact, Theorem 2.8 implies the existence of a finite dimen-
sional space L ⊂ X such that

L⊥ ∩K∗ = {0}.

Let x∗ ∈ NA(C, x). Then, by Proposition 2.1 in [18], there are nets (xi) ⊂ C, (x∗i ) ⊂
X∗ and (Li) ⊂ F (X) such that xi → x, x∗i

w∗

−→x∗, (Li) is cofinal with F (X) and x∗i ∈
∂−ΨC∩(xi+Li)(xi), for all i. One may suppose that L ⊂ Li for all i. By Corollary 5.4 there
are i0, a > 0 and r > 0 such that

(6.2) d(u,C ∩ (xi + Li)) ≤ a(d(u,C) + d(u− xi, Li))

for all i > i0 and u ∈ x+ rBX . So since x∗i ∈ ∂−ΨC∩(xi+Li)(xi), Lemma 1 in [17] implies
that for all ε > 0 the function

u→ −⟨x∗i , u− xi⟩+ ε∥u− xi∥+ a(∥x∗i ∥+ ε)[d(u,C) + d(u− xi, Li)]
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attains a local minimum at xi. Thus using subdifferential calculus rules and letting ε going
to zero we obtain

x∗i ∈ a∥x∗i ∥∂Ad(C, xi) + L⊥
i .

So there exist u∗i ∈ a∥x∗i ∥∂Ad(C, xi) and v∗i ∈ L⊥
i such that

x∗i = u∗i + v∗i .

We claim that (u∗i ) is bounded. Suppose the contrary and assume without loss of generality

that ∥u∗i ∥ → ∞ and p∗i :=
u∗
i

∥u∗
i
∥
w∗

→p∗ and q∗i :=
v∗
i

∥u∗
i
∥
w∗

→−p∗. As (u∗i ) ⊂ K∗ and K∗ is closed

and locally compact, it follows that p∗ ̸= 0 and p∗ ∈ K∗ and since L⊥
i ⊂ L⊥ for all

i we get p∗ ∈ K∗ ∩ L⊥ and this contradict the fact that K∗ ∩ L⊥ = {0}. Extracting
subnet if necessary we may assume that u∗i

w∗

→u∗. But v∗i ∈ L⊥
i , for all i, then v∗i

w∗

→0 and
hence u∗ = x∗. Relation (6.2) ensures that K(C ∩ (xi + Li), xi) = K(C, xi) ∩ Li and
as ∂−ΨC∩(xi+Li)(xi) = (K(C ∩ (xi + Li), xi))

0 we get u∗i ∈ ∂−ΨC∩(xi+Li)(xi) and hence

x∗ ∈ N b
A(C, x) and Theorem 6.1 implies that x∗ ∈ N̂G(C, x) and the proof is complete.

Remark. Theorem 6.2 shows that (6.1) is equivalent to

NA(C, u) ⊂ K∗, ∀u ∈ V ∩ C.

The weak contingent cone (or pseudocontingent cone) WK(C, x) to C at x is the set
of all h in X for which there exist sequences tn → 0+, and (hn) converging weakly to h
such that

x+ tnhn ∈ C, ∀n.

Note that we always have
K(C, x) ⊂WK(C, x)

and hence if we consider the weak-approximate normal cone

Nw
A (C, x) = seq− lim sup

u
C−→x

(WK(C, x))0

we obtain
Nw

A (C, x) ⊂ Nσ2

A (C, x)

since ∂−ψC(x) = (K(C, x))0.

We have the following connection between this cone and the previous ones.

Corollary 6.3. Suppose that (6.1) holds and that X is Asplund. Then

NF (C, x) ⊂ Nw
A (C, x) ⊂ Nσ2

A (C, x) ⊂ Nσ1

A (C, x) ⊂ cl∗(NF (C, x)).
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Proof. The first inclusion follows from Proposition 3.1 in [7]. For the last inclusion we
apply Theorem 4.1, (4.5).

Corollary 6.4. Suppose in addition to the assumptions of Theorem 6.1 that X is WCG
and Asplund. Then

NF (C, x) = cl∗(NF (C, x)) = NA(C, x) = NG(C, x) = N̂G(C, x).

Proof. Apply Theorem 4.1, (4.7) with f = ψC and use Theorem 6.2 to complete the
proof.

In conclusion of this section we use the results obtained above to establish relationships
between subdifferentials.

Corollary 6.5. Let f be an extended real-valued lower semicontinuous function on a
WCG Asplund space X.If (4.7) holds, then

∂F f(x0) = ∂Af(x0) = ∂Gf(x0) = ∂̂Gf(x0).

7. Tangent cones
Let C be a nonempty closed subset of X containing x. The Clarke’s tangent cone

T (C, x) to C at x is the set of all h such that for any sequence (xn) of C, xn → x and
tn → 0+ there exists hn → h such that

xn + tnhn ∈ C, fornlarge enough.

The Clarke’s normal cone Nc(C, x) to C at x is defined by

Nc(C, x) = (T (C, x))0.

Cornet [11] has found a topological connection between the Clarke’s tangent cone and
the contingent cone K(C, x) to C at x. He has shown that if C ⊂ IRm, then

T (C, x) = lim inf
u

C−→x

K(C, u)

here for a multivalued mapping F on C

lim inf
u

C−→x

F (u) =
∩
ε>0

∪
λ>0

∩
u∈C∩(x+λBX)

(F (u) + εBX)

or equivalently h ∈ lim inf
u

C−→x

F (u) iff for each sequence xn
C→x there exist sequence hn → h,

such that hn ∈ F (xn), for all n.
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Using its new characterization of Clarke’s tangent cone, Treiman [56-57]showed that the
inclusion

lim inf
u

C−→x

K(C, u) ⊂ T (C, x)

is true in any Banach space and equality holds whenever C is epi-Lipschitzian at x in
the sense of Rockafellar [53]. But this result does not include the finite dimensional case.
In [6], Borwein and Strojwas introduced the concept of compactly epi-Lipschitz sets to
show that the previous equality holds for C in this class. A set C is said to be compactly
epi-Lipschitz at x ∈ C if there exist a norm-compact set H and r > 0 such that

C ∩ (x+ rBX) + trBX ⊂ C − tH, ∀t ∈]0, r[.

Note that every epi-Lipschitz set is compactly epi-Lipschitz and every subset of a finite
dimensional space is compactly epi-Lipschitz at all its points. In the case where the space
is reflexive, these authors obtained the following equality

T (C, x0) = lim inf
u

C−→x

WK(C, x).

They generalize the results of Penot [49] for finite dimensional and reflexive Banach spaces
and of Cornet [11]for finite dimensional spaces. Recently Aubin-Frankowska [2 ,p. 134]
obtained the following formula

T (C, x) = lim inf
u

C→x

WK(C, u) = lim inf
u

C−→x

co(WK(C, u))

in the case where the space X is uniformly smooth and the norm of X∗ is Fréchet differ-
entiable off the origin.

In their paper [7], Borwein and Strojwas gave the following characterization of reflexive
Banach spaces. They showed that the following assertions are equivalent :

(i) T (C, x) ⊂ lim inf
u

C−→x

coWK(C, u), for all closed sets C ⊂ X, and x ∈ C;

(ii) X is reflexive.

Our aim in this section is to show that (i) holds as equality for more general class of
Banach spaces. In the following result we show that (i) holds for every set satisfying (6.1),
with ∂ = ∂A or ∂F or other subdifferentials in Banach spaces.

We begin by showing that the inclusion

(7.1) lim inf
u

C−→x

clco(WK(C, x)) ⊂ T (C, x).

holds for any closed subset C of an Asplund space.

Proposition 7.1. Let X be an Asplund space. Then (7.1) holds.
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Proof. We will show that if v /∈ T (C, x), with ∥ v ∥= 1, then v /∈ lim inf
u

C→x

clco(WK(C, x)).

Since v /∈ T (C, x), then, by lemma 1.2.1 in [56], there exist ε > 0, xn
C→x, an integer no

and λn > 0 such that

(xn+]0, λn](v + εBX)) ∩ C = ∅, ∀n ≥ n0.

We may assume that λn → 0+. Set D = xn + [0, λn

2 ](v + εBX). Then (λ3nv +D) ∩ C = ∅.
Set f(u,w) =∥ u−w− λ3nv ∥ + ∥ u− xn ∥2 . By Ekeland’s variational principle [14], there
exist un ∈ C and wn ∈ D such that

(7.2) f(un, wn) + λn[∥ un − xn ∥ + ∥ wn − xn ∥] ≤ f(xn, xn).

and

(7.3) f(un, wn) ≤ f(u,w) + λn(∥ u− un ∥ + ∥ w − wn ∥), ∀(u,w) ∈ C ×D.

Note that un − wn − λ3nv ̸= 0, and hence

∂F ∥ .− .− λ3nv ∥ (un, wn) ⊂ {(u∗,−u∗) : ∥ u∗ ∥= 1}.

By Proposition 2.4.3 in [10]

f(un, wn) ≤ f(u,w) + λn(∥ u− un ∥ + ∥ w − wn ∥) + 3d(u,C) + 3d(w,D)

for all (u,w) near (un, wn). Thus, by subdifferential calculus there exist x∗n ∈ X∗, ∥ x∗n ∥=
1, a∗n, d

∗
n, b

∗
n ∈ BX∗ such that

(7.4) x∗n + λnb
∗
n + 2 ∥ un − xn ∥ a∗n ∈ 3∂F d(C, un)

(7.5) −x∗n + λnd
∗
n ∈ 3∂F d(D,wn).

From (7.5), we get

⟨−x∗n, xn +
λn
2
(v + b)− wn⟩ ≤ ⟨−λnd∗n, xn +

λn
2
(v + b)− wn⟩, ∀b ∈ εBX

which implies that

⟨−x∗n,
λn
2
(v + b)⟩ ≤ ⟨x∗n, xn − wn⟩+

λ2n
2
(∥ v ∥ +ε) + λn ∥ xn − wn ∥

(because of (7.2), ∥ wn − xn ∥≤ λ2n and ∥ v ∥= 1), and hence

ε ≤ ⟨x∗n, v⟩+ 4λn + λn(1 + ε).
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As ∥ x∗n ∥= 1 and X is Asplund space, extracting subsequence if necessary we may assume

that x∗n
w∗

−→x∗, and so

(7.6) ε ≤ ⟨x∗, v⟩

and this ensures that x∗ ̸= 0. From (7.4) and the sequential weak-star closedness of the
limiting Fréchet ε-subdifferential (of Lipschitz functions) we get

x∗ ∈ 3∂F d(x,C).

Using Proposition 3.1 in [7] and the fact that ∂F d(C, x) ⊂ NF (C, x) we get x
∗ ∈ Nw

A (C, x)

and then there exist sequences cn
C−→x and q∗n → x∗ such that q∗n ∈ (WK(C, cn))

0. Conse-
quently if v ∈ lim inf

u
C−→x

clcoWK(C, u), there exist qn ∈ clco(WK(C, cn)) such that qn → v.

By (7.6) and the fact that ⟨q∗n, qn⟩ → ⟨x∗, v⟩ it follows that

ε

2
< ⟨q∗n, qn⟩

and this contradiction completes the proof.

The following corollary has been established by Aubin and Frankowska [2] in the case
where X is uniformly smooth and the norm of X∗ is Fréchet differentiable off the origin.
Their proof is based on Edelstein Theorem which states that in Hilbert spaces and some
Banach spaces, we can approximate any point by another which has a unique projection of
best approximation on a closed subset. The following corollary by Borwein and Strojwas
[7] (in which they use a completly different proof) extends their result to the reflexive
Banach spaces since this class of spaces contains the previous one (i.e. the class of space
which are uniformly smooth and the norm of their topological dual is Fréchet differentiable
off the origin). It is obtained as a direct consequence of Proposition 7.1 and the result by
Penot [49].

Corollary 7.2. Suppose that X is reflexive. Then

T (C, x) = lim inf
u

C−→x

clcoWK(C, x) = lim inf
u

C−→x

WK(C, x).

Proof. It suffices to see that (Penot [49])

T (C, x) ⊂ lim inf
u

C−→x

WK(C, u)

and to apply Proposition 7.1.

As a consequence of this corollary and the duality theorem 1.1.8 in [2] we have

N(C, x) = clco( seq− lim inf
u

C→x

(WK(C, u))0)
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Now we can use the results in section 6 to help pin down an other relationship between
the Clarke’s tangent cone and the contingent cone.

Proposition 7.3. Suppose that (6.1) holds. Then

T (C, x) ⊂ lim inf
u

C→x

clcoK(C, u).

Proof. We will show that if v /∈ lim inf
u

C→x

clcoK(C, u), then v /∈ T (C, x). Since v /∈

lim inf
u

C→x

clcoK(C, u), there exist ε > 0 and sequence xn
C→x such that

(v + εBX) ∩ clcoK(C, xn) = ∅, ∀n.

By separation theorem there exists x∗n ∈ X∗, with ∥ x∗n ∥= 1, such that

(7.7) ⟨x∗n, v + εb⟩ ≤ ⟨x∗n, h⟩, ∀h ∈ K(C, xn) ∀b ∈ BX .

Since ∥ x∗n ∥= 1, we may assume that x∗n
w∗

→x∗ and from (7.7) x∗ ̸= 0. Now by Theorems
6.2 and 6.1 and the fact that

NG(C, x) ⊂ Nc(C, x)

it follows that −x∗ ∈ Nc(C, x). But from (7.7)

⟨−x∗, v⟩ > ε

which implies that v /∈ T (C, x).

As a consequence of Propositions 7.1 and 7.3 we obtain

Theorem 7.4. Under assumptions of Propositions 7.1 and 7.3 we have

T (C, x) = lim inf
u

C→x

clcoK(C, u) = lim inf
u

C→x

clcoWK(C, u).

8. Characterization of interior points of sets.
The purpose of this section is to characterize interior points of sets in infinite dimen-

sional spaces by using locally compact cones. The first result in this setting is due to
Rockafellar [52]. It states that for a subset C of IRn

x ∈ int C ⇔ x ∈ C and T (C, x) = IRn.

This result is generalized by Borwein and Strojwas [6-7]to infinite dimensional situa-
tion for sets which are compactly epi-Lipschitzian (see Section 7). Our aim in this section
is to extend both results in infinite dimensional spaces for sets C satisfying (6.1).
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Theorem 8.1. Let C be a nonempty closed proper subset of X, with x ∈ C. Suppose that
(6.1) holds. Then the following are equivalent :

(i) x ∈ int C
(ii) T (C, x) = X.
Proof. (i) ⇒ (ii) : evident.
(ii) ⇒ (i): Suppose x /∈ int C. Then x is a boundary point of C and hence by

Corollary 2.7 in [29], ∂Ad(x,C) ̸= {0}. So let x∗ ∈ ∂Ad(x,C)\{0}. Then x∗ ∈ Nc(C, x) and
hence

⟨x∗, u⟩ ≤ 0,∀u ∈ T (C, x).

So, by (ii), x∗ = 0 and this contradiction completes the proof.

We may rewritte this result in the following manner. If C is a nonempty closed
proper subset of X, with x ∈ C, and satisfies (6.1) then x is a boundary point of C iff
N(C, x) ̸= {0}.

9. Complements.
Our aim in this section is to show that the method used in the proof of Proposition

7.1 permits us to obtain characterizations of Clarke normal cone. We establish connection
between Clarke normal cone Nc(C, x) and the normal cones NG(C, x), NF (C, x) and the
cone generated by the presubdifferential of the distance function to C at x.

Theorem 9.1. Let C be a closed subset of X with x ∈ C. Then

Nc(C, x) ⊂ clcoIR+∂d(C, x).

Proof. We shall show that if v /∈ T (C, x) then v /∈ (clcoIR+∂d(x,C))
0.The argument

will be similar to that used in the proof of Proposition 7.1. As in (7.4) and (7.5) we get
the existence of sequences x∗n ∈ X∗, ∥ x∗n ∥= 1, a∗n, d

∗
n, b

∗
n ∈ BX∗ such that

x∗n + λnb
∗
n + 2 ∥ un − xn ∥ a∗n ∈ 3∂d(C, un)

−x∗n + λnd
∗
n ∈ 3∂d(D,wn).

As in the proof of Proposition 7.1 we show that x∗n
w∗

→x∗, with ⟨x∗, v⟩ ≥ ε for some ε > 0.

As a consequence we obtain the following characterization for Clarke’s normal cone
obtained by Clarke [10] as the cone generated by the subdifferential of the distance function,
by Ioffe [19] as a closed convex hull of the cone generated by the approximate subdifferential
of the distance function, and by Kruger-Mordukhovich [38] as a closed convex hull of the
cone generated by the limiting Fréchet subdifferentials of the distance function.

Corollary 9.2. Let C be a closed subset of X with x ∈ C. Then
a) Nc(C, x) = cl IR+∂cd(C, x).
b) Nc(C, x) = clcoIR+∂Ad(C, x).

31



c) If X is Asplund then Nc(C, x) = clcoIR+∂F d(C, x).
d) If K∗ is a closed locally compact cone satisfying (6.1) then

Nc(C, x) = clcoNA(C, x).

Proof. It suffices to see that ∂Ad(C, x), ∂F d(C, x) and ∂cd(C, x) are presubdifferentials
and are contained in Nc(C, x) and Theorem 9.1 (for a), b) and c)) and Theorems 6.2 and
9.1 complete the proof.

After we have completed this work, we received a very interesting paper by Ioffe [58]
which characterizes condition (6.1) in terms of compactly epi-Lipschitzian sets. So with
the help of this result and that of Borwein and Strojwas [6] we can complete Theorem 7.4
as follows : If X is Asplund and if condition (6.1) is satisfied then

T (C, x) = lim inf
u

C→x

clcoK(C, u) = lim inf
u

C→x

clcoWK(C, u) = lim inf
u

C→x

K(C, u) = lim inf
u

C→x

WK(C, u).
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25 A. Jourani, Regularité métrique et ses applications en programmation mathématique,
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