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Abstract The existence and the convergence (up to a subsequence) of the Moreau-
Yosida regularization for the state-dependent sweeping process with nonregular
(subsmooth and positively alpha-far) sets are established. Then, by a reparametrization
technique, the existence of solutions for bounded variation continuous state-dependent
sweeping processes with nonregular (subsmooth and positively alpha-far) sets is
proved. An application to vector hysteresis is discussed, where it is shown that the Play
operator with positively alpha-far sets is well defined for bounded variation continuous
inputs.
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1 Introduction

The sweeping process is a first-order differential inclusion, involving the normal cone
to a moving set depending on time. Roughly speaking, a point is swept by a moving
closed set. This differential inclusion was introduced and deeply studied by Moreau
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in a series of papers (see [1–5]) to model an elasto-plastic mechanical system. Since
then, many other applications of the sweeping process have been given, namely in
electrical circuits [6], crowd motion [7], hysteresis in elasto-plastic models [8].

The seminal work of Moreau was the starting point of many other developments,
as the state-dependent sweeping process, the second-order sweeping process [9], the
generalized sweeping process [10], etc.

In this paper we are interested in the study of the state-dependent sweeping process,
which corresponds to the case where the moving set depends also on the state. This
differential inclusion has been motivated by quasivariational inequalities arising, e.g.,
in the evolution of sandpiles, quasistatic evolution problems with friction, microme-
chanical damage models for iron materials, among others (see [11] and the references
therein).

The investigation of the state-dependent sweeping process was initiated by Chraibi
Kaadoud [12], for convex sets in three dimension to deal with a mechanical prob-
lem with unilateral contact and friction, and generalized to a (possibly multivalued)
perturbed form in the convex and nonconvex setting.

In the convex setting and by using a semi-implicit discretization scheme, Kunze
and Monteiro-Marques [13] obtained the existence of solutions when the sets have a
Lipschitz variation. Using an explicit discretization scheme, Haddad and Haddad [14]
proved the existence of solutions of a perturbed state-dependent sweeping processwith
time-independent sets. Later, Bounkhel and Castaing [15] considered state-dependent
sweeping process in uniformly smooth and uniformly convex Banach spaces.

In the nonconvex case and by using Schauder’s fixed point theorem, Chemetov
and Monteiro-Marques [16] established existence of solutions of perturbed state-
dependent sweeping processes with uniformly prox-regular sets. Using a fixed point
argument in ordered spaces, the same authors [17] proved the existence of solutions
of the perturbed state-dependent sweeping process. Next, Castaing et al. [18] showed
the existence of solutions of the state-dependent sweeping process in the uniformly
prox-regular case by using an extended version of Schauder’s theorem and a dis-
cretization scheme. Later, Azzam-Laouir et al. [19] and Haddad et al. [20] showed the
existence of solution of the multivalued perturbed state-dependent sweeping process
in the finite-dimensional setting with uniformly prox-regular sets. Finally, Noel [21]
and Noel and Thibault [22] showed the existence of multivalued perturbed versions of
the state-dependent sweeping process with equi-uniformly subsmooth and uniformly
prox-regular sets.

The purpose of this paper is twofold: first, to show the existence of solutions of state-
dependent sweepingprocess byusing theMoreau-Yosida regularization technique, and
second, to show the existence of solutions of the state-dependent sweeping process in
the bounded variation continuous case by using a reparametrization technique.

The Moreau-Yosida regularization is a quite old approach to deal with differential
inclusions. It consists in approaching the given differential inclusion by a penalized
one, depending on a parameter, whose existence is easier to establish (for example, by
using the classical Cauchy–Lipschitz theorem) and then to study the limit when the
parameter goes to zero.

In the case of sweeping processes, the Moreau-Yosida regularization has been used
to deal only with convex or uniformly prox-regular sets (see [1,23–28] for more
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details), although it has never been used, even in the convex case, to study the state-
dependent sweeping process.

To dealwith the state-dependent sweeping process in the bounded variation continu-
ous case,we use the reparametrization technique from [1,29–31] to reduce the bounded
variation continuous case to theLipschitz one. The application of the reparametrization
technique is possible due to the rate-independence property of the sweeping process.

The paper is organized as follows. After some preliminaries in Sect. 2, we collect
in Sect. 3 the hypotheses used throughout the paper. In Sect. 4, we establish some
technical lemmas used in the sequel of the paper. In Sect. 5, we introduce the notion
of a solution for the state-dependent sweeping process with bounded variation. Next,
in Sect. 6 and 7, we present the main results of this paper (Theorems 6.1 and 6.2),
namely the convergence (up to a subsequence) of the Moreau-Yosida regularization
for the state-dependent sweeping process and the existence of solutions for bounded
variation continuous state-dependent sweeping process. Finally, in Sect. 8, we apply
our results to the well-posedness of the Play operator with positively α-far sets for
bounded variation continuous inputs.

2 Notation and Preliminaries

From now on H stands for a separable Hilbert space, whose norm is denoted by ‖ · ‖.
The closed ball centered at x with radius ρ is denoted by B(x, ρ), and the closed unit
ball is denoted by B. The notation Hw denotes H equipped with the weak topology,
and xn ⇀ x stands for the weak convergence in H of a sequence (xn)n to x .

A vector h ∈ H belongs to the Clarke tangent cone TC (S; x); when for every
sequence (xn)n in S converging to x and every sequence of positive numbers
(tn)n converging to 0, there exists some sequence (hn)n in H converging to h
such that xn + tnhn ∈ S for all n ∈ N. This cone is closed and convex, and
its negative polar is the Clarke normal cone to S at x ∈ S, that is, N (S; x) =
{v ∈ H : 〈v, h〉 ≤ 0 for all h ∈ TC (S; x)}. As usual, N (S; x) = ∅ if x /∈ S. Through
the Clarke normal cone, the Clarke subdifferential of a function f : H → R∪ {+∞}
is defined as

∂ f (x) := {v ∈ H : (v,−1) ∈ N (epi f, (x, f (x)))} ,

where epi f := {(y, r) ∈ H × R : f (y) ≤ r} is the epigraph of f . When the function
f is finite and locally Lipschitzian around x , the Clarke subdifferential is characterized
(see [32, Proposition 2.1.5]) in the following way

∂ f (x) = {
v ∈ H : 〈v, h〉 ≤ f ◦(x; h) for all h ∈ H

}
,

where

f ◦(x; h) := lim sup
(t,y)→(0+,x)

t−1 [ f (y + th) − f (y)]
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is the generalized directional derivative of the locally Lipschitzian function f at x
in the direction h ∈ H . The function f ◦(x; ·) is in fact the support of ∂ f (x), that
is, f ◦(x; h) = sup{〈v, h〉 : v ∈ ∂ f (x)}. This characterization easily yields that the
Clarke subdifferential of any locally Lipschitzian function has the important property
of upper semicontinuity fromH into Hw.

For S ⊂ H , the distance function is defined by dS(x) := inf y∈S ‖x− y‖ for x ∈ H .
We denote Proj S(x) as the set (possibly empty) of points which attain this infimum.
The equality (see [32, Proposition 2.5.4])

N (S; x) = cl (R+∂dS(x)) for x ∈ S, (1)

gives an expression of the Clarke normal cone in terms of the distance function. As
usual, it will be convenient to write ∂d(x, S) in place of ∂d (·, S) (x).

Remark 2.1 In the present paper, we will calculate the Clarke subdifferential of the
distance function to a moving set. By doing so, the subdifferential will always be cal-
culated with respect to the variable involved in the distance function by assuming that
the set is fixed. More explicitly, ∂dC(t,y)(x) means the subdifferential of the function
dC(t,y)(·) (here C(t, y) is fixed) is calculated at the point x , i.e., ∂ (dC (t, y)(·)) (x).
In the same way, ∂dC(t,x)(x) means the subdifferential of the function dC(t,x)(·) (here
C(t, x) is a fixed set) is calculated at the point x , i.e., ∂

(
dC(t,x)(·)

)
(x).

Let f : H → R∪ {+∞} be an lsc function and x ∈ dom f . An element ζ belongs
to the proximal subdifferential (see [32, Chapter 1]) ∂P f (x) of f at x if there exist
two positive numbers σ and η such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x; η).

The limiting proximal subdifferential (see [32, Chapter 1]) is defined by

∂L f (x) := {w- lim ζi : ζi ∈ ∂P f (xi ), xi → x, f (xi ) → f (x)} .

When f is locally Lipschitz, the following formula holds:

∂ f (x) = cl conv ∂L f (x).

The following lemma will be used in the proof of Lemma 4.3.

Lemma 2.1 Let S ⊂ H be a closed set. Then, for x /∈ S and s ∈ Proj S(x) we have
x−s

‖x−s‖ ∈ ∂LdS(s).

Proof According to the definition of the proximal normal cone and [32, Proposi-
tion 1.1.3], we have x − s ∈ N (S; s) . Furthermore, by exact penalization (see [32,
Proposition 1.6.3]), for all ε > 0, x−s

‖x−s‖+ε
∈ ∂PdS(s). Then, by taking ε ↓ 0, we get

the result. ��
We recall the definition of the class of positively α-far sets, introduced in [33] and

widely studied in [10].
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Definition 2.1 Let α ∈]0, 1] and ρ ∈]0,+∞]. Let S be a nonempty and closed
subset of H with S �= H . We say that the Clarke subdifferential of the distance
function d(·, S) keeps the origin α-far-off on the open ρ-tube around S, Uρ(S) :=
{x ∈ H : 0 < d(x, S) < ρ}, provided

0 < α ≤ inf
x∈Uρ(S)

d(0, ∂d(·, S)(x)). (2)

Moreover, if E is a given nonempty set, then we say that the family (S(t))t∈E is
positively α-far if every S(t) satisfies (2) with the same α ∈]0, 1] and ρ > 0.

Several characterizations of this notion and examples were given in [10]. For example,
in the case where the set S is ball compact (see Sect. 3), this notion can be interpreted
geometrically in the following manner (see Proposition 3.1 in [10] and Lemma 4.2 in
Sect. 4): For all u1, u2 ∈ Proj S(x),

〈x − u1, x − u2〉 ≥ α2d2S(x) ∀x ∈ Uρ(S). (3)

In fact, it is shown (see [10]) that condition (3) implies (2). Conversely (see Proposition
3.1 in [10]) relation (2) implies: For all u1, u2 ∈ Proj S(x),

〈x − u1, x − u2〉 ≥ (2α2 − 1)d2S(x) ∀x ∈ Uρ(S).

The notion of positively α-far sets includes strictly the notion of uniformly sub-
smooth sets (see Proposition 2.1) and the notion of uniformly prox-regular sets (see
[10]).

Definition 2.2 ([34]) For a fixed r > 0, the set S is said to be r -uniformly prox-regular
iff for any x ∈ S and ζ ∈ N P

S (x) ∩ B one has x = proj S(x + rζ ).

It is known that S is r -uniformly prox-regular if and only if every nonzero proximal
vector ζ ∈ N P

S (x) to S at any point x ∈ S can be realized by an r -ball, that is,

S ∩ B
(
x + r ζ

‖ζ‖
)

= ∅, which is equivalent to

〈ζ, y − x〉 ≤ ‖ζ‖
2r

‖y − x‖2 for all y ∈ S.

Definition 2.3 Let S be a closed subset of H . We say that S is uniformly subsmooth,
iff for every ε > 0 there exists δ > 0, such that

〈
x∗
1 − x∗

2 , x1 − x2
〉 ≥ −ε‖x1 − x2‖ (4)

holds for all x1, x2 ∈ S satisfying ‖x1 − x2‖ < δ and all x∗
i ∈ N (S; xi ) ∩ B for

i = 1, 2. Furthermore, if E is a given nonempty set, then we say that the family
(S(t))t∈E is equi-uniformly subsmooth, if for every ε > 0, there exists δ > 0 such
that (4) holds for each t ∈ E and all x1, x2 ∈ S(t) satisfying ‖x1 − x2‖ < δ and all
x∗
i ∈ N (S(t); xi ) ∩ B for i = 1, 2.
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Proposition 2.1 ([10]) Assume that S is uniformly subsmooth. Then, for all ε ∈]0, 1[
there exists ρ ∈]0,+∞[ such that

√
1 − ε ≤ inf

y∈Uρ(S)
d(0, ∂d(y, S)).

Remark 2.2 The class of positively α-far sets contains strictly that of uniformly sub-
smooth sets. To see this, consider S = {(x, y) ∈ R

2 : y ≥ −|x |}. Then, (see [33]), S
satisfies relation (2) with α =

√
2
2 on H \ S, but we easily see that S is not uniformly

subsmooth.

Given a measure ν over [T0, T ], we denote by L1
ν ([T0, T ]; H) the space of H -valued

ν-integrable functions defined over [T0, T ]. When ν is the Lebesgue measure we
simply write L1 ([T0, T ]; H), and in this case, we write L1

w ([T0, T ]; H) to mean
the space L1 ([T0, T ]; H) endowed with the weak topology. Moreover, we say that
u ∈ AC ([T0, T ]; H) if there exists f ∈ L1 ([T0, T ]; H) and u0 ∈ H such that
u(t) = u0 + ∫ t

T0
f (s)ds for all t ∈ [T0, T ].

Given a function u : [T0, T ] → H and a subinterval J ⊂ [T0, T ], the variation of
u on J is defined by

Var (u, J ) := sup

⎧
⎨

⎩

m∑

j=1

‖u(t j ) − u(t j−1)‖: m ∈ N, t j ∈ J, t0 < · · · < tm

⎫
⎬

⎭
.

If Var (u, [T0, T ]) < +∞ then we say that u has bounded variation on [T0, T ]. The
space of functions with bounded variation is denoted by BV ([T0, T ]; H). The set of
H -valued continuous functions defined on [T0, T ] is denoted by C ([T0, T ]; H). For
convenience we set

CBV ([T0, T ]; H) := BV ([T0, T ]; H) ∩ C ([T0, T ]; H) .

Furthermore, for u : [T0, T ] → H we define Lip (u) := supt �=s ‖u(t) − u(s)‖/|t − s|
andLip ([T0, T ]; H) := {u : [T0, T ] → H : Lip (u) < +∞}.We recall the concept of
arc-length �u (see [35, Section 2.5.16]). For u ∈ CBV ([T0, T ]; H), let �u : [T0, T ] →
[T0, T ] be defined, for t ∈ [T0, T ], by

�u(t) :=
{
T0 + (T−T0)

Var (u,[T0,T ])Var (u, [T0, t]) , if Var (u, [T0, T ]) �= 0,

T0, if Var (u, [T0, T ]) = 0.

The following result is the key element of the reparametrization technique used in
Sect. 6 (see, for instance, [30, Proposition 2.1]).

Proposition 2.2 For every u ∈ CBV ([T0, T ]; H) there exists a unique function U ∈
Lip ([T0, T ]; H) such that u = U ◦ �u. Moreover, Lip (U ) ≤ Var (u,[T0,T ])

(T−T0)
.

Given a vector measure μ : B([T0, T ]) → H , where B([T0, T ]) are the Borel sets
of [T0, T ], its variation measure |μ| : B([T0, T ]) → R is defined for any Borel set
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A ⊂ [T0, T ] as |μ|(A) := sup
∑

n∈N ‖μ(Bn)‖, where the supremum is taken over
all sequences (Bn)n∈N of mutually disjoint Borel subsets of [T0, T ] such that A =⋃

n∈N Bn . We say that μ has bounded variation if |μ| ([T0, T ]) is finite (see [36,37]).
Moreover, given u ∈ BV ([T0, T ]; H) it is known that its distributional derivative
Du : B([T0, T ]) → H is a measure with bounded variation, i.e., |Du|([T0, T ]) < ∞
and−

∫

R

ϕ′(t)ū(t)dt =
∫

R

ϕdDū for all ϕ ∈ C1
c (R;R), where ū : R → H is defined

by

ū(t) :=

⎧
⎪⎨

⎪⎩

u(T0), t < T0.

u(t), t ∈ [T0, T ],
u(T ), t > T .

We recall that Du is the differential measure associated with u.
Next proposition is a chain rule for BV functions (see [30, Proposition 2.2] and [36,

Lemma 6.4 and Theorem 6.1] for more details).

Proposition 2.3 Let I, J ⊂ R be intervals and let h : I → J be nondecreasing and
continuous. Then,

(i) Dh
(
h−1(B)

) = L1(B) for every B ∈ B (h(I )), where L1 is the Lebesgue
measure and B(h(I )) are the Borel sets of h(I ).

(ii) If g ∈ Lip (J ; H), then g ◦ h ∈ BV (I ; H) and D (g ◦ h) = (
g′ ◦ h

)
Dh, where

g′ is any representative of the distributional derivative of g.

Let A be a bounded subset of H . We define the Kuratowski measure of noncom-
pactness of A, α(A), as

α(A) := inf{d > 0 : A admits a finite cover by sets of diameter ≤ d},

and the Hausdorff measure of noncompactness of A, β(A), as

β(A) := inf{r > 0 : A can be covered by finitely many balls of radius r}.

The following result gives the main properties of the Kuratowski and Hausdorff mea-
sure of noncompactness (see [38, Proposition 9.1 from Section 9.2]).

Proposition 2.4 Let H be a Hilbert space and B, B1, B2 be bounded subsets of H.
Let γ be the Kuratowski or the Hausdorff measure of noncompactness. Then,

(i) γ (B) = 0 if and only if cl (B) is compact.
(ii) γ (λB) = |λ|γ (B) for every λ ∈ R.
(iii) γ (B1 + B2) ≤ γ (B1) + γ (B2).
(iv) B1 ⊂ B2 implies γ (B1) ≤ γ (B2).
(v) γ (conv B) = γ (B).
(vi) γ (cl (B)) = γ (B).

The following result (see [39, Theorem 2]) is used to prove the existence for the
Moreau-Yosida regularization scheme.
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Theorem 2.1 Let F : [T0, T ] × H ⇒ H be with nonempty, closed and convex values
satisfying:

(i) for every x ∈ H, F(·, x) is measurable.
(ii) for every t ∈ [T0, T ], F(t, ·) is upper semicontinuous from H into Hw.
(iii) for a.e. t ∈ [T0, T ] and A ⊂ H bounded, γ (F(t, A)) ≤ k(t)γ (A), for some

k ∈ L1(T0, T ) with k(t) < +∞ for all t ∈ [T0, T ], where γ = α or γ = β is
either the Kuratowski or the Hausdorff measure of noncompactness.

Then, the differential inclusion

ẋ(t) ∈ F(t, x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0,

has at least one solution x ∈ AC ([T0, T ]; H).

The following lemma is a compactness criteria for absolutely continuous functions.

Lemma 2.2 Let (xn)n be a sequence of absolutely continuous functions from [T0, T ]
into H with xn(T0) = xn0 . Assume that for all n ∈ N

‖ẋn(t)‖ ≤ ψ(t) a.e t ∈ [T0, T ], (5)

where ψ ∈ L1(T0, T ) and that xn0 → x0 as n → ∞. Then, there exists a subsequence
(xnk )k of (xn)n and x ∈ AC ([T0, T ]; H) such that

(i) xnk (t) ⇀ x(t) in H as k → +∞ for all t ∈ [T0, T ].
(ii) xnk ⇀ x in L1 ([T0, T ]; H) as k → +∞.
(iii) ẋnk ⇀ ẋ in L1 ([T0, T ]; H) as k → +∞.
(iv) ‖ẋ(t)‖ ≤ ψ(t) a.e. t ∈ [T0, T ].
Proof On the one hand, let us consider K := {ẋn : n ∈ N} ⊂ L1 ([T0, T ]; H).
According to (5), the set K is bounded and uniformly integrable (see [40, Theo-
remA.2.5]). Thus, as a result of theDunford-Pettis theorem (see [40, Theorem2.3.24]),
K is compact in L1

w ([T0, T ]; H). Therefore, there exists a subsequence of (ẋnk )k of
(ẋn)n converging to some v in L1

w ([T0, T ]; H). Now, let S := {
xnk : k ∈ N

} ⊂
L1 ([T0, T ]; H). Thus, due to (5), for every xnk ∈ S we have

‖xnk (t)‖ ≤ ‖xnk0 ‖ +
∫ t

T0
ψ(s)ds t ∈ [T0, T ], (6)

which implies, by virtue of the Dunford-Pettis theorem, that S is compact in
L1

w ([T0, T ]; H). Consequently, there exists a subsequence (xnk )k (without relabel-
ing) of (xnk )k converging to some x in L1

w ([T0, T ]; H).
On the other hand, due to (5) and (6), the sequence (xnk )k is uniformly bounded

in W 1,1 ([T0, T ]; H) and in L∞ ([T0, T ]; H). Therefore, as seen in [24, Theo-
rem 0.2.2.1], there exists a subsequence (xnk )k (without relabeling) of (xnk )k and
a function x̃ such that ‖x̃(t)‖ ≤ ψ(t) a.e. t ∈ [T0, T ] and

xnk (t) → x̃(t) weakly as k → +∞ for all t ∈ [T0, T ]. (7)
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Moreover, by virtue of [40, Proposition 2.3.31], x ≡ x̃ , which proves (iv). Now, we
prove that v = ẋ . Indeed, let w ∈ H and t ∈ [T0, T ] be fixed. Then,

〈
xnk (t) − xnk0 , w

〉 =
∫ t

T0

〈
ẋnk (s), w

〉
ds =

∫ T

T0

〈
ẋnk (s), w · 1[T0,t](s)

〉
ds, (8)

where

1[T0,t](s) :=
{
1, if s ∈ [T0, t],
0, if s ∈]t, T ],

belongs to L∞ ([T0, T ]; H). Hence, using (7), the weak convergence of ẋnk to v in
L1 ([T0, T ]; H) and passing to the limit in (8), we obtain

〈x(t) − x0, w〉 =
∫ t

T0
〈v(s), w〉 ds for all w ∈ H,

which implies that x(t)−x0 = ∫ t
T0

v(s)ds for all t ∈ [T0, T ]. Hence v = ẋ . Therefore,
(i), (ii), (iii) and (iv) hold. ��

3 Technical Assumptions

In this section, we list the hypotheses used throughout the paper.

Hypotheses on the set-valued map C : [T0, T ] ⇒ H : C is a set-valued map with
nonempty and closed values. Moreover, the following hypotheses will be considered
in Sect. 7.

(H1) There exists v ∈ CBV ([T0, T ];R) such that for s, t ∈ [T0, T ] and x ∈ H

|d(x,C(t)) − d(x,C(s))| ≤ |v(t) − v(s)|.

(H2) There exists κ ≥ 0 such that for all s, t ∈ [T0, T ] and all x ∈ H

|d(x,C(t)) − d(x,C(s))| ≤ κ|t − s|.

(H3) There exist two constants α ∈]0, 1] and ρ ∈]0,+∞] such that

0 < α ≤ inf
x∈Uρ(C(t))

d (0, ∂d(x,C(t))) a.e. t ∈ [T0, T ],

where Uρ (C(t)) = {x ∈ H : 0 < d(x,C(t)) < ρ} for all t ∈ [T0, T ].
(H4) For a.e. t ∈ [T0, T ] the set C(t) is ball compact, that is, for every r > 0 the
set C(t) ∩ rB is compact in H .
(H5) For a.e. t ∈ [T0, T ] the set C(t) is r -uniformly prox-regular for some r > 0.
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Hypotheses on the set-valued map C : [T0, T ]× H ⇒ H : C is a set-valued map with
nonempty and closed values. Moreover, we will consider the following conditions:

(H6)There exists v ∈ CBV ([T0, T ];R) and L ∈ [0, 1[ such that for s, t ∈ [T0, T ]
and x, y, z ∈ H

|d(z,C(t, x)) − d(z,C(s, y))| ≤ |v(t) − v(s)| + L‖x − y‖.

(H7) There exist κ ≥ 0 and L ∈ [0, 1[ such that for s, t ∈ [T0, T ] and x, y, z ∈ H

|d(z,C(t, x)) − d(z,C(s, y))| ≤ κ|t − s| + L‖x − y‖.

(H8) There exist constants α ∈]0, 1] and ρ ∈]0,+∞] such that for every y ∈ H

0 < α ≤ inf
x∈Uρ(C(t,y))

d (0, ∂d(·,C(t, y))(x)) a.e. t ∈ [T0, T ],

where Uρ (C(t, y)) = {x ∈ H : 0 < d(x,C(t, y)) < ρ}.
(H9) The family {C(t, v) : (t, v) ∈ [T0, T ] × H} is equi-uniformly subsmooth.
(H10) There exists k ∈ L1(T0, T ) such that for every t ∈ [T0, T ], every r > 0 and
every bounded set A ⊂ H ,

γ (C(t, A) ∩ rB) ≤ k(t)γ (A),

where γ = α or γ = β is either the Kuratowski or the Hausdorff measure of
noncompactness (see Proposition 2.4) and k(t) < 1 for all t ∈ [T0, T ].

Remark 3.1 (i) Let L ∈ [0, 1[. Under (H9) for every α ∈]√L, 1] there exists ρ > 0
such that (H8) holds. This follows from Proposition 2.1.

(ii) It is not difficult to prove that (H5) implies (H3) with α = 1 and ρ = r .
(iii) If C(t, x) := C(t) for every (t, x) ∈ [T0, T ] × H , then (H10) implies (H4).

Indeed, fix t ∈ [T0, T ] and r > 0. Then, for a fixed x ∈ H , we have

γ (C(t, {x}) ∩ rB) = γ (C(t) ∩ rB) ≤ k(t)γ ({x}) = 0,

which implies, since C(t) is closed, that C(t) ∩ rB is compact.
(iv) As it is shown in [13], the condition L ∈ [0, 1[ in (H6) and (H7) cannot be

removed.

4 Preparatory Lemmas

In this section, we give some preliminary lemmas that will be used in the following
sections. They are related to set-valued maps and properties of the distance function.

Since−d(·, S) has a directional derivative that coincideswith the Clarke directional
derivative of −d(·, S) whenever x /∈ S (see [41]), we obtain the following lemma.
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Lemma 4.1 Let S ⊂ H be a closed set, x /∈ S and v ∈ H. Then

lim
h↓0

d(x + hv, S) − d(x, S)

h
= min

y∗∈∂d(x,S)

〈
y∗, v

〉
.

Lemma 4.2 Assume that (H10) holds. Let t ∈ [T0, T ], y ∈ H and x /∈ C(t, y). Then,

∂dC(t,y)(x) = x − cl conv Proj C(t,y)(x)

dC(t,y)(x)
.

Proof Let t ∈ [T0, T ] and y ∈ H be given. It is not difficult to see that (H10) implies
thatC(t, y) is ball compact. To simplify the rest of the proof let us denoteC := C(t, y).
According to [42],

∂dC (x) = x − ∂ϕC (x)

dC (x)
,

where ϕC (x) := sup
c∈C

{〈x, c〉 − 1
2‖c‖2

}
is the Asplund function associated with C .

Moreover, due to [43, Proposition 4.5.1] and the ball compactness of C , ∂ϕC (x) =
cl conv Proj C (x), which shows the result. ��

Lemma 4.3 If (H6), (H9) and (H10) hold then, for all t ∈ [T0, T ], the set-valued
map x ⇒ ∂d(·,C(t, x))(x) is upper semicontinuous from H into Hw.

Proof Fix t ∈ [T0, T ] and x ∈ H .

I) Assume that x ∈ C(t, x): Due to [44, Theorem 17.35], it is enough to prove that
x ⇒ ∂Ld(·,C(t, x))(x) is sequentially upper semicontinuous from H into Hw

at x .
Let xn → x and x∗

n ⇀ x∗ with x∗
n ∈ ∂LdC(t,xn)(xn). We have to prove that

x∗ ∈ ∂LdC(t,x)(x). Indeed, for every n ∈ N where xn /∈ C(t, xn) (see Lemma
2.1) we have

x∗
n = xn − yn

dC(t,xn)(xn)
∈ ∂LdC(t,xn)(yn), (9)

for some yn ∈ Proj C(t,xn)(xn). Then, for each n ∈ N, we define

x̂n :=
{
xn, if xn ∈ C(t, xn),

yn, if xn /∈ C(t, xn),

where yn ∈ H is given by (9). Thus, x̂n → x , x∗
n ⇀ x∗, x̂n ∈ C(t, xn) and

x∗
n ∈ ∂LdC(t,xn)

(
x̂n

)
. Therefore, using (H9) and [21, Lemma 2.2.2], we obtain

that x∗ ∈ ∂dC(t,x)(x).
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II) Assume that x /∈ C(t, x): Due to Lemma 4.2 and [44, Theorem 17.35], it is
enough to prove that x ⇒ Proj C(t,x)(x) is sequentially upper semicontinuous
from H into Hw at x . Indeed, let xn → x and x∗

n ⇀ x∗ with x∗
n ∈ Proj C(t,xn)(xn).

We have to prove that x∗ ∈ Proj C(t,x)(x). Indeed, due to (H10), (x∗
n )n is relatively

compact and, thus, x∗
n → x∗ up to a subsequence. Moreover,

‖x − x∗‖ ≤ ‖x − xn‖ + dC(t,xn)(xn) + ‖x∗
n − x∗‖

≤ (1 + L)‖x − xn‖ + dC(t,x)(xn),

which shows that ‖x − x∗‖ ≤ dC(t,x)(x). Furthermore,

dC(t,x)(x
∗) = dC(t,x)(x

∗) − dC(t,xn)(x
∗
n ) ≤ L‖x − xn‖ + ‖x∗ − x∗

n‖,

which shows that x∗ ∈ C(t, x). ��

Next lemma gives some properties and estimations of the distance function to a
moving set depending on the state.

Lemma 4.4 Let x, y ∈ AC ([T0, T ]; H) and let C : [T0, T ]×H ⇒ H be a set-valued
map with nonempty and closed values satisfying (H7). Then,

(i) The function t → d(x(t),C(t, y(t))) is absolutely continuous over [T0, T ].
(ii) For all t ∈]T0, T [, where ẏ(t) exists,

lim sup
s↓0

dC(t+s,y(t+s))(x(t + s)) − dC(t,y(t))(x(t))

s

≤ κ + L‖ẏ(t)‖ + lim sup
s↓0

dC(t,y(t))(x(t + s)) − dC(t,y(t))(x(t))

s
.

(iii) For all t ∈]T0, T [, where ẋ(t) exists,

lim sup
s↓0

dC(t,y(t))(x(t + s)) − dC(t,y(t))(x(t))

s
≤ max

y∗∈∂d(x(t),C(t,y(t)))

〈
y∗, ẋ(t)

〉
.

(iv) For all t ∈ {t ∈]T0, T [ : x(t) /∈ C(t, y(t))}, where ẋ(t) exists,

lim
s↓0

dC(t,y(t))(x(t + s)) − dC(t,y(t))(x(t))

s
= min

y∗∈∂d(x(t),C(t,y(t)))

〈
y∗, ẋ(t)

〉
.

(v) For every x ∈ H the set-valued map t ⇒ ∂d(·,C(t, y(t)))(x) is measurable.
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Proof Let ψ : [T0, T ] → R be the function defined by ψ(t) := d(x(t),C(t, y(t))).

(i) It follows directly from (H7).
(ii) Let t ∈]T0, T [ where ẏ(t) exists. Then, for s > 0 small enough,

ψ(t + s) − ψ(t)

s
= d(x(t + s),C(t + s, y(t + s))) − d(x(t + s),C(t, y(t)))

s

+ d(x(t + s),C(t, y(t))) − d(x(t),C(t, y(t)))

s

≤ κ + L
‖y(t + s) − y(t)‖

s

+ d(x(t + s),C(t, y(t))) − d(x(t),C(t, y(t)))

s
,

and taking the superior limit, we get the desired inequality.
(iii) Let t ∈]T0, T [ be such that ẋ(t) exists. Let sn ↓ 0 be such that

lim sup
s↓0

d(x(t + s),C(t, y(t))) − d(x(t),C(t, y(t)))

s

= lim
n→+∞

d(x(t + sn),C(t, y(t))) − d(x(t),C(t, y(t)))

sn
.

By virtue of Lebourg’s mean value theorem [32, Theorem 2.2.4], there exist
zn ∈]x(t), x(t + sn)[ and ξn ∈ ∂d(zn,C(t, y(t))) such that

d(x(t + sn),C(t, y(t))) − d(x(t),C(t, y(t))) = 〈ξn, x(t + sn) − x(t)〉 .

Since ‖ξn‖ ≤ 1, there is a subsequence (without relabeling) of (ξn)n such that
ξn ⇀ ξ ∈ ∂d(x(t),C(t, y(t))). Thus, taking the limit in the last equality we
obtain the result.

(iv) Let t ∈ {t ∈]T0, T [ : x(t) /∈ C(t, y(t))} where ẋ(t) exists. Then, for s > 0 small
enough,

1

s
(d(x(t + s),C(t, y(t))) − d(x(t),C(t, y(t))))

= 1

s
(d(x(t) + sẋ(t) + sε(s, t),C(t, y(t))) − d(x(t),C(t, y(t))))

= 1

s
(d(x(t) + sẋ(t),C(t, y(t))) − d(x(t),C(t, y(t)))) + η(s, t),

123



J Optim Theory Appl

for some mappings ε(·, t) and η(·, t) with lims↓0 ε(s, t) = lims↓0 η(s, t) = 0.
Then, by using Lemma 4.1, we get

lim
s↓0

d(x(t + s),C(t, y(t))) − d(x(t),C(t, y(t)))

s

= lim
s↓0

d(x(t) + sẋ(t),C(t, y(t))) − d(x(t),C(t, y(t)))

s

= min
y∗∈∂d(x(t),C(t,y(t)))

〈
y∗, ẋ(t)

〉
.

(v) See [10].

��
The following result shows that the set-valued map (t, x) ⇒ 1

2∂d
2
C(t,x)(x) satisfies

the conditions of Theorem 2.1.

Proposition 4.1 Assume that (H6), (H9) and (H10) hold. Then, the set-valued map
G : [T0, T ] × H ⇒ H defined by G(t, x) := 1

2∂d
2
C(t,x)(x) satisfies:

(i) for all x ∈ H and all t ∈ [T0, T ], G(t, x) = x − cl conv Proj C(t,x)(x).
(ii) for every x ∈ H the set-valued map G(·, x) is measurable.
(iii) for every t ∈ [T0, T ], G(t, ·) is upper semicontinuous from H into Hw.
(iv) for every t ∈ [T0, T ] and A ⊂ H bounded, γ (G(t, A)) ≤ (1+k(t))γ (A), where

γ = α or γ = β is the Kuratowski or the Hausdorff measure of noncompactness
of A and k ∈ L1(T0, T ) is given by (H10).

(v) Let x0 ∈ C(T0, x0). Then, for all t ∈ [T0, T ] and x ∈ H,

‖G(t, x)‖ := sup {‖w‖: w ∈ G(t, x)} ≤ (1 + L)‖x − x0‖ + |v(t) − v(T0)| .

Proof (i), (ii) and (iii) follow, respectively, from Lemma 4.2, (v) of Lemma 4.4 and
Lemma 4.3. To prove (iv), let A ⊂ H be a bounded set included in the ball rB,
for some r > 0. Define the set-valued map F(t, x) := Proj C(t,x)(x). Then, for
every t ∈ [T0, T ], ‖F(t, A)‖ := sup{‖w‖: w ∈ F(t, A)} ≤ r̃(t), where r̃(t) :=
(2 + L)r + (1 + L)‖x0‖ + |v(t) − v(T0)|. Indeed, let z ∈ F(t, A), then there exists
x ∈ A such that z ∈ Proj C(t,x)(x). Thus,

‖z‖ ≤ dC(t,x)(x) − dC(T0,x0)(x0) + ‖x‖
≤ (1 + L)‖x − x0‖ + |v(t) − v(T0)| + ‖x‖
≤ (2 + L)r + (1 + L)‖x0‖ + |v(t) − v(T0)| = r̃(t).

Therefore, by using (H10),

γ (G(t, A)) ≤ γ (A) + γ (cl conv F(t, A))

= γ (A) + γ (F(t, A) ∩ r̃(t)B)

≤ γ (A) + γ (C(t, A) ∩ r̃(t)B)

≤ (1 + k(t))γ (A).
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To prove (v), define G̃(t, x) := x − Proj C(t,x)(x). Then, due to (H6),

‖G̃(t, x)‖ = d(x,C(t, x)) − d(x0,C(T0, x0)) ≤ (1 + L)‖x − x0‖ + |v(t) − v(T0)| .

By passing to the closed and convex hull in the last inequality, we get the result. ��
When the sets C(t, x) are independent of x , the subsmoothness in Proposition 4.1 is
no longer required. The following result follows in the same way as Proposition 4.1.

Proposition 4.2 Assume that (H1) and (H4) hold. Then, the set-valued map
G : [T0, T ] × H ⇒ H defined by G(t, x) := 1

2∂d
2
C(t)(x) satisfies:

(i) for all x ∈ H and all t ∈ [T0, T ], G(t, x) = x − cl conv Proj C(t)(x).
(ii) for every x ∈ H the set-valued map G(·, x) is measurable.
(iii) for every t ∈ [T0, T ], G(t, ·) is upper semicontinuous from H into Hw.
(iv) for all t ∈ [T0, T ] and all A ⊂ H bounded, γ (G(t, A)) ≤ γ (A) , where γ = α

or γ = β is either the Kuratowski or the Hausdorff measure of noncompactness
of A.

(v) Let x0 ∈ C(T0). Then, for all t ∈ [T0, T ] and x ∈ H,

‖G(t, x)‖ := sup {‖w‖: w ∈ G(t, x)} ≤ ‖x − x0‖ + |v(t) − v(T0)| .

5 The Concept of Solution

In this section, we define the notion of solution for the state-dependent sweeping
process in the sense of differential measures. Through this section, we put I = [T0, T ].
Let x : I → H be a function of bounded variation, and denote by dx the differential
vector measure associated with x (see [45]). If x is right continuous, then this measure

satisfies x(t) = x(s) +
∫

]s,t]
dx for all s, t ∈ I with z ≤ t . Conversely, if there exists

some mapping x̂ ∈ L1
ν(I ; H) such that x(t) = x(T0) +

∫

]T0,t]
x̂dν for all t ∈ I ,

then x is of bounded variation and right continuous. For the associated differential
vector measure dx , it is known that its variation measure |dx | satisfies |dx |(]s, t]) =∫

]s,t]
‖x̂(τ )‖dν(τ) for all s, t ∈ I with s ≤ t ; dx is absolutely continuous with respect

to ν and admits x̂ as a density relative to ν, that is, dx = x̂(·)dν.
Nowwe define the notion of solution of the state-dependent sweeping process in the

sense of differentialmeasures. The following definition is based on [37,Definition 2.1].

Definition 5.1 Let C : I × H ⇒ H be a set-valued map with nonempty and closed
values. We say that x : I → H is a solution of the state-dependent sweeping process

−dx ∈ N (C(t, x(t)); x(t)) ,

x(T0) = x0 ∈ C(T0, x0),
(BVSP)
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in the sense of differential measure, provided there is L ∈ [0, 1[ and a positive Radon
measure μ on I satisfying, for all s ≤ t in I and x, y ∈ H ,

sup
z∈H

∣∣dC(s,x)(z) − dC(t,y)(z)
∣∣ ≤ μ(]s, t]) + L‖x − y‖,

and such that the following conditions hold:

(i) The mapping x(·) is of bounded variation on I , right continuous, and satisfies
x(T0) = x0 and x(t) ∈ C(t, x(t)) for all t ∈ I .

(ii) There exists a positive Radon measure ν, absolutely continuously equivalent to
μ and with respect to which the differential measure dx of x(·) is absolutely
continuous with dx

dν (·) as an L1
ν(I ; H)-density and

−dx

dν
(t) ∈ N (C(t, x(t)); x(t)) ν-a.e. t ∈ [T0, T ].

6 Existence Results for the State-Dependent Sweeping Process via
Moreau-Yosida Regularization

In this section, we prove the existence of solutions in the sense of differential measures
for (BVSP). To do that, we prove the existence of Lipschitz solutions of the classical
state-dependent sweeping process

−ẋ(t) ∈ N (C(t, x(t)); x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0 ∈ C(T0, x0).

(SP)

Then, by means of a reparametrization technique we obtain the existence of (BVSP).
Let λ > 0 and consider the following differential inclusion

−ẋλ(t) ∈ 1

2λ
∂d2C(t,xλ(t)) (xλ(t)) a.e. t ∈ [T0, T ],

xλ(T0) = x0 ∈ C(T0, x0).
(Pλ)

The following proposition follows from Theorem 2.1 and Proposition 4.1.

Proposition 6.1 Assume that (H7), (H9) and (H10) hold. Then, for every λ > 0 there
exists at least one absolutely continuous solution xλ of (Pλ).

Let us define ϕλ(t) := dC(t,xλ(t))(xλ(t)) for t ∈ [T0, T ].
Remark 6.1 Recall that under (H9), according to Proposition 2.1, for every α ∈
]√L, 1] there exists ρ > 0 such that (H8) holds.

Proposition 6.2 Under the hypotheses of Proposition 6.1, if λ <
(α2−L)ρ

κ
, then

ϕ̇λ(t) ≤ κ + L − α2

λ
ϕλ(t) a.e. t ∈ [T0, T ], (10)
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where α ∈]√L, 1] and ρ > 0 are given by Remark 6.1. Moreover,

ϕλ(t) ≤ κλ

α2 − L
for all t ∈ [T0, T ]. (11)

Proof According to Proposition 6.1, the function xλ is absolutely continuous. Thus,
due to (H7), for every t, s ∈ [T0, T ]

|ϕλ(t) − ϕλ(s)| ≤ (1 + L)‖xλ(t) − xλ(s)‖ + κ|t − s|,

which implies the absolute continuity of ϕλ. On the one hand, let t ∈ [T0, T ] where
ϕλ(t) ∈]0, ρ[ and ẋλ(t) exists. Then, by using Lemma 4.4, we have

ϕ̇λ(t) ≤ κ + L‖ẋλ(t)‖ + min
w∈∂dC(t,xλ(t))(xλ(t))

〈w, ẋλ(t)〉

≤ κ + L

λ
ϕλ(t) − α2

λ
ϕλ(t)

= κ − α2 − L

λ
ϕλ(t),

where we have used (H9) and Proposition 2.1.
On the other hand, let t ∈ ϕ−1

λ ({0}), where ẋλ(t) exists. Then, according to (Pλ),
‖ẋλ(t)‖ = 0. Indeed,

‖ẋλ(t)‖ ≤ 1

2λ
sup{‖z‖: z ∈ ∂d2C(t,xλ(t)) (xλ(t))} ≤ ϕλ(t)

λ
= 0,

where we have used the identity ∂d2S(x) = 2dS(x)∂dS(x). Then, due to (H7),

ϕ̇λ(t) = lim
h↓0

1

h

(
dC(t+h,xλ(t+h))(xλ(t + h)) − dC(t,xλ(t))(xλ(t + h))

)

+ dC(t,xλ(t))(xλ(t + h))

≤ κ + L‖ẋλ(t)‖ + lim
h↓0

1

h
dC(t,xλ(t))(xλ(t + h))

≤ κ + (1 + L)‖ẋλ(t)‖
≤ κ + 1 + L

λ
ϕλ(t)

= κ − α2 − L

λ
ϕλ(t).

Moreover,

ϕλ(t) < ρ for all t ∈ [T0, T ].
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Otherwise, since ϕ−1
λ (] − ∞, ρ[) is open and T0 ∈ ϕ−1

λ (] − ∞, ρ[), there would
exist t∗ ∈]T0, T ] such that [T0, t∗[⊂ ϕ−1

λ (] − ∞, ρ[) and ϕλ(t∗) = ρ. Then,

ϕ̇λ(t) ≤ κ − α2 − L

λ
ϕλ(t) a.e. t ∈ [T0, t∗[,

which, by virtue of Grönwall’s inequality, entrain that, for every t ∈ [T0, t∗[

ϕλ(t) ≤ κλ

α2 − L

(
1 − exp

(
−α2 − L

λ
t

))
≤ κλ

α2 − L
< ρ,

that implies that ϕλ(t∗) < ρ, which is not possible.
Thus, we have proved that ϕλ satisfies (10) and (11). ��

As a corollary to the last proposition, we obtain that xλ is κ
α2−L

-Lipschitz.

Corollary 6.1 For every λ > 0 the function xλ is κ
α2−L

-Lipschitz.

Proof Since xλ satisfies (Pλ), we have

‖ẋλ(t)‖ ≤ 1

2λ
sup{‖z‖: z ∈ ∂d2C(t,xλ(t)) (xλ(t))} ≤ ϕλ(t)

λ
,

where we have used the identity ∂d2S(x) = 2dS(x)∂dS(x). Consequently, by using

(11), for a.e. t ∈ [T0, T ], ‖ẋλ(t)‖ ≤ ϕλ(t)
λ

≤ κ
α2−L

, which proves that xλ is κ
α2−L

-
Lipschitz. ��

Let (λn)n be a sequence converging to 0. Next result shows the existence of a

subsequence
(
λnk

)
k of (λn)n such that

(
xλnk

)

k
converges (in the sense of Lemma 2.2)

to a solution of (SP). A similar result was proved by Noel in [21, Theorem 5.2.1]
(with a stronger compactness condition on the sets C(t, x)) by using a very different
approach.

Theorem 6.1 Assume that (H7), (H9) and (H10) hold. Then, there exists at least one
solution x ∈ Lip ([T0, T ]; H) of (SP). Moreover, ‖ẋ(t)‖ ≤ κ

α2−L
for a.e. t ∈ [T0, T ].

Proof According to Proposition 6.2, the sequence (xλn )n satisfies the hypotheses of
Lemma 2.2 with ψ(t) := k

α2−L
. Therefore, there exists a subsequence (xλnk

)k of
(xλn )n and a function x : [T0, T ] → H satisfying the hypotheses (i–iv) of Lemma 2.2.
For simplicity, we write xk instead of xλnk

for all k ∈ N. ��
Claim 1 (xk(t))k is relatively compact in H for all t ∈ [T0, T ].
Proof of Claim 1 Let t ∈ [T0, T ]. Let us consider yk(t) ∈ Proj C(t,xk (t)) (xk(t)). Then,
‖xk(t) − yk(t)‖ = dC(t,xk (t)) (xk(t)). Thus,

‖yk(t)‖ ≤ dC(t,xk (t)) (xk(t)) + ‖xk(t)‖
≤ κλnk

α2 − L
+ ‖xk(t) − x0‖ + ‖x0‖

≤ r̃(t) := κ

α2 − L

(
λnk + (t − T0)

) + ‖x0‖.
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Furthermore, since (xk(t) − yk(t)) converges to 0,

γ ({xk(t) : k ∈ N}) = γ ({yk(t) : k ∈ N}) .

Therefore, if A := {xk(t) : k ∈ N}, then

γ (A) = γ ({yk(t) : k ∈ N}) ≤ γ (C (t, A) ∩ r̃(t)B) ≤ k(t)γ (A) ,

where we have used (H10). Finally, since k(t) < 1, we obtain that γ (A) = 0, which
shows the result. ��
Claim 2 x(t) ∈ C(t, x(t)) for all t ∈ [T0, T ].
Proof of Claim 2 As a result of Claim 1 and the weak convergence xk(t) ⇀ x(t) for
all t ∈ [T0, T ] (due to (i) of Lemma 2.2), we obtain the strong convergence of (xk(t))k
to x(t) for all t ∈ [T0, T ]. Therefore, due to (H7),

dC(t,x(t))(x(t)) ≤ lim inf
k→∞

(
dC(t,xk (t)) (xk(t)) + (1 + L)‖xk(t) − x(t)‖)

≤ lim inf
k→∞

(
κλnk

α2 − L
+ (1 + L)‖xk(t) − x(t)‖

)
= 0.

��
Now, we prove that x is a solution of (SP). Define

F̃(t, x) := cl conv

(
κ

α2 − L
∂dC(t,x)(x) ∪ {0}

)
,

for (t, x) ∈ [T0, T ] × H . Then, for a.e. t ∈ [T0, T ]

−ẋk(t) ∈ 1

2λ
∂d2C(t,xk (t)) (xk(t)) ⊂ F̃(t, xk(t)),

where we have used Proposition 6.2.

Claim 3 F̃ has closed and convex values and satisfies:

(i) for each x ∈ H , F̃(·, x) is measurable;
(ii) for all t ∈ [T0, T ], F̃(t, ·) is upper semicontinuous from H into Hw;
(iii) if x ∈ C(t, x), then F̃(t, x) = κ

α2−L
∂dC(t,x)(x).

Proof of Claim 3 Define G(t, x) := κ
α2−L

∂dC(t,x)(x) ∪ {0}. We note that G(·, x) is
measurable as the union of two measurable set-valued maps (see [44]). Let us define
Γ (t) := F̃(t, x). Then, Γ takes weakly compact and convex values. Fixing any
d ∈ H , by virtue of [46, Proposition 2.2.39], is enough to verify that the support
function t �→ σ(d, Γ (t)) := sup{〈v, d〉 : v ∈ Γ (t)} is measurable. Thus,

σ(d, Γ (t)) := sup{〈v, d〉 : v ∈ Γ (t)} = sup{〈v, d〉 : v ∈ G(t, x)}

123



J Optim Theory Appl

is measurable because G(·, x) is measurable. Thus (i) holds. Assertion (ii) fol-
lows directly from [44, Theorem 17.27 and 17.3]. Finally, if x ∈ C(t, x) then
0 ∈ ∂dC(t,x)(x). Hence, using the fact that the subdifferential of a locally Lipschitz
function is closed and convex,

F̃(t, x) = cl conv

(
κ

α2 − L
∂dC(t,x)(x)

)
= κ

α2 − L
∂dC(t,x)(x),

which shows (iii). ��
In summary, we have

(i) for each x ∈ H , F̃(·, x) is measurable.
(ii) for all t ∈ [T0, T ], F̃(t, ·) is upper semicontinuous from H into Hw.
(iii) ẋk ⇀ ẋ in L1 ([T0, T ]; H) as k → +∞.
(iv) xk(t) → x(t) as k → +∞ for all t ∈ [T0, T ].
(v) −ẋk(t) ∈ F̃ (t, xk(t)) for a.e. t ∈ [T0, T ].
These conditions and the convergence theorem (see [47, p.60] for more details) imply
that x satisfies

−ẋ(t) ∈ F̃(t, x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0 ∈ C(T0, x0),

which, according to Claim 3, implies that x is a solution of

−ẋ(t) ∈ κ

α2 − L
∂dC(t,x(t))(x(t)) a.e. t ∈ [T0, T ],

x(T0) = x0 ∈ C(T0, x0).

Therefore, by virtue of (1) and Claim 2, x is a solution of (SP). Finally, since ‖ẋ(t)‖ ≤
κ

α2−L
for a.e. t ∈ [T0, T ], x is κ

α2−L
-Lipschitz continuous. ��

Now, from Theorem 6.1 and by means of a reparametrization technique, we will
deduce the existence of solutions for (BVSP). The following theorem extends all the
known existence results for (BVSP).

Theorem 6.2 Assume that (H6), (H9) and (H10) hold. Then, there exists at least
one solution x ∈ CBV ([T0, T ]; H) of (BVSP). Moreover, this solution satisfies

Var (x, [T0, T ]) ≤ Var (v,[T0,T ])
α2−L

.

Proof Without any loss of generality, we can assume that the function v from (H6) is
strictly increasing. Indeed, if T0 ≤ t1 ≤ t2 ≤ T , then

|v(t1) − v(t2)| ≤ Var (v, [t1, t2])
= Var (v, [T0, t2]) − Var (v, [T0, t1])
≤ vε(t2) − vε(t1),

where vε(t) := Var (v, [T0, t]) + ε(t − T0), for ε > 0, is a strictly increas-
ing function. Accordingly, by Proposition 2.2, there exists V ∈ Lip ([T0, T ]; H)
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such that v = V ◦ �v and Lip (V ) ≤ Var (v,[T0,T ])
(T−T0)

. Moreover, as v is continu-
ous and strictly increasing, the arc-length �v is continuous, strictly increasing and
�v ([T0, T ]) = [T0, T ]. Therefore, �−1

v : [T0, T ] → [T0, T ] is continuous, strictly
increasing and with bounded variation.

Let us consider C̃ : [T0, T ] × H ⇒ H , defined by C̃(t, x) := C
(
�−1
v (t), x

)
. Then,

C̃ satisfies (H7) with κ = Lip (V ). Indeed, for t ∈ [T0, T ] and x, y, z ∈ H ,

∣∣∣d(z, C̃(t, x)) − d(z, C̃(s, y))
∣∣∣ ≤ |v ◦ �−1

v (t) − v ◦ �−1
v (s)| + L‖x − y‖

= |V (t) − V (s)| + L‖x − y‖
≤ Lip (V )|t − s| + L‖x − y‖.

Thus, due to Theorem 6.1, there exists at least one solution u ∈ Lip ([T0, T ]; H) of
the differential inclusion:

−u̇(t) ∈ N (C̃(t, u(t)), u(t)) a.e. t ∈ [T0, T ],
u(T0) = u0 ∈ C̃(T0, x0),

(12)

with Lip (u) ≤ Lip (V )

α2−L
. Let us consider the mapping x : [T0, T ] → H defined by

x(t) := u ◦ �v(t). Then, x is continuous with bounded variation. Indeed,

Var (x, [T0, T ]) ≤ Lip (u)Var (�v, [T0, T ])
≤ Lip (V )

α2 − L
Var (�v, [T0, T ])

≤ Var (�v, [T0, T ])
T − T0

Var (v, [T0, T ])
α2 − L

≤ Var (v, [T0, T ])
α2 − L

.

Moreover, due to Proposition 2.3, Dx = D (u ◦ �v) = (u̇ ◦ �v) D�v . Let us define
w := u̇ ◦ �v and Z := {t ∈ [T0, T ] : − u̇(t) /∈ N (C̃(t, u(t)); u(t))}.

Then, L1 (Z) = 0 because of (12). Moreover,

D�v ({t ∈ [T0, T ] : − w(t) /∈ N (C(t, x(t)); x(t))})
= D�v

(
{t ∈ [T0, T ] : − u̇ (�v(t)) /∈ N (C̃(�v(t), u(�v(t))); u(�v(t)))}

)

= D�v ({t ∈ [T0, T ] : �v(t) ∈ Z})
= D�v

(
�−1
v (Z)

)

= L1 (Z) = 0,

where we have used (i) from Proposition 2.3. Therefore, x ∈ CBV ([T0, T ]; H) is a
solution of (BVSP) in the sense of differential measures. ��
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7 The Case of the Sweeping Process

This section is devoted to the measure differential inclusion:

−dx ∈ N (C(t); x(t)) ,

x(T0) = x0 ∈ C(T0),
(13)

and the classical sweeping process:

−ẋ(t) ∈ N (C(t); x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0 ∈ C(T0).

(14)

These two differential inclusions can be seen, respectively, as a particular case of
(BVSP) and (SP) when the sets C(t, x) do not depend on the state. We show that
Theorem 6.1 and Theorem 6.2 are valid under the weaker hypothesis (H3) instead of
(H9). A similar result of the following was proved by Jourani and Vilches in [10] by
using a very different approach.

Theorem 7.1 Assume that (H2), (H3) and (H4) hold. Then, there exists at least one
solution x ∈ Lip ([T0, T ]; H) of (14). Moreover, Lip (x) ≤ κ

α2 .

Proof According to the proof of Theorem 6.1, we observe that (H9)was used to obtain
(H8) and the upper semicontinuity of ∂dC(t,·)(·) from H into Hw for all t ∈ [T0, T ].
Since in the present case these two properties hold under (H3) (see Proposition 4.2),
it is sufficient to adapt the proof of Theorem 6.1 to get the result. ��
The following result follows in the same way as in the proof of Theorem 6.2.

Theorem 7.2 Assume that (H1), (H3) and (H4) hold. Then, there exists at least
one solution x ∈ CBV ([T0, T ]; H) of (13). Moreover, this solution satisfies

Var (x, [T0, T ]) ≤ Var (v,[T0,T ])
α2 .

Remark 7.1 When the sets C(t) are convex or r -uniformly prox-regular it has been
proved that the Moreau-Yosida regularization generates a family (xλ)λ which con-
verges uniformly in C ([T0, T ]; H), as λ ↓ 0, to the unique solution of (14) (see
[25–28] for more details). In particular, the following theorem holds.

Theorem 7.3 Assume that (H1) and (H5) hold. Then, there exists a unique solution
x ∈ CBV ([T0, T ]; H) of (13). Moreover, this solution satisfies

Var (x, [T0, T ]) ≤ Var (v, [T0, T ]) .

7.1 The Finite-Dimensional Case

When H is a finite-dimensional Hilbert space, Benabdellah [48] and Colombo and
Goncharov [49] proved, at almost the same time, the existence of solutions for the
sweeping process (14) under merely (H2) (see [50] for similar results).
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Theorem 7.4 ([48,49]) Assume that (H2) holds. Then, there exists at least one solu-
tion x ∈ Lip ([T0, T ]; H) of (14). Moreover, Lip (x) ≤ κ .

FromTheorem7.4 and the reparametrization technique used in the proof of Proposition
6.2, we can prove the following result, which extends Theorem 7.2 to completely
nonregular sets with continuous bounded variation.

Theorem 7.5 Assume that (H1) holds. Then, there exists at least one solution x ∈
CBV ([T0, T ]; H) of (13). Moreover, Var (x, [T0, T ]) ≤ Var (v, [T0, T ]).
Remark 7.2 When the sets C(t) are r -uniformly prox-regular, Theorem 7.5 is well
known (see [30,31,51] for more details).

8 An Application to Hysteresis

In this section, we study the so-called Play operator, which arises in hysteresis
and we extend the results given in [52,53] to the class of positively α-far sets in
finite-dimensional Hilbert spaces. Hysteresis occurs in phenomena such as plasticity,
ferromagnetism, ferroelectricity, porous media filtration and behavior of thermostats
(see [54] for more details). Several properties in hysteresis can be described in terms
of some hysteresis operators. One of these hysteresis operators is the so-called Play
operator [8,52]. This operator can be defined as the solution of a differential inclu-
sion associated with a fixed set Z ⊂ H . The case where the set Z is convex has been
thoroughly studied (see, for instance, [36,52,55,56]), whereas the nonconvex case has
been only considered in [53] for uniformly prox-regular sets. The use of nonconvex
sets is important in applications because, as Gudovich and Quincampoix stated in [53,
Remark 3.7], when “the elastic properties change with plastic deformation, then a non-
convex yield surface cannot be excluded from consideration” and “its nonconvexity
can be explained physically allowing irregularities, elastic-plastic interaction, and the
granular character of the material” (see [53] and the references given there for a deeper
discussion on the nonconvexity of the set under consideration and an example of a
multidimensional Play operator). In the aforementioned paper [53] the authors con-
struct the Play operator, with Z uniformly prox-regular set, for only Lipschitz inputs,
while by using Theorem 7.2 we can easily define the Play operator, with Z positively
α-far, for BV continuous inputs.

Let Z ⊂ H be a positively α-far set. Let y ∈ CBV ([T0, T ]; H) and consider the
following differential inclusion:

du ∈ dy − N (Z; u(t)) ,

u(T0) = y(T0) − x0,
(15)

where x0 ∈ y(T0) − Z . Then, the function x := y − u is a solution of (BVSP) with
C(t) := y(t) − Z for all t ∈ [T0, T ] if and only if u = y − x is a solution of (15).
Moreover, the sets C(t) = y(t) − Z are positively α-far for all t ∈ [T0, T ] and for
every x ∈ H and t, s ∈ [T0, T ]

|d(x,C(t)) − d(x,C(s))| = |d(y(t) − x, Z) − d(y(s) − x, Z)| ≤ |y(t) − y(s)|.
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Thus, (H1), (H3) and (H4) hold. Therefore, Theorem 7.2 shows that there is at least
one solution x ∈ CBV ([T0, T ]; H) of (13). This allows us to define the hysteresis
operator

P : CBV ([T0, T ]; H) ⇒ CBV ([T0, T ]; H) ,

which to every function y associates the set of solutions of (15). Therefore, the Play
operator is well defined for inputs in CBV ([T0, T ]; H) generalizing the results given
in [52,53] to the class of positively α-far.

Remark 8.1 (i) If Z is uniformly prox-regular, then due to the uniqueness of solution
of (15), the Play operator is single valued.

(ii) Let us consider y ∈ CBV ([T0, T ]; H) and C(t) := y(t)− Z for all t ∈ [T0, T ],
where Z ⊂ H is a convex set. Let x ∈ CBV ([T0, T ]; H) be a solution of (13).
Then, u := y − x satisfies u(t) − y(t) ∈ Z for all t ∈ [T0, T ] and

∫ t

T0
〈u(s) − y(s) − z(s), dy〉 ≥ 0 ∀z ∈ C ([T0, T ]; Z) ∀t ∈ [T0, T ],

which corresponds to the classical formulation of the evolution variational
inequality associated with the Play operator (see [52]).

9 Conclusions

Using Moreau-Yosida regularization, we have established existence results for con-
tinuous bounded variation state-dependent sweeping processes with equi-uniformly
subsmooth sets. This work improves and extends in different ways recent results in
[21,22]. Moreover, our work shows that Moreau-Yosida regularization can be used
even for nonregular sets. This achievement opens the door toward possible new devel-
opments in nonsmooth analysis. Related to the state-dependent sweeping process,
there remain many issues that need answers and further investigations. For example, it
would be interesting to study the bounded variation (not necessarily continuous) state-
dependent sweeping process. This would allow to define the Play operator for bounded
variation inputs. Another research topicwill be the study of the state-dependent sweep-
ing process with definable moving sets (see [57]).Wewill pursue this in another paper.
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