
Mathematical Programming manuscript No.
(will be inserted by the editor)

Abderrahim Jourani · Jane Ye

Error Bounds for Eigenvalue and Semidefinite

Matrix Inequality Systems

Dedicated to Terry Rockafellar in honor of his 70th

birthday

Received: date / Revised version: date

Abstract. In this paper we give sufficient conditions for existence of error bounds for systems

expressed in terms of eigenvalue functions (such as in eigenvalue optimization) or positive

semidefiniteness (such as in semidefinite programming).

1. Introduction

Given Euclidean space E (which is a finite-dimensional real inner-product space)
and f : E → R ∪ {+∞} an extended real-valued lower semicontinuous (l.s.c.)
function on E, consider the inequality system

f(x) ≤ 0. (1)

We say that the inequality system (1) has a local (global) error bound if the set
S of solutions of (1) is nonempty and for some 0 < ε < +∞ (ε = +∞) there
exists a scalar a > 0 such that

d(x, S) ≤ af(x) ∀x ∈ f−1(0, ε) := {x ∈ E : 0 < f(x) < ε}, (2)

where d(x, S) = inf
u∈S

‖x− u‖ and ‖ · ‖ denotes the Euclidean norm on E. Given

some x0 ∈ S, the system (1) (or the set S) is said to be metrically regular at x0

(or has an error bound near x0) if for some δ > 0 there exists a scalar a > 0
such that

d(x, S) ≤ af+(x) ∀x ∈ B(x0, δ), (3)

where f+(x) = max(f(x), 0) and B(x0, δ) denotes the open ball centered at x0

with radius δ.
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Error bounds have important applications in sensitivity analysis of mathematical
programming and in convergence analysis of some numerical algorithms. In his
celebrated result [10] dating back to 1952, A.J. Hoffman showed that if f is
a maximum of a finite number of affine functions in Rn, then the inequality
system (1) has a global error bound. Hoffman’s result was extended to the linear
systems in general Banach space by Ioffe in [11]. For nonlinear inequality systems,
the existence of error bounds usually requires some conditions. For error bound
results related to a continuous or convex system on Rn, the reader is referred
to the survey papers [15,20] and the references therein for a summary of the
theory and applications of error bounds. Recently, considerable progress has
been made on error bounds for lower semicontinuous functions in general Banach
spaces (see, e.g., [3,6,7,12,18,24–26]). The extension to the lower semicontinuous
system makes it possible to study the error bound for a system with equality,
inequality and abstract constraints such as

gi(x) ≤ 0 ∀i = 1, . . . , p, gi(x) = 0,∀i = p + 1, . . . , I, x ∈ C,

by taking

f(x) := max{g1(x), . . . , gp(x), |gp+1(x)|, . . . , |gI(x)|, δC},

where δC denotes the indicator function of set C. The extension from Rn to
general Banach space makes it possible to study inequality systems involving
the sum of the m largest eigenvalues and inequality constraint systems arising
from linear semidefinite programming such as in [1,8].
The purpose of this paper is to study error bounds for systems expressed in
terms of eigenvalue functions (in particular linear combinations of eigenvalues)
and inequality systems arising from nonlinear semidefinite programming.
In the rest of this section we describe the eigenvalue and semidefinite matrix
inequality systems. Let Sn denotes the space of real-symmetric matrices of order
n endowed with the usual scalar product

〈A,B〉 = tr(AB),

where trA denotes the trace of matrix A. We define the eigenvalue map λ : Sn 7→
Rn by

λ(X) = (λ1(X), · · · , λn(X))

where λ1(X), · · · , λn(X) are the eigenvalues of the matrix X arranged with de-
creasing order

λ1(X) ≥ · · · ≥ λn(X).

It is known that
‖λ(A)− λ(B)‖ ≤ ‖A−B‖,

i.e., the eigenvalue map is Lipschitzian (see e.g. [2, III. 6.15]).
Let L : Rm 7→ Sn be a linear mapping, that is, there exist L1, · · · , Lm ∈ Sn such
that

L(x) =
m∑

i=1

xiLi, ∀x = (x1, · · · , xm) ∈ Rm
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and let B ∈ Sn. We define the mapping A : Rm 7→ Sn by

A(x) = L(x)−B, ∀x ∈ Rm.

The first eigenvalue inequality system we intend to study is given in Sn by

(f ◦ λ)(X) ≤ 0, X ∈ Sn (I).

The second one is given in Rm by

(f ◦ λ ◦ A)(x) ≤ 0, x ∈ Rm (II),

where f : Rn 7→ R is a locally Lipschitz mapping and f ◦g denotes the composite
function of f and g. The first semidefinite inequality system we propose to study
is given in Sn by

gi(X) ≤ 0, i = 1, 2, . . . , p,

gi(X) = 0, i = p + 1, 2, . . . , I, (III)
X � 0,

where gi are C1 functions on Sn. The second one is given in Rm by

G(x) � 0, (IV)

where G : Rm → Sn is a C1 mapping and for A ∈ Sn, the notation A � (�)0
means that the matrix A is positive (negative) semidefinite.
Systems (I) and (II) arise frequently in eigenvalue optimization. For example,
for any integer κ between 1 and n, let f(x1, . . . , xn) =

∑κ
i=1 xi. Then f ◦ λ(X)

is the sum of κ th largest eigenvalues of matrix X as in eigenvalue optimization
[19].
Systems (III) and (IV) are the constraint sytems of a nonlinear semidefinite
program and its dual program (see, e.g., [23]).

2. Preliminaries

This section contains some background material on nonsmooth analysis and pre-
liminary results which will be used later. We give only concise definitions and re-
sults that will be needed in the paper. For more detailed information on the sub-
ject our references are Clarke, Ledyaev, Stern and Wolenski [5], Mordukhovich
[16,17] and Rockafellar and Wets [21]. Note that in a finite dimensional space,
the limiting Fréchet subdifferential in the following definition coincides with the
limiting proximal subdifferential as in [5].

Definition 1. Let f : E 7→ R ∪ {+∞} be a l.s.c. function and x0 ∈ E be such

that f(x0) < ∞. For any given ε ≥ 0, the Fréchet ε-subdifferential is the set

∂εf(x) = {x∗ ∈ E : lim inf
h→0

f(x + h)− f(x)− 〈x∗, h〉
‖ h ‖

≥ −ε}.
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The limiting Fréchet subdifferential of f at x0 is the set

∂f(x0) := {x∗ ∈ E : ∃xk → x0, εk → 0+, and x∗k → x∗ with x∗k ∈ ∂εk
f(xk)}.

Proposition 1 (Chain Rule). (see e.g. [17, Corollary 6.3]) Let E1, E2 be two

Euclidean spaces and φ : E1 → E2, f : E2 → R. Suppose that φ is Lipschitz

near x0 ∈ E1 and f is Lipschitz near φ(x0). Then for each x0 ∈ E1

∂(f ◦ φ)(x0) ⊂
⋃
{∂〈µ, φ〉(x0) : µ ∈ ∂f(φ(x0))},

where 〈µ, φ〉(x) := 〈µ, φ(x)〉 and 〈µ, φ(x)〉 denotes the inner product of µ, φ(x)

in E2.

In this paper we mainly rely on the following results. We only quote the results
under the assumptions we need in the paper.

Theorem 1. [26, Theorem 2.2] Let f : E → R ∪ {+∞} be l.s.c.. Suppose that,

for some x0 ∈ X, 0 < δ ≤ +∞, 0 < a < +∞ and 0 < ε ≤ δ/(2a), the set

B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖ ≥ a−1 for all ξ ∈ ∂f(x) and each x ∈ B(x0, δ) ∩ f−1(0, ε).

Then S := {x ∈ E : f(x) ≤ 0} is nonempty and

d(x, S) ≤ af(x) for all x ∈ B(x0,
δ

2
) ∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ δ/(2a) can be replaced with

0 < ε ≤ +∞.

Theorem 2. [13, Corollary 3.13] Let C be a closed subset of E and x0 ∈ S,

where S := {x ∈ C : gi(x) ≤ 0, i = 1, . . . , p, gi(x) = 0, i = p+1, . . . , I}. Suppose

that g : E → RI is Lipschitz near x0. If the following constraint qualification is

satisfied at x0 :

λi ≥ 0, λigi(x0) = 0 ∀i = 1, . . . , p

0 ∈ ∂〈λ, g〉(x0) + NC(x0)

 ⇒ λ = 0,

where NC(x0) := ∂δC(x0) denotes the limiting normal cone of C at x0, then S

is metrically regular at x0.
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Theorem 3. [26, Theorem 4.7(ii)] Let C be a nonempty closed subset of E and

fi : E → R be continuously differentiable for each i ∈ I where I is a given finite

set. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ E.

Suppose that for some 0 < a and each x ∈ f−1(0,∞), there exists a vector ux

such that ‖ux‖ = 1, ux ∈ KC(x) and 〈∇fi(x), ux〉 ≤ −a−1 for each i ∈ I(x).

Then S := {x ∈ C : f(x) ≤ 0} is nonempty and

d(x, S) ≤ af+(x) for all x ∈ C,

where ∇f(x) denotes the gradient of a function f at x, KC(x) denotes the con-

tingent cone of C at x defined by

KC(x) := {v ∈ E : ∃tn ↓ 0, vn → v s.t. x + tnvn ∈ C ∀n}.

3. Eigenvalue inequality systems

Let SI and SII be solution sets of the eigenvalue systems (I) and (II) respectively.
Our aim in this section is to prove the following sufficient conditions ensuring
the existence of error bounds for systems (I) and (II).

Theorem 4. (i) Suppose that for some U0 ∈ SI , 0 < δ ≤ +∞, 0 < γ < +∞,

0 < ε ≤ +∞, the following condition holds

|
n∑

i=1

µi| ≥ γ ∀µ ∈ ∂f(λ(X)), X ∈ B(U0, δ) ∩ (f ◦ λ)−1(0, ε).

Then

d(X, SI) ≤
√

n

γ
(f ◦ λ)(X), ∀X ∈ B(U0,

δ

2
) ∩ (f ◦ λ)−1(0, ε).

(ii) Suppose that for some U0 /∈ SI , 0 < δ ≤ +∞, 0 < γ < +∞, 0 < ε ≤ δγ
2
√

n
,

the set B(U0, δ/2) ∩ (f ◦ λ)−1(−∞, ε) is nonempty and

|
n∑

i=1

µi| ≥ γ ∀µ ∈ ∂f(λ(X)), X ∈ B(U0, δ) ∩ (f ◦ λ)−1(0, ε).

Then SI 6= ∅ and

d(X, SI) ≤
√

n

γ
(f ◦ λ)(X), ∀X ∈ B(U0,

δ

2
) ∩ (f ◦ λ)−1(0, ε).
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Theorem 5. Suppose that there exist σ > 0 and d ∈ Rm such that

σIn − L(d) ∈ Sn
−,

where In denotes the identity matrix of order n and Sn
− denotes the cone of

negative semidefinite matrices of order n.

(i) If for some x0 ∈ SII , 0 < δ ≤ +∞, 0 < γ < +∞, 0 < ε ≤ +∞, it holds that

for all µ ∈ ∂f(λ(A(x))), x ∈ B(x0, δ) ∩ (f ◦ λ ◦ A)−1(0, ε),
λ1(σIn − L(d))

∑
µi≥0

µi + λn(σIn − L(d))
∑
µi≤0

µi ≤ 0,

n∑
i=1

µi ≥ γ,
(4)

then

d(x, SII) ≤
‖d‖
σγ

(f ◦ λ)(A(x)), ∀x ∈ B(x0,
δ

2
) ∩ (f ◦ λ ◦ A)−1(0, ε).

(ii) Suppose that for some x0 6∈ SII , 0 < δ ≤ +∞, 0 < γ < +∞, 0 < ε ≤ δσγ
2‖d‖ ,

the set B(x0, δ/2) ∩ (f ◦ λ ◦ A)−1(−∞, ε) is nonempty and that for all µ ∈
∂f(λ(A(x))), x ∈ B(x0, δ) ∩ (f ◦ λ ◦ A)−1(0, ε), condition (4) holds. Then

SII 6= ∅ and

d(x, SII) ≤
‖d‖
σγ

(f ◦ λ)(A(x)), ∀x ∈ B(x0,
δ

2
) ∩ (f ◦ λ ◦ A)−1(0, ε).

The proof of Theorems 4 and 5 is based on the following fundamental lemmas.

Lemma 1. Let µ = (µ1, · · · , µn) ∈ Rn and X ∈ Sn. Then each A ∈ ∂〈µ, λ〉(X)

satisfies tr(A) =
n∑

i=1

µi. If µ1 = µ2 = · · · = µn = µ, then ‖A‖ =
√

n|µ| = |tr(A)|√
n

.

Proof. Consider the function f(x) :=
∑n

i=1 µixi defined on Rn. It is easy to
see that f is invariant under coordinate permutations if and only if µ1 = µ2 =
· · · = µn = µ. In the case when f is invariant the limiting subdifferential of the
function f ◦ λ is given by Lewis in [14] as:

∂(f ◦ λ)(X)
= {U>(Diag µ)U : U orthogonal, U>( Diag λ(X))U = X, µ ∈ ∂f(λ(X))},

where U> denotes the transpose of matrix U and Diag µ denotes the diago-
nal matrix with diagonal entries µ1, µ2, . . . , µn. Consequently one has ‖A‖ =√∑n

i=1 µ2
i =

√
n|µ|.



Error Bounds for Eigenvalue and Semidefinite Matrix Inequality Systems 7

Now consider the case when f is not invariant. Let A ∈ ∂〈µ, λ〉(X). Then by
the definition of Limiting Fréchet subdifferential, there are sequences Ak → A,
Uk → X and rk, εk → 0+ such that

〈µ, λ(U)− λ(Uk)〉 − 〈Ak, U − Uk〉+ εk‖U − Uk‖ ≥ 0, ∀U ∈ B(Uk, rk).

Taking U = Uk +rkI and U = Uk−rkI in the last inequality we obtain (because
λ(Uk + rkI) = λ(Uk) + rkλ(I) and λ(Uk − rkI) = λ(Uk)− rkλ(I))

n∑
i=1

µi − tr(Ak) + εk

√
n ≥ 0

and

−
n∑

i=1

µi + tr(Ak) + εk

√
n ≥ 0.

Passing to the limit in the last two inequalities we get tr(A) =
∑n

i=1 µi.

Lemma 2. (e.g., [2, III.2.2]) Let A,B ∈ Sn and C ∈ Sn
−. Then for each j =

1, · · · , n, the following inequality hold

λn(B) ≤ λj(A + B)− λj(A) ≤ λ1(B).

Using the above lemma and the definition of the limiting Fréchet subdifferential
we get the following lemma.

Lemma 3. Let f : Rn → R be a locally Lipschitz mapping. Suppose that:

(i) There exist σ > 0 and W ∈ Sn such that

σIn −W ∈ Sn
−.

(ii) λ1(σIn −W )
∑
µi≥0

µi + λn(σIn −W )
∑
µi≤0

µi ≤ 0, ∀µ ∈ ∂f(λ(X)).

Then for each A ∈ ∂(f ◦ λ)(X), there exists µ ∈ ∂f(λ(X)) such that

〈A,W 〉 ≥ σ
n∑

i=1

µi

Proof. Let A ∈ ∂(f ◦ λ)(X). By the chain rule (Propositon 1), there exists
µ ∈ ∂f(λ(X)) such that A ∈ ∂〈µ, λ〉(X). Then there are sequences Ak → A,
Uk → X and εk, rk → 0+ such that

〈µ, λ(U)− λ(Uk)〉 − 〈Ak, U − Uk〉+ εk‖U − Uk‖ ≥ 0
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for all U ∈ B(Uk, rk). In particular for U = Uk − rkW we get

〈µ, λ(Uk − rkW )− λ(Uk)〉+ rk〈Ak,W 〉+ εkrk‖W‖ ≥ 0. (5)

By assumption (i), there exists p− ∈ Sn
− such that −W = p− − σIn. Since

λ(Uk − rkW ) = λ(Uk + rkp− − rkσIn)
= λ(Uk + rkp−)− rkσλ(In),

(5) becomes

〈µ, λ(Uk + rkp−)− λ(Uk)〉+ rk〈Ak,W 〉+ εkrk‖W‖ ≥ rkσ
n∑

i=1

µi. (6)

Lemma 2 implies that for each µi ≥ 0

µi(λi(Uk + rkp−)− λi(Uk)) ≤ µiλ1(rkp−)

and for each µi ≤ 0

µi(λi(Uk + rkp−)− λi(Uk)) ≤ µiλn(rkp−)

which implies

n∑
i=1

µi(λi(Uk + rkp−)− λi(Uk)) ≤
∑
µi≥0

µiλ1(rkp−) +
∑
µi≤0

λn(rkp−). (7)

Under assumption (ii), (6) and (7) imply that

εk‖W‖+ 〈Ak,W 〉 ≥ σ

n∑
i=1

µi

which ensures that

〈A,W 〉 ≥ σ
n∑

i=1

µi.

Proof of Theorem 4. By virtue of Theorem 1 it suffices to show that for each
X ∈ B(U0, δ) ∩ (f ◦ λ)−1(0, ε) and all A ∈ ∂(f ◦ λ)(X),

‖A‖ ≥ γ√
n

.

Since A ∈ ∂(f ◦ λ)(X), by the chain rule (Proposition 1) there exists µ ∈
∂f(λ(X)) such that A ∈ ∂〈µ, λ〉(X). By Lemma 1, tr(A) =

∑n
i=1 µi. Since

|tr(A)| = |tr(AI)| ≤ ‖A‖‖I‖ =
√

n‖A‖,

one has

‖A‖ ≥ |tr(A)|√
n

=
|
∑n

i=1 µi|√
n

≥ γ√
n
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and the proof of the theorem is completed.

Proof of Theorem 5. By virtue of Theorem 1 it suffices to show that for each
x ∈ B(x0, δ) ∩ (f ◦ λ ◦ A)−1(0, ε) and all p ∈ ∂(f ◦ λ ◦ A)(x),

‖p‖ ≥ σγ

‖d‖
.

By the chain rule (Proposition 1) there exists C ∈ ∂(f ◦ λ)(A(x)) such that

∇〈C,A〉(x) = (tr(CL1), · · · , tr(CLm)).

Lemma 3 implies that there exists µ ∈ ∂f(λ(A(x)) such that

〈p, d〉 = 〈C,L(d)〉 ≥ σ
n∑

i=1

µi ≥ σγ.

Thus
‖p‖ ≥ σγ

‖d‖

and the proof of the theorem is completed.

4. Inequality systems involving linear combination of eigenvalues

In this section, we study the eigenvalue inequality systems (I) and (II) under
the assumption that f(x) :=

∑n
i=1 αixi − c, where αi, c are constants such that∑n

i=1 αi 6= 0. First we show that the eigenvalue inequality system (I) under these
assumptions has a global error bound and the optimal constant is given for the
cases when α1 ≥ · · · ≥ αn ≥ 0 and c = 0 and when α1 = α2 = · · · = αn > 0.

Theorem 6. For any given constants αi, c such that
∑n

i=1 αi 6= 0, the set

S1 := {X ∈ Sn :
n∑

i=1

αiλi(X) ≤ c}

is nonempty and

d(X, S1) ≤
√

n

|
∑n

i=1 αi|
(

n∑
i=1

αiλi(X)− c), ∀X /∈ S1. (8)

If moreover α1 ≥ · · · ≥ αn ≥ 0 and c = 0 or α1 = α2 = · · · = αn > 0 then
√

n∑n

i=1
αi

is the smallest constant for which inequality (8) holds.
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Proof. Since
∂f

∂xi
(x) = αi, the global error bound results follow from Theorems

4. Hence it suffices to prove that the last property holds.
Notice that if α1 ≥ · · · ≥ αn ≥ 0 then function X →

∑n
i=1 αiλi(X) − c

is convex (see e.g. [14, Lemma 5.2]). It is known that for the convex system∑n
i=1 αiλi(X) ≤ c and any constant a > 0, ‖A‖ ≥ a−1 for each A ∈ ∂〈α, λ〉(X)

and each X 6∈ S1 if and only d(S1, X) ≤ a(
∑n

i=1 αiλi(X) − c) ∀X 6∈ S1

(see e.g. [25, Theorem 7]). By Lemma 1, if α1 = α2 = · · · = αn > 0 then

‖A‖ =
√

nα1 =
∑n

i=1
αi√

n
. Hence

√
n∑n

i=1
αi

is the smallest constant for which in-

equality (8) holds in the case when α1 = α2 = · · · = αn > 0.
The rest of the proof follows from the the following Lemma.

Lemma 4. Suppose that α1 ≥ · · · ≥ αn ≥ 0 and c = 0. Then the set S1 is

convex and the projection onto S1 of the identity matrix I is exactly 0 ∈ S1. In

other words d(I, S1) = ‖I‖.

Proof. Since the function X →
∑n

i=1 αiλi(X) is convex S1 is a convex set. Let
X ∈ S1 be such that d(I, S1) = ‖I −X‖. Then X is the projection of I onto S1

is equivalent to
〈I −X, U −X〉 ≤ 0 ∀U ∈ S1

which is equivalent, because S1 is a closed convex cone, to

tr(X) = tr(XX) and tr((I −X)U) ≤ 0 ∀U ∈ S1.

Let λ1 ≥ · · · ≥ λn be the eigenvalues of the matrix X and let k be such that
αi > 0 ∀i = 1, · · · , k αi = 0 ∀k + 1, . . . , n. Then since X ∈ S1,

k∑
i=1

αiλi ≤ 0,

n∑
i=1

λi =
n∑

i=1

λ2
i .

We claim that for each i = 1, · · · , n, λi = 0. Let Θ = {i ∈ {1, · · · , n} : λi < 0}.
We have to prove that Θ = ∅. Suppose that Θ 6= ∅. Then Θ = {j, · · · , n} for
some j ≤ n. We have two possibilities:
1) Either j ≤ k. In this case

αj(
j−1∑
i=1

λi) ≤
j−1∑
i=1

αiλi ≤
n∑

i=j

αi(−λi) ≤ αj(
n∑

i=j

(−λi))

and hence
n∑

i=1

λ2
i =

n∑
i=1

λi ≤ 0

which implies λ1 = · · · , λn = 0 and this contradicts the fact that Θ 6= ∅.
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2) Or j > k. In this case for all i = 1, · · · , j − 1, λi ≥ 0 and since
∑k

i=1 αiλi ≤ 0
we get λ1 = · · · = λk = 0. As λ1 ≥ · · · ≥ λn we have for all i = k + 1, · · · , n,
λi ≤ 0. Since

∑n
i=1 λi =

∑n
i=1 λ2

i we obtain that λ1 = · · · , λn = 0 and this
contradicts again the fact that Θ 6= ∅.

Both contradictions imply that Θ = ∅. Now since
k∑

i=1

αiλi ≤ 0 we have λ1 =

· · · , λn = 0 and thus X = 0 and the proof is completed.

Applying Theorem 5 to the system of linear combination of eigenvalues, we
derive the following global error bound for this special case of system (II) under
a Slater type condition (9) which amounts to saying that there exists a vector
d ∈ Rm such that L(d) is positive definite.

Theorem 7. For given constants αi, c, suppose that
∑n

i=1 αi > 0 and there exist

σ > 0 and d ∈ Rm such that
σIn − L(d) ∈ Sn

−,

λ1(σIn − L(d))
∑
αi≥0

αi + λn(σIn − L(d))
∑
αi≤0

αi ≤ 0 . (9)

Then the set S2 := {x ∈ Rm :
n∑

i=1

αiλi(A(x)) ≤ c} is nonempty and

d(x, S2) ≤
‖d‖

σ
∑n

i=1 αi

[
n∑

i=1

αiλi(A(x))− c

]
, ∀x /∈ S2.

In the special case where α1 = 1, αi = 0 ∀i 6= 1 and c = 0, the above theorem
gives the following global error bound result for a linear semidefinite program
first given in [7, Corollary 2.1].

Corollary 1. Suppose that there exist σ > 0 and d ∈ Rm such that

σIn − L(d) ∈ Sn
−. (10)

Then the set S3 := {x ∈ Rm : L(x)−B � 0} is nonempty and

d(x, S3) ≤
‖d‖
σ

λ1 (L(x)−B) , ∀x /∈ S3.

For an integer κ between 1 and n, consider the function

Eκ(X) := sum of the κth largest eigenvalues of X.

Then it is clear that

Eκ(X) =
κ∑

i=1

λi(X) =
n∑

i=1

αiλi(X) ∀X ∈ Sn,
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with αi = 1, i = 1, . . . , κ and αi = 0, i = κ + 1, . . . , n. Since
∑n

i=1 αi = κ, a
consequence of Theorems 6 and 7 is the following results which was given by
Azé and Hiriart-Urruty [1] for the case c = 0.

Theorem 8. Let S4 := {X : Eκ(X) ≤ c}. Then the set S4 is nonempty and

d(X, S4) ≤
√

n

κ
(Eκ(X)− c) , ∀X /∈ S4.

Moreover, if either c = 0 or κ = n, then the constant
√

n
κ is the smallest one

satisfying the last inequality.

Theorem 9. Suppose that there exist σ > 0 and d ∈ Rm such that

σIn − L(d) ∈ Sn
−.

Then the set S5 := {x : Eκ(A(x)) ≤ c} is nonempty and

d(x, S5) ≤
‖d‖
σκ

(Eκ(A(x))− c), ∀x /∈ S5.

The concept of weak sharp minima in mathematical programming introduced by
Burke and Ferris [4] is connected with error bounds. Taking c := infx Eκ(A(x))
in the above theorem we have the following result about weak sharp minima of
minimizing sum of the κ th largest eigenvalue.

Corollary 2. Suppose there exist σ > 0 and d ∈ Rm such that

σIn − L(d) ∈ Sn
−,

and inf
x∈Rn

Eκ(A(x)) > −∞. Then the set of global solutions of the problem of min-

imizing the function Eκ(A(x)) has a weak sharp minima, i.e. arg min Eκ(A(x))

is nonempty and

d(x, arg minEκ(A(x))) ≤ ‖d‖
σκ

((Eκ(A(x))− inf
x

Eκ(A(x))) ∀x ∈ Rm.

For integers k, l between 1 and n, with k ≤ l, consider the function

KL(X) := sum of the kth and lth largest eigenvalues of X.

Then it is clear that

KL(X) = λk(X) + λl(X) =
n∑

i=1

αiλi(X) ∀X ∈ Sn,

with αi = 1, i = k, l and αi = 0, i 6= k or i 6= l.
From Theorems 6 and 7 we have the following results.
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Theorem 10. Let S6 := {X : KM(X) ≤ c}. Then S6 is nonempty and

d(X, S6) ≤
√

n

s(k, l)
(KM(X)− c), ∀X /∈ S6,

where s(k, l) = 1 if k = l and s(k, l) = 2 if k 6= l.

Theorem 11. Suppose that there exist σ > 0 and d ∈ Rm such that

σIn − L(d) ∈ Sn
−.

Then the set S7 := {x : KM(A(x)) ≤ c} is nonempty and

d(x, S7) ≤
‖d‖

σs(k,m)
(KM(A(x))− c), ∀x /∈ S7.

5. Semidefinite matrix inequality systems

Let SIII and SIV denote the solution sets of the matrix systems (III) and (IV),
respectively. Our aim in this section is to give sufficient conditions ensuring error
bounds for the matrix systems (III) and (IV).

Theorem 12. Suppose that there exists X0 ∈ SIII such that one of the following

conditions is satisfied:

(i) X0 is positive definite and

λigi(X0) = 0, λi ≥ 0 i = 1, . . . , p,∑I
i=1 λi∇gi(X0) = 0,

 ⇒ λ = 0.

(ii) X0 is positive semidefinite, singular and

∑I
i=1 λi∇gi(X0) ∈ Sn

+,
∑I

i=1 λitr(∇gi(X0)X0) = 0

λigi(X0) = 0, λi ≥ 0 i = 1, . . . , p

 ⇒ λ = 0.

Then SIII is metrically regular at X0, i.e., there exists δ > 0, a > 0 such that

d(X, SIII) ≤ amax{0, g1(X), . . . , gp(X), |gp+1(X)|, . . . , |gI(X)|}

for all X ∈ Sn
+ ∩B(X0, δ),

where Sn
+ denotes the cone of positive semidefinite matrices of order n.
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Proof. Since it is known that the normal cone of Sn
+ is given by

NSn
+
(X0) = {B ∈ Sn

− : tr(BX0) = 0}

(see e.g. [9, Theorem 2.1]) and any positive definite matrix lies in the interior of
Sn

+, the proof follows from applying Theorem 2 with C = Sn
+.

Specializing the above theorem to the constraint region of the linear semidefinite
program:

SD := {X ∈ Sn : tr(AiX) = bi i = 1, . . . ,m, X ∈ Sn
+},

where Ai ∈ Sn, bi ∈ R we have the following error bound results for linear
semidefinite programs.

Corollary 3. Suppose that there exists X0 ∈ SD such that one of the following

conditions is satisfied

(i) X0 is positive definite and A1, . . . , Am are linearly independent;

(ii) X0 is singular and

∑m
i=1 λiAi ∈ Sn

+,
∑m

i=1 λitr(AiX0) = 0

λ ∈ Rm

 ⇒ λ = 0.

Then SD is metrically regular at X0, i.e., there exists δ > 0, a > 0 such that

d(X, SD) ≤ amax{|tr(A1X)− b1|, . . . , |tr(AmX)− bm|}

for all X ∈ Sn
+ ∩B(X0, δ).

Corollary 4. Suppose that SD is nonempty and compact and A1, . . . , Am are

linearly independent. Moreover assume that for each X0 ∈ SD which is singular,

∑m
i=1 λiAi ∈ Sn

+,
∑m

i=1 λitr(AiX0) = 0

λ ∈ Rm

 ⇒ λ = 0.

Then there exists a > 0 such that

d(X, SD) ≤ amax{|tr(A1X)− b1|, . . . , |tr(AmX)− bm|} for all X ∈ Sn
+.

Proof. By virtue of Corollary 3, SD is metrically regular at each point of SD.
Since SD is convex and compact, by [24, Theorem 5.2], SD has a global error
bound and hence the proof is complete.
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Theorem 13. Suppose that there exist a > 0 and U ∈ Sn
+ with ‖U‖ = 1 such

that

tr(AiU) ≤ −a−1, ∀i = 1, . . . ,m.

Then Sd := {X ∈ Sn
+ : tr(AiX) ≤ bi i = 1, . . . ,m} is nonempty and

d(X, Sd) ≤ amax{0, tr(A1X)− b1, . . . , tr(AmX)− bm} for all X ∈ Sn
+.

Proof. Since the contingent cone to Sn
+ at any X ∈ Sn

+ contains Sn
+, the results

then follow from Theorem 3.

Since
tr(AiU) ≤ λ(Ai)>λ(U)

where a> denotes the transpose of vector a, the above theorem has the following
corollary.

Corollary 5. Suppose that there exist a > 0 and U ∈ Sn
+ with ‖U‖ = 1 such

that

λ(Ai)>λ(U) ≤ −a−1 ∀i = 1, . . . ,m.

Then Sd := {X ∈ Sn
+ : tr(AiX) ≤ bi i = 1, . . . ,m} is nonempty and

d(X, Sd) ≤ amax{0, tr(A1X)− b1, . . . , tr(AmX)− bm} for all X ∈ Sn
+.

In particular, it is easy to see that the above corollary has the following conse-
quence.

Corollary 6. Suppose that Ai, i = 1, . . . ,m are negative definite. Then Sd :=

{X ∈ Sn
+ : tr(AiX) ≤ bi i = 1, . . . ,m} is nonempty and there exists a > 0 such

that

d(X, Sd) ≤ amax{0, tr(A1X)− b1, . . . , tr(AmX)− bm} for all X ∈ Sn
+.

Taking U = I in Theorem 13, one has the following corollary.

Corollary 7. Suppose that there exists a > 0 such that

tr(Ai) ≤ −a−1, ∀i = 1, . . . ,m.

Then Sd := {X ∈ Sn
+ : tr(AiX) ≤ bi i = 1, . . . ,m} is nonempty and

d(X, Sd) ≤ amax{0, tr(A1X)− b1, . . . , tr(AmX)− bm} for all X ∈ Sn
+.
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Theorem 14. Suppose that there exists x0 ∈ SIV such that one of the following

conditions is satisfied

(i) G(x0) is negative definite,

(ii) G(x0) is singular, negative semidefinite and

tr(ΩGi(x0)) = 0 i = 1, 2, . . . , n

Ω � 0

 ⇒ Ω = 0.

Then SIV is metrically regular at x0, i.e., there exists δ > 0, a > 0 such that

d(x, SIV ) ≤ aλ1(G(x))+ for all x ∈ B(x0, δ),

where Gi(x) := ∂G(x)/∂xi are n× n partial derivative matrices.

Proof. Denote by g(x) := λ1(G(x)). By Theorem 2, it suffices to prove that

γ ≥ 0, γg(x0) = 0
0 ∈ γ∂g(x0)

}
⇒ γ = 0.

The above condition is easily seen to be satisfied if G(x0) is negative definite.
Hence one only needs to prove that (ii) implies that 0 6∈ ∂g(x0). It is easy to see
that

λ1(G(x)) = max
w∈Rn

w>G(x)w
w>w

. (11)

By Danskin’s theorem (see e.g. [5, p.99]) the function g is Lipschitz near x0,
regular at x0 and one has

∂g(x0) = co{∇x[
w>G(x)w

w>w
] : w is an eigenvector corresponding to λ1(G(x0))}

= co{(uu>G1(x), . . . , uu>Gm(x)) :
u is an unit eigenvector corresponding to λ1(G(x0))},

where coΩ denotes the convex hull of set Ω. Since for any vector u the matrix
uu> is positive semidefinite, assumption (ii) implies that 0 6∈ ∂g(x0).

Remark: Note that the above condition is equivalent to the MF condition ([22]):
there exists a vector h ∈ Rm such that the matrix

G(x0) +
m∑

i=1

hiGi(x0)

is negative definite. It is known that the Slater condition implies the MF condi-
tion.
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According to Shapiro [22], we say that the mapping G(x) is positive semidefinite
convex (psd-convex) if it is convex with respect to the order relation imposed by
the cone Sn

+. That is the inequality

tG(x) + (1− t)G(y) � G(tx + (1− t)y)

holds for any x, y ∈ Rm and all t ∈ [0, 1]. By [22, Proposition 1], the mapping
G(x) is psd-convex if and only if for any v ∈ Rn, the function ϕ(x) = v>G(x)v is
convex. It was observed in [22] that due to the expression (11), if G is psd-convex
then λ1(G(x)) is a convex function and the solution set SIV is convex hence the
following corollary is immediate.

Corollary 8. Suppose that G(x) is psd-convex, the set SIV is bounded and the

Slater condition is satisfied, i.e., there exists x0 ∈ Rm such that G(x0) is negative

definite. Then there exists a ≥ 0 such that

d(x, SIV ) ≤ a[λ1(G(x))]+ for all x ∈ Rm.

Proof. By virtue of Theorem 14, SIV is metrically regular at each point of SIV .
Since SIV is convex and compact, by [24, Theorem 5.2], SIV has a global error
bound and hence the proof is complete.

References
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