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Abstract

Our aim in this paper is to present sufficient conditions for er-
ror bounds in terms of Fréchet and limiting Fréchet subdifferentials
outside of Asplund spaces. This allows us to develop sufficient con-
ditions in terms of the approximate subdifferential for systems of the
form (x, y) ∈ C × D, g(x, y, u) = 0, where g takes values in an
infinite dimensional space and u plays the role of a parameter. This
symetric structure offers us the choice to impose condtions either on
C or D. We use these results to prove nonemptyness and weak-star
compactness of Fritz-John and Karuch-Kuhn-Tucker multiplier sets,
to establish Lipschitz continuity of the value function and to compute
his subdifferential and finally to obtain results on local controllability
in control problems of nonconvex unbounded differential inclusions.

1 Introduction

Consider an inequality system

f(x, u) ≤ 0 (1)

where f is a given extended real-valued function. It is a familiar consider-
ation in mathematics to seek to solve this inequality for x, while viewing u
as a parameter. Typically this is done in a neighbourhood of a given point
(x̄, ū) for which (1) is satisfied, and the important issues are these: For a
given u near ū, does there continue to be at least one value of x for which
(1) holds? How does this set S(u) of solutions vary with u?
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One outcome is to consider the following metric inequalities in some
neighbourhood of (x̄, ū)

d(x, S(u)) ≤ amax(0, f(x, u))

for some constant a > 0. These inequalities are called error bounds for
system (1).

The primary object of this paper is to develop sufficient conditions for
error bounds and to give applications of the results obtained to optimization
problems, sensitivity analysis as well as controllability in control problems of
nonconvex unbounded differential inclusions. There are several conditions
ensuring these error bounds. These conditions are in general expressed
in terms of subdifferentials or axiomatic subdifferentials (see [12], [2], [3],
[14]-[18], [24], [8] and references therein). Some of these subdifferentials
depend on the data space. For example, Fréchet subdifferentials and limit-
ing Fréchet subdifferentials characterize Asplund Banach spaces. Sufficient
conditions given before in terms of these two subdifferentials are formulated
only in Asplund spaces.

Our aim here is to give suficient conditions in general Banach spaces for
error bounds in terms of Fréchet and limiting Fréchet subdifferentials which
are the smallest ones among all subdifferentials or axiomatic subdifferentials.
This allows us to obtain sufficient conditions for general systems in terms
of the approximate subdifferential by Ioffe [5]-[6].

The rest of the paper is organized as follows. Section 2 contains basic
definitions. Section 3 is devoted to the study of local and global error bounds
related to system (1) and to the system

x ∈ C and g(x, u) ∈ D

where g takes values in a finite dimensional space. The conditions presented
in this section are given only in terms of Fréchet and limiting Fréchet sub-
differentials. Based on the results in section 3, we develop in section 4
sufficient conditions in terms of the approximate subdifferentials for error
bounds for systems of the form

(x, y) ∈ C ×D and g(x, y, u) = 0

where g takes values in an infinite dimensional space. This symetric struc-
ture offers us the choice to impose conditions either on C or D to get error
bounds for this system. As a particular case of these systems we consider
systems of the form

x ∈ C, g(x) ∈ D,

since they can be transformed into the form (x, y) ∈ C×D, g(x)− y = 0,
where g takes values in a some Banach space. In section 5 we give some
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applications of our results. We prove nonemptyness and weak-star com-
pactness of Fritz-John and Karuch-Kuhn-Tucker multiplier sets, establish
Lipschitz continuity of the value function and compute his subdifferential
and finally obtain results on local controllability in control problems of non-
convex unbounded differential inclusions.

2 Notation and preliminaries

In order to make the paper as short as possible, some definitions and the
complete wording of the results will not be repeated here, and as needed,
will be referenced to [19]-[21] and [5]-[6]. Throughout we shall assume that
X, Y and Z are Banach spaces endowed with some norm denoted by ‖ · ‖
to which we associate the distance function d(·, C) to a set C. We shall also
assume that (U, d) is a metric space. B(x, r) will refer to the ball centered
at x and of radius r.

We write x
f→xo, and x

S→xo to express x → x0 with f(x) → f(x0) and
x→ x0 with x ∈ S, respectively.

Let f be an extended-real-valued function on X×U . The partial limiting
Fréchet subdifferential of f at (x0, u0) in x with respect to u is the set

∂Fx f(x0, u0) = w∗ − seq − lim sup
(x,u)

f
→(x0,u0)

ε→0+

∂εxf(x, u)

where

∂εxf(x, u) = {x∗ ∈ X∗ : lim inf
h→0

f(x+ h, u)− f(x, u)− 〈x∗, h〉
‖ h ‖

≥ −ε}

is the partial ε−Fréchet subdifferential of f at (x, u). When f depend only
on x we denote it by ∂Ff(x).

The limiting Fréchet normal cone to a closed set S ⊂ X at a point x ∈ S
is given by

NF (S, x) = ∂F δS(x)

where δS denotes the indicator function of S.

If f is an extended-real-valued function on X, we write for any subset
S of X

fS(x) =

{
f(x) if x ∈ S,
+∞ otherwise.

The function

d− f(x, h) = lim inf
u→h
t↓0

t−1(f(x+ tu)− f(x))
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is the lower Dini directional derivative of f at x and the Dini ε-subdifferential
of f at x is the set

∂−ε f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h) + ε‖h‖,∀h ∈ X}

for x ∈ Domf and ∂−ε f(x) = ∅ if x /∈ Domf, where Domf denotes the
effective domain of f. For ε = 0 we write ∂− f(x).

By F(X) we denote the collection of finite dimensional subspaces of
X. The approximate subdifferentials of f at x0 ∈ Domf is defined by the
following expressions (see Ioffe [5]-[6])

∂Af(x0) =
⋂

L∈F(X)

lim sup
x

f→xo

∂−fx+L(x) =
⋂

L∈F(X)

lim sup
x
f
→xo
ε↓0

∂−ε fx+L(x)

where

lim sup
x

f→xo

∂−fx+L(x) = {x∗ ∈ X∗ : x∗ = w∗−limx∗i , x
∗
i ∈ ∂−fxi+L(xi), xi

f→x0},

that is, the set of w∗-limits of all such nets.

The G-normal cone to a closed set C ⊂ X at x0 is defined by

NG(C, x0) = R+∂Ad(C, x0).

Using the remark following Proposition 1.6 and Proposition 2.4 in [11]
we obtain the following result.

Proposition 2.1 Let v : X 7→ R be a function which is locally Lipschitzian
at x̄ with Lipschitz constant kv. Then the following are equivalent:

i) x∗ ∈ ∂Av(x̄);

ii) (x∗,−1) ∈ NG(graphv; (x̄, v(x̄)));

iii) (x∗,−1) ∈ (kv + 1)∂Ad(graphv; (x̄, v(x̄)));

iv) For all L ∈ F(X) there are nets x∗i → x∗, xi → x̄, εi → 0+ and
ri → 0+ such that

‖x∗i ‖ ≤ (kv + 1)(1 + εi)

v(x)− v(xi)− 〈x∗i , x− xi〉+ εi‖x− xi‖ ≥ 0 ∀x ∈ B(xi, ri) ∩ (L+ xi).

Finally we recall that the mapping g : X×U 7→ Y is of class C1 at (x̄, ū)
in x with respect to u if g and its partial derivative Dxg(x, u) are continuous
at (x̄, ū).
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3 Error bounds using Fréchet subdifferen-

tials

It is well-known that some Banach spaces may be characterized in terms
of some subdifferentials. For example the Dini subdifferential characterizes
the Weak Trustworthy spaces. The ε−Fréchet ( and limiting Fréchet) sub-
differential gives a characterization of Asplund spaces. To give sufficient
conditions for error bounds for systems in terms of the limiting Fréchet
subdifferential, the previous works assume that the space is Asplund. Our
aim here is to obtain these results in general Banach spaces.

Here we consider the following systems:

f(x, u) ≤ 0 (S1)

and
x ∈ C and g(x, u) ∈ D (S2)

where f : X × U 7→ R ∪ {+∞} is a lower semicontinuous function, C and
D are closed sets in X and Rm and g : X × U 7→ Rm is a mapping. Here
Rm is endowed with the euclidean norm which will also be denoted by ‖ · ‖.

The corresponding parametric solution set is defined by the multivalued
mapping

S1(u) = {x ∈ X : f(x, u) ≤ 0}
and

S2(u) = {x ∈ C : g(x, u) ∈ D}.

We begin with system (S1) for which we give a sufficient condition en-
suring a local error bound. We set

Bf ((x, u), r) := {(x′, u′) ∈ B(x, r)×B(u, r) : |f(x′, u′)− f(x, u)| ≤ r}.

Theorem 3.1 Suppose f(x̄, ū) = 0 and there exists r > 0 such that

∀(x, u) ∈ Bf ((x̄, ū), r), x /∈ S1(u), ∀ε ∈]0, r[, 0 /∈ ∂εxf(x, u).

Then there exist constants a > 0, b > 0 and s > 0 such that

d(x, S1(u)) ≤ ad(f(x, u), R−)

for all x ∈ B(x̄, s), u ∈ B(ū, s), with f(x, u) ≤ b.

Proof. Suppose the contrary. Then there exist sequences xn → x̄, and
un → ū such that

d(xn, S1(un)) > nd(f(xn, un), R−) and f(xn, un) ≤ 1

n
. (2)
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Note that xn /∈ S1(un) or equivalently f(xn, un) > 0. Set ε2
n = f(xn, un),

λn = min(nε2
n, εn) and sn = ε2n

λn
. It is easy to see that εn, λn, sn → 0+.

Consider the function h(x) = d(f(x, un), R−). Then

h(xn) ≤ inf
x∈X

h(x) + ε2
n.

By the lower semicontinuity of h, the Ekeland’s variational principle ensures
the existence of x′n ∈ X satisfying

‖x′n − xn‖ ≤ λn (3)

h(x′n) ≤ h(x) + sn‖x′n − x‖ ∀x ∈ X. (4)

Note that, by (2)-(3), x′n /∈ S1(un). Since f is lower semicontinous, h(x)
coincides with f(x, un) in a neighbourhood of x′n and hence by (4) we get
for some subsequence (x′m(n)) that f(x′m(n), um(n))→ f(x̄, ū) and

0 ∈ ∂sm(n)
x f(x′m(n), um(n))

and this contradicts our assumption. ♦
We have the following corollary of Theorem 3.1.

Corollary 3.1 Suppose that f(x̄, ū) = 0 and that

0 /∈ ∂Fx f(x̄, ū).

Then the conclusion of Theorem 3.1 holds.

We continue with system (S1) in which we assume that f(x, u) = f(x).
We give a condition for which a global error bound holds. The proof is
similar to the previous one.

Theorem 3.2 Suppose that the solution set S1 of the system (S1) is nonempty
and there exists r > 0 such that

∀x /∈ S1 ∀ε ∈]0, r[ 0 /∈ ∂εf(x).

Then there exists a constant a > 0 such that

d(x, S1) ≤ ad(f(x), R−) ∀x ∈ X.

Now we pass to system (S2). The following result is a consequence of
Theorem 3.1.
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Theorem 3.3 Suppose that

i) (x̄, ū) is a solution of the system (S2).

ii) g is of class C1 at (x̄, ū) in x with respect to u (with derivative
Dxg(x̄, ū)).

Then either

α) there exists a > 0 and r > 0 such that

d(x, S2(u)) ≤ ad(g(x, u), D)

for all x ∈ C ∩B(x̄, r) and all u ∈ B(ū, r);

or

β) there exists y∗ ∈ NF (D, g(x̄, ū)), y∗ 6= 0, such that 0 ∈ y∗◦Dxg(x̄, ū)+
NF (C, x̄).

Proof. Consider the function f : X × U 7→ R ∪ {+∞} defined by

f(x, u) =

{
d(g(x, u), D) if x ∈ C,
+∞ otherwise.

Then
S2(u) = {x ∈ X : f(x, u) ≤ 0}.

Suppose that α) is false. Then, by Theorem 3.1, there are sequences xn → x̄,
with xn ∈ C, un → ū and εn → 0+ such that

xn /∈ S2(un) and 0 ∈ ∂εnx f(xn, un). (5)

So there exists rn → 0+ such that

f(xn, un) ≤ f(x, un) + 2εn‖xn − x‖ ∀x ∈ B(xn, rn)

or equivalently

d(g(xn, un), D) ≤ d(g(x, un), D) + 2εn‖xn − x‖ ∀x ∈ B(xn, rn) ∩ C. (6)

Let dn ∈ D such that

d(g(xn, un), D) = ‖g(xn, un)− dn‖.

Then dn → g(x̄, ū) and by (6) we obtain

‖g(xn, un)− dn‖ ≤ ‖g(x, un)− dn‖+ 2εn‖x− xn‖ ∀x ∈ B(xn, rn) ∩ C

and
‖g(xn, un)− dn‖ ≤ ‖g(xn, un)− y‖ ∀y ∈ D.
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Set y∗n = g(xn,un)−dn
‖g(xn,un)−dn‖ . Using the euclidean structure of Rm and the fact that

g is of class C1 at (x̄, ū) in x with respect to u we get a sequence sn → 0+

such that
−y∗n ◦Dxg(xn, un) ∈ N sn

F (C, xn)

and
y∗n ∈ N sn

F (D, dn).

Extracting a subsequence if necessary we may assume that y∗n → y∗, with
‖y∗‖ = 1 (because the space has a finite dimension). Thus there exists
y∗ ∈ NF (D, g(x̄, ū)), y∗ 6= 0, such that 0 ∈ y∗ ◦Dxg(x̄, ū) +NF (C, x̄). ♦

4 Error bounds using approximate subdif-

ferentials

Most of the results presented in this section can be obtained in a general
framework. But to avoid technicality and to facilitate the reading of the
paper we consider here systems with differentiable data.

In this section we consider parametrized systems of the form

(x, y) ∈ C ×D and g(x, y, u) = 0 (S3)

where C and D are closed sets in X and Y and g : X × Y × U 7→ Z is a
mapping. Our system may be nonlinear with respect to the perturbation
u. Let S3(u) be the set of solutions to the system (S3). Before stating the
following theorem, let us recall the following notion by Borwein and Strojwas
[1]. A set S ⊂ X is said to be compactly epi-Lipschitzian at x0 ∈ S if there
exist γ > 0 and a norm compact set H ⊂ X such that

S ∩B(x0, γ) +B(0, tγ) ⊂ S − tH, for all t ∈]0, γ[.

Theorem 4.1 Suppose that

i) (x̄, ȳ, ū) is a solution of the system (S3).

ii) g is of class C1 at (x̄, ȳ, ū) in x with respect to (y, u) with surjective
partial derivative Dxg(x̄, ȳ, ū).

iii) g is of class C1 at (x̄, ȳ, ū) in y with respect to (x, u) with partial
derivative Dyg(x̄, ȳ, ū).

iv) C is compactly epi-Lipschitzian at x̄.

Then either

α) there exist a > 0 and r > 0 such that

d((x, y), S3(u)) ≤ a‖g(x, y, u)‖

for all x ∈ C ∩B(x̄, r), y ∈ D ∩B(ȳ, r) and u ∈ B(ū, r);
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or

β) there exists z∗ ∈ Z∗, z∗ 6= 0, such that

z∗ ◦Dxg(x̄, ȳ, ū) ∈ kg∂Ad(C, x̄), z∗ ◦Dyg(x̄, ȳ, ū) ∈ kg∂Ad(D, ȳ)

where kg is a Lipschitz constant of g at (x̄, ȳ, ū).

Proof. Consider the function f : X × Y ×U 7→ R∪ {+∞} defined by

f(x, y, u) =

{
‖g(x, y, u)‖ if (x, y) ∈ C ×D,
+∞ otherwise.

Then
S3(u) = {(x, y) ∈ X × Y : f(x, y, u) ≤ 0}.

Suppose that α) is false. Then, as in the proof of Theorem 3.3 there
are sequences ((xn, yn)) ⊂ C × D, (un) ⊂ U and (rn), (sn) ⊂ R+, with
(xn, yn)→ (x̄, ȳ), un → ū, rn → 0+ and sn → 0+, such that

g(xn, yn, un) 6= 0

and
‖g(xn, yn, un)‖ ≤ ‖g(x, y, un)‖+ sn‖(x− xn, y − yn)‖

for all (x, y) ∈ (C ×D) ∩ B((xn, yn), rn). Thus, there exists z∗n ∈ Z∗, with
‖z∗n‖ = 1, such that

z∗n ◦Dxg(xn, yn, un) ∈ (kg + sn)∂Ad(xn, C) + snB
∗

and
z∗n ◦Dyg(xn, yn, un) ∈ (kg + sn)∂Ad(yn, D) + snB

∗

Now using the surjectivity of Dxg(x̄, ȳ, ū) and the fact that g is of class C1

there exists r > 0, not depending on n ≥ n0, such that

‖z∗n ◦Dxg(xn, yn, un)‖ ≥ r.

Extracting a subnet we may assume that z∗n → z∗, with z∗ ◦Dxg(x̄, ȳ, ū) ∈
kg∂Ad(x̄, C) and z∗ ◦Dyg(x̄, ȳ, ū) ∈ kg∂Ad(ȳ, D). Since C is compactly epi-
Lipschitzian at x̄, then by Lemma 2.3 in [10] there exist h1, · · · , hk ∈ X, not
depending on n, such that

r ≤ max
i=1,···,k

〈z∗n ◦Dxg(xn, yn, un), hi〉

and hence
r ≤ max

i=1,···,k
〈z∗ ◦Dxg(x̄, ȳ, ū), hi〉.

Thus z∗ 6= 0 and the proof is complete.♦
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As a particular case of the previous system, we consider systems of the
form

(x, y) ∈ C ×D and g1(x)− g2(y) = 0 (S4)

where C and D are closed sets in X and Y respectively, and g1 : X 7→ Z and
g2 : Y 7→ Z are mappings. Let S4(z) := {(x, y) ∈ C×D : g1(x)−g2(y) = z}.

Corollary 4.1 Suppose that

i) (x̄, , ȳ) is a solution of the system (S4).

ii) g1 is of class C1 at x̄ with surjective derivative Dg1(x̄).

iii) g2 is of class C1 at ȳ with derivative Dg2(ȳ).

iv) C is compactly epi-Lipschitzian at x̄.

Then either

α) there exist a > 0 and r > 0 such that

d((x, y), S4(z)) ≤ a‖g1(x)− g2(y) + z‖

for all x ∈ C ∩B(x̄, r), y ∈ D ∩B(ȳ, r) and z ∈ B(0, r);

or

β) there exists z∗ ∈ Z∗, z∗ 6= 0, such that

−z∗ ◦Dg1(x̄) ∈ kg∂Ad(C, x̄), z∗ ◦Dg2(x̄) ∈ kg∂Ad(D, ȳ)

where kg is a Lipschitz constant of g := g1 − g2 at (x̄, ȳ).

The following corollary generalizes in the differentiable case the result
by Jourani and Thibault [10] in which it is assumed that D is compactly
epi-Lipschitzian at g(x̄). Our result takes advantage of the symetric role of
C and D.

Corollary 4.2 Let g : X 7→ Y be a mapping of class C1 at x̄ and let C and
D be closed sets in X and Y respectively. Consider the system

x ∈ C, g(x) ∈ D

to which we associate the parametric solution set given by the multivalued
mapping

S5(y) = {x ∈ C : g(x) + y ∈ D}.

Let x̄ ∈ C ∩ g−1(D). Suppose that either

i) Dg(x̄) is surjective and C is compactly epi-Lipschitzian at x̄,

or

ii) D is compactly epi-Lipschitzian at g(x̄).
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Then either

α) there exist a > 0 and r > 0 such that

d(x, S5(y)) ≤ ad(g(x) + y,D) ∀x ∈ C ∩B(x̄, r)∀y ∈ B(0, r);

or

β) there exists y∗ ∈ Y ∗, y∗ 6= 0, such that

−y∗ ◦Dg(x̄) ∈ kg∂Ad(C, x̄), y∗ ∈ kg∂Ad(D, g(x̄))

where kg is a Lipschitz constant of g at x̄.

5 Applications.

The main intention of this section is devoted to applications of our results to
the notion of weak sharp minima, necessary optimality conditions, sensitiv-
ity analysis as well as to local controllability of optimal control problems of
unbounded differential inclusions with nonconvex admissible velocity sets.

5.1 Weak sharp minima.

We can apply our results to optimization problems, in particular for study-
ing the notion of weak sharp minima which ensures, for example, the finite
convergence of some algorithms.

Consider a function g : X 7→ R ∪ {∞}. We say that S := arg min g is a
set of weak sharp minima for g with modulus b > 0 if

g(x) ≥ g(u) + bd(x, S), ∀x ∈ X ∀u ∈ S.

As we can see that this is equivalent to the error bound

d(x, S) ≤ 1

b
max(0, f(x)), ∀x ∈ X

where f(x) = g(x) − g(u) for some u ∈ S. So this inequality is ensured
under the assumptions of Theorem 3.2.

5.2 Necessary optimality conditions.

We consider here optimization problems of the form

min{f(x, y) : g(x, y) = 0, (x, y) ∈ C ×D} (7)

where g : X × Y 7→ Z and f : X × Y 7→ R are mappings of class C1 at
(x̄, ȳ) ∈ C ×D, with g(x̄, ȳ) = 0, where C and D are closed sets in X and
Y respectively.
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A vector (λ, z∗) ∈ R+ × Z∗ is a Fritz-John multiplier of (7) at (x̄, ȳ) if

‖(λ, z∗)‖ = 1 (8)

−λ∇xf(x̄, ȳ)− z∗ ◦Dxg(x̄, ȳ) ∈ 2akgkf∂Ad(C, x̄) (9)

−λ∇yf(x̄, ȳ)− z∗ ◦Dyg(x̄, ȳ) ∈ 2akgkf∂Ad(D, ȳ). (10)

Here kf and kg denote Lipschitz constants of f and g near (x̄, ȳ) and a is as
in the assertion α) of Theorem 4.1 (with g(x, y) instead of g(x, y, u)). These
constants are assumed to be at least equal to 1.

For a local solution (x̄, ȳ) to (7) we denote

• all multipliers (λ, z∗) satisfying (8)-(10) by FJ(x̄, ȳ) and

• all multipliers z∗ satisfying (9)-(10), with λ = 1, by KKT (x̄, ȳ) (the
set of Karush-Kuhn-Tucker multipliers).

The following result is a direct consequence of Theorem 4.1.

Theorem 5.1 Suppose that (x̄, ȳ) is a local solution to the problem (7).
Then, under the assumptions of Theorem 4.1, with g(x, y) instead of g(x, y, u),
FJ(x̄, ȳ) is nonempty and weak-star compact in R× Z∗. If in addition as-
sertion β) of Theorem 4.1 does not hold then KKT (x̄, ȳ) is nonempty and
weak-star compact in Z∗.

We have to note that if neither ii) nor iv) in Theorem 4.1 is satisfied
then the theorem is wrong. To see this let X = Y = l2 be the Hilbert
space of square summable sequences, with (ek) its canonical orthonormal
base and let the operator A : l2 → l2 be defined by

A(
∑

xiei) =
∑

21−ixiei.

Then A is not surjective and Im(A) is a proper dense subspace of l2. The
adjoint A∗ is injective but not surjective. So let x∗ /∈ Im(A∗) and set f = x∗,
g = A and D = {0}. Then 0 is the only feasible point and it is the
optimum for this problem. Moreover there is no (λ, y∗) 6= (0, 0) satisfying
λ∇f(x̄) + y∗ ◦Dg(x̄) = 0.

5.3 Sensitivity analysis.

Suppose that an optimization problem (P) is given in the following abstract
form :
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min{f(x, y) : g(x, y) = 0, (x, y) ∈ C ×D}.

It often happens that (P) lends itself naturally to parametric perturba-
tion, so that (P) is embedded in a family of optimization problems (Pu)
indexed by a parameter u

min{f(x, y, u) : g(x, y, u) = 0, (x, y) ∈ C ×D}

where f : X×Y ×U 7→ R is a lower semicontinuous function g : X×Y ×U 7→
Z is a mapping and C and D are closed sets in X and Y respectively.

The value of the problem (Pu) is denoted v(u), and v is called the value
function. For each u in the domain of v we consider the set of minimizers :

S(u) := {(x, y) ∈ C ×D : g(x, y, u) = 0, f(x, y, u) = v(u)}.

We proceed to examine a few typical properties of v that have a bearing
on (P). We begin by the Lipschitzian property of v. For this we introduce a
compactness assumption which will assure the stability of the parametrized
problems (Pu). A stability assumption (SA) holds if there exists a norm-
compact set H such that for u near 0, S(u) 6= ∅ and

S(u) ⊂ H +B(0, ρ(u))

where lim
u→0

ρ(u) = 0.

We have the following properties of the value function v.

Proposition 5.1 Suppose that (SA) holds and that f and g are continuous
on S(0)× {0} and H × {0}, respectively. Then

a) the value function v is lower semicontinuous at 0.

b) the following assertions are equivalent:

i) the multivalued mapping S is upper semicontinuous at 0; i.e.,

∀ε > 0 ∃η > 0; S(u) ⊂ S(0) +B(0, ε) ∀u ∈ B(0, η);

ii) the value function v is upper semicontinuous at 0.

Proof. a) So suppose the contrary, then there exist ε > 0 and a
sequence (un) converging to 0 such that for n large enough

v(0) > v(un) + ε.

By (SA), there exists (xn, yn) ∈ S(un), which we assume converging to
some (x̄, ȳ). Now from the continuity of f and g we deduce

v(0) ≥ f(x̄, ȳ, 0) + ε, (x̄, ȳ) ∈ C ×D, g(x̄, ȳ, 0) = 0
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and hence
v(0) ≥ v(0) + ε

which leads to a contradiction. So v is lower semicontinuous at 0.

b) Suppose that i) holds. Let (un) be any sequence converging to 0 and
for which lim

n→+∞
v(un) exists. We will show that lim

n→+∞
v(un) = v(0). By

(SA), there exists (xn, yn) ∈ S(un) which we assume converging to (x̄, ȳ)
and by i), (x̄, ȳ) ∈ S(0). Thus

v(un) = f(xn, yn, un), (xn, yn) ∈ C ×D, g(xn, yn, un) = 0

and by the continuity of f and g we get

lim
n→+∞

v(un) = f(x̄, ȳ, 0), (x̄, ȳ) ∈ C ×D, g(x̄, ȳ, 0) = 0.

As (x̄, ȳ) ∈ S(0), we obtain lim
n→+∞

v(un) = v(0). Now it suffices to use these

arguments to prove that

lim sup
u→0

v(u) = v(0).

Conversely, suppose that v is upper semicontinuous at 0 and that S is not
upper semicontinuous at 0. Then there are ε > 0 and sequences (un) and
((xn, yn)) such that

(xn, yn) ∈ S(un) and (xn, yn) /∈ S(0) +B(0, ε).

We may assume, by (SA), that (xn, yn)→ (x̄, ȳ). Since

v(un) = f(xn, yn, un), (xn, yn) ∈ C ×D, g(xn, yn, un) = 0

then by the continuity of f and g and the upper semicontinuity of v at 0
we obtain

v(0) ≥ lim sup
n→+∞

v(un) = f(x̄, ȳ, 0), (x̄, ȳ) ∈ C ×D, g(x̄, ȳ, 0) = 0

which is equivalent to say that (x̄, ȳ) ∈ S(0). Thus, for n large enough,
(xn, yn) ∈ S(0) +B(0, ε) and this contradiction completes the proof.♦

Theorem 5.2 Suppose that

1) For each sequence (un) converging to 0 we have

∅ 6= lim sup
n→+∞

S(un) ⊂ S(0).

2) For each (x̄, ȳ) ∈ S(0) we have:

14



i) f , g are locally Lipschitzian near (x̄, ȳ, 0) with Lipschitz constant
k(x̄, ȳ).

ii) g is of class C1 at (x̄, ȳ, 0) in (x, y) with respect to u with surjective
partial derivative Dxg(x̄, ȳ, 0);

iii) f is of class C1 at (x̄, ȳ, 0) in (x, y) with respect to u.

iv) C is compactly epi-Lipschitzian at x̄;

v) Assertion β) of Theorem 4.1 does not hold.

Then v is locally Lipschitzian near 0.

Proof. We proceed to show that v is locally Lipschitzian around 0.
So suppose the contrary, then there are sequences un → 0 and u′n → 0 such
that for n large enough

|v(un)− v(u′n)| > nd(un, u
′
n).

We may assume that the set I = {n : v(un)−v(u′n) > nd(un, u
′
n)} is infinite

(because (un) and (u′n) play a symetric role). For all n ∈ I there exists, by
1), ((x′n, y

′
n))n∈J⊂I which converges to (x̄, ȳ) ∈ S(0) and (x′n, y

′
n) ∈ S(u′n),

for all n ∈ J . Now, by Theorem 4.1, for n ∈ J large enough

d((x′n, y
′
n), S3(un)) ≤ a‖g(x′n, y

′
n, un)‖

and hence there exists (xn, yn) ∈ S3(un), such that

‖(x′n, y′n)− (xn, yn)‖ ≤ a‖g(x′n, y
′
n, un)‖

and since g is locally Lipschitzian near 0 uniformly in (x′n, y
′
n), with constant

kg = kg(x̄, ȳ)

‖(x′n, y′n)− (xn, yn)‖ ≤ a‖g(x′n, y
′
n, un)− g(x′n, y

′
n, u

′
n)‖ ≤ ak(x̄, ȳ)d(un, u

′
n).

Then for all n ∈ I sufficiently large

nd(un, u
′
n) < f(xn, yn, un)− f(x′n, y

′
n, u

′
n) ≤ k(x̄, ȳ)(1 + ak(x̄, ȳ))d(un, u

′
n)

and this contradiction completes the proof.♦

Corollary 5.1 The result of Theorem 5.2 remains valid if we replace 1) by
the following assumption:

1′) (SA) holds and that S is upper semicontinuous at 0.

Let KKT (x̄, ȳ) denotes the set of Karush-Kuhn-Tucker multipliers of (P0)
at (x̄, ȳ), that is, the set of z∗ ∈ Z∗ satisfying

−∇xf(x̄, ȳ, 0)− z∗ ◦Dxg(x̄, ȳ, 0) ∈ 6(1 + akg)(kv + kf )∂Ad(C, x̄)
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−∇yf(x̄, ȳ, 0)− z∗ ◦Dyg(x̄, ȳ, 0) ∈ 6(1 + akg)(kv + kf )∂Ad(D, ȳ).

Here kv, kf and kg denote Lipschitz constants of v near 0 and f and g near
(x̄, ȳ, 0) and a is as in the assertion α) of Theorem 4.1. These constants are
assumed to be at least equal to 1.

Then we have the following estimate of the subdifferential of v.

Theorem 5.3 Suppose in addition to the assumptions of Theorem 5.2 that
f and g are of class C1 at (x̄, ȳ, 0) for each (x̄, ȳ) ∈ S(0) and that the
perturbation set U is a Banach space. Then

∂Av(0) ⊂
⋃

(x̄,ȳ)∈S(0)

{∇uf(x̄, ȳ, 0) + z∗ ◦Dug(x̄, ȳ, 0) : z∗ ∈ KKT (x̄, ȳ)}.

Proof. The proof is similar to that in [7]. Let kv be a Lipschitz
constant of v around 0 (which is possible since, by Theorem 5.2, v is locally
Lipschitzian near 0). Let u∗ ∈ ∂Av(0). Then, by Proposition 2.1, we have
for all L ∈ F(U), there exist nets ui → 0, εi → 0+, u∗i → u∗, with ‖u∗i ‖ ≤
kv(1 + εi), and ri → 0+ such that for all u ∈ B(ui, ri)

v(u)− v(ui)− 〈u∗i , u− ui〉+ εi‖u− ui‖+ 2(kv + εi)d(u, ui + L) ≥ 0.

From the assumption 1) in Theorem 5.2 there exist (x̄, ȳ) ∈ S(0) and
(xi, yi) ∈ S(ui), with (xi, yi) → (x̄, ȳ), such that for all (x, y, u) ∈ C ×
D ×B(ui, ri), g(x, y, u) = 0, we have

f(x, y, u)−f(xi, yi, ui)−〈u∗i , u−ui〉+εi‖u−ui‖+2(kv+εi)d(u, ui+L) ≥ 0.

Using Theorem 4.1 we obtain

3a(kf + kv)‖g(x, y, u)‖+ f(x, y, u)− f(xi, yi, ui)− 〈u∗i , u− ui〉+

εi‖u− ui‖+ (kv + εi)d(u, ui + L) ≥ 0

for all (x, y, u) ∈ C ∩B(xi, ri)×D ∩B(yi, ri)×B(ui, ri). Thus the function

(x, y, u) 7→ 6(1 + akg)(kf + kv)[d(x,C) + d(y,D)] + 2a(kf + kv)‖g(x, y, u)‖
+f(x, y, u)− f(xi, yi, ui)− 〈u∗i , u− ui〉+ εi‖u− ui‖+ 3kvd(u, ui + L)

attains its local minimum at (xi, yi, ui). We conclude by using subdifferential
calculus and by passing to the limit.♦

In the case where f and g are not depending on the perturbation u and
g = g1 − g2, where g1 : X 7→ Z and g2 : Y 7→ Z, then we get the following
result which is a direct consequence of the previous one.
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Corollary 5.2 Under the assumptions of Theorem 5.3 we have

i) for all (x̄, ȳ) ∈ S(0), ∂Cv(0) ∩KKT (x̄, ȳ) 6= ∅ and

ii)
∂Av(0) ⊂

⋃
(x̄,ȳ)∈S(0)

KKT (x̄, ȳ).

Here ∂C denotes Clarke’s subdifferential.

Proof. It suffices to prove the first part. Let (x̄, ȳ) ∈ S(0). Then

f(x̄, ȳ)− v(0) = 0 ≤ f(x, y)− v(u)

for all (x, y, u) near (x̄, ȳ, 0), with (x, y) ∈ S3(u). By Theorem 4.1 there
exists constant a > 0 such that

d((x, y), S(u)) ≤ ‖g1(x) + u− g2(y)‖

for all (x, y, u) near (x̄, ȳ, 0), with (x, y) ∈ C×D. So that (x̄, ȳ, 0) is a local
solution of the function

(x, y, u) 7→ f(x, y)− v(u) + a(kf + kv)‖g1(x) + u− g2(y)‖+

2a(kf + kv)[d(x,C) + d(y,D].

So the conclusion follows by using the subdifferential calculus.♦

5.4 Local controllability.

We consider here systems of the form

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b], (x(a), x(b)) ∈ S (11)

where F : [a, b] × Rn 7→ Rn is a multivalued mapping which is measurable
in the first variable t ∈ [a, b] and S ⊂ Rn × Rn is a nonempty closed set.
The domain over which the study of system (11) occurs is typically one
of the functions W 1,p([a, b], Rn) (abbreviated W 1,p) consisting of all abso-
lutely continuous functions x: [a, b] 7→ Rn for which |ẋ| is in the functional
space Lp([a, b], Rn) (abbreviated Lp) (ẋ denotes the derivative (almost ev-
erywhere) of x). The space W 1,p is endowed with the norm

‖x‖ = |x(a)|+ ‖ẋ‖Lp

where | · | denotes the euclidean norm of Rn. Here we assume that p ≥ 1.

Consider the multivalued mapping G: Rn 7→ W 1,p defined by

G(y) = {x ∈ W 1,p: ẋ(t) ∈ F (t, x(t)) a.e., (x(a), x(b) + y) ∈ S} (12)
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The distance function on W 1,p or Rn × Rn will be denoted by d(· , · ).
Let z be a solution of system (11). This system is said to be locally

controllable at z if there exist α > 0 and r > 0 such that

G(y) ∩B(z, α|y|) 6= ∅ ∀y ∈ B(0, r).

Let S = Ca × Cb and C be the solution set of the system

x(a) ∈ Ca, ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b].

Consider the linear continuous mapping w(x) = x(b) and let w∗ denotes its
adjoint mapping.

Theorem 5.4 The system is locally controllable at z provided that C is
closed (which is the case when the multivalued mapping x 7→ F (t, x) has
closed graph for almost all t) and

w∗(NF (Cb, z(b)) ∩ −NF (C, z) = {0}. (13)

As a consequence of this theorem we obtain the following result.

Corollary 5.3 Let p = 1. Assume that F is closed-valued and measurably
Lipschitzian at z and bounded by a summable function (in L1) around z(t)
a.e. in [a, b]. Suppose that if

(v̇(t), v(t)) ∈ ∂Cd(F (t, ·), ·)(z(t), ż(t)) a.e., (14)

and
v(a) ∈ ∂Fd(z(a), Ca), v(b) ∈ ∂Fd(z(b), Cb) then v(b) = 0.

Then the conclusion of Theorem 5.4 holds.

Here ∂C refers to the Clarke’s subdifferential [4].

Proof. It suffices to show that (13) holds and to apply Theorem 5.4.
Indeed consider (as in Thibault [23]) the mappings α : Rn×L1 → Rn×Rn

and β : Rn × L1 → L1 × L1 defined by

α(x(0), ẋ) = (x(a), x(b)), , β(x(a), ẋ) = (x, ẋ).

Let cb ∈ NF (Cb, z(b)), with −w∗(cb) ∈ NF (S, z). By Proposition 6.3 in [8]
there exist K > 0, ca ∈ K∂Fd(z(a), Ca) and (u, v) ∈ K∂AIL(z, ż) such that

−α∗(ca, cb) = β∗(u, v)

where IL(x, y) =
∫ b

a
d(y(t), F (t, x(t)))dt. Thus (see Thibault [23])

cb = −v(b), ca = v(a), and u(t) = v̇(t), a.e.
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and hence cb = 0 and the proof is complete.♦
This corollary has extended in [9] to the more general class of multivalued

mappings, namely the sub-Lipschitzian multivalued mappings in the sense
of Loewen- Rockafellar [13]. In the paper [9], condition (14) is replaced by
the following weaker one

ṗ(t) ∈ coD∗FF (t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b] (15)

where D∗FF (t, ·) means the coderivative ([19]-[21]) of F (t, ·) in x at the point
(z(t), ż(t)) and “co” stands for convex hull.

Now let C be the solution set of the differential inclusion

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b].

Consider the linear continuous mapping w(x) = (x(a), x(b)) and let w∗

denotes its adjoint mapping.

Theorem 3.3 gives us the following result.

Theorem 5.5 The system is locally controllable at z provided that C is
closed (which is the case when the multivalued mapping x 7→ F (t, x) has
closed graph for almost all t) and

w∗(NF (S, (z(a), z(b))) ∩ −NF (C, z) = {0}.
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