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Abstract. In this paper, we prove sufficient conditions for controllability
and strong controllability in terms of the Mordukhovich’s subdifferential
for two classes of differential inclusions. The first one is the class of
sub-Lipschitz multivalued functions introduced by Loewen-Rockafellar
[11]. The second one, introduced recently by Clarke [3], is the class
of multivalued functions which are pseudo-Lipschitz and satisfy the so-
called tempered growth condition. To do this, we establish an error
bound result in terms of Mordukhovich’s subdifferential outside Asplund
spaces.
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1 Introduction

In this paper, we deal with controllability and strong controllabilty of
systems governed by differential inclusions of the form

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b], (x(a), x(b)) ∈ S (1)

where F : [a, b] × H 7→ H is a multivalued mapping and S ⊂ H × H
is a nonempty closed set and H is a real Hilbert space. The domain
over which the study of system (1) occurs is typically the Sobolev space
W 1,p([a, b], H) (abbreviated W 1,p) consisting of all absolutely continuous
functions x : [a, b] 7→ H for which |ẋ|p is integrable on [a, b]. The space
W 1,p is endowed with the norm

‖x‖ = |x(a)|+ [

∫ b

a

|ẋ(t)|pdt]
1
p
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where | · | denotes a norm on H .
Let z be a solution of the system (1).

- The system (1) is said to be locally controllable at z if for each
ε > 0 there exists δ > 0 such that for all v ∈ B(0, δ) there exists a
trajectory x for F , with ‖x−z‖ ≤ ε, satisfying (x(0), x(1)+v) ∈ S.

- It is said to be strongly locally controllable ([8]) at z if there exist
a > 0 and δ > 0 such that for all u and v in B(0, δ) there exists a
trajectory x for F , with ‖x − z‖ ≤ a(|u| + |v|), satisfying (x(0) +
u, x(1) + v) ∈ S.

Here B(0, δ) denotes the closed ball in H centered at 0 and of radius δ.
It is clear that each strongly locally controllable system is also locally
controllable. But, the converse does not hold. Indeed, the following
system is locally controllable at z = 0, but it is not strongly locally
controllable at this point :

(ẋ1, ẋ2)(t) ∈ {x32(t)} × R, x(0) = x(1) = (0, 0).

The notion of controllability is often expressed with the norm ‖ · ‖∞
(‖x‖∞ = max

t∈[a,b]
|x(t)|) instead of ‖ · ‖. But each system controllable in

terms of the norm ‖ · ‖ is also controllable in terms of the norm ‖ · ‖∞.
In recent years, the concept of controllability has been studied repeatedly
in the literature (see [4], [5], [10], [21], [22]-[23] and references therein).
However most of these authors assume that either F is convex-valued
and Lipschitz or bounded and Lipschitz or admits a kind of linearization.
Note that these assumptions ensure the existence of Lipschitz selection
of F , which is usefull in the major proofs in these papers. With the very
recent developments on necessary optimality conditions in nonsmooth
analysis ([6], [7], [11]-[13], [16], [18]-[20]) the convexity is dropped but
the Lipschitz condition remains in force. Moreover only few papers have
attacked the problem of strong controllability ([2], [6]).
The aim of this paper is to establish sufficient conditions for controllabil-
ity and strong controllability without convexity nor boundedness using
two general classes of multivalued functions. The first one is the class of
sub-Lipschitz multivalued functions introduced by Loewen-Rockafellar
[11]. The second one, introduced recently by Clarke [3], is the class
of multivalued functions which are pseudo-Lipschitz and satisfy the so-
called tempered growth condition. Both classes encompass that of Lips-
chitz multivalued mappings.
Our study relies on an error bound result established in Section 3 and
consequently on a general strong controllability result deduced in Section
4. These results are given in terms of the Mordukhovich’s or limiting
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subdifferential. It is well-known that this subdifferential possesses exact
chain rule only in Asplund spaces. But the domain over which a part
of the study of system (1) occurs is W 1,1 which is not Asplund space.
Nevertheless our result on error bound in Section 3 will be established in
a general Banach spaces and this allows us to encompass the space W 1,1.
Sufficient conditions for strong controllability are formulated with the
Mordukhovich’s subdifferential of the distance function of the set C of
solutions of the differential inclusion

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b].

This and the Clarke’s necessary optimality conditions [3] allow us to
obtain sufficient conditions for controllability and strong controllability
of the system (1) in terms of the Mordukhovich’s coderivative of F in
the case where H = Rm.

Here and throughout the paper we assume the following basic hypothesis:

(H1) for each x, the multivalued mapping t 7→ F (t, x) is measurable and
the values of F are closed.

2 Background

In order to make the paper as short as possible, some definitions and the
complete wording of the results will not be repeated here, and the reader
is referred to [14]-[18] if required.
Let X be a Banach space endowed with the norm denoted by ‖ · ‖ with
which we associate the distance function d(S, ·) to a set S. By B(x, r)
we denote the open ball centered at x and of radius r. The topological
dual space of X will be denoted by X∗ and the pairing between X and
X∗ by 〈·, ·〉.
For a function f and a set S, we write x

f→xo and x
S→xo to express x→ x0

with f(x)→ f(x0) and x→ x0 with x ∈ S, respectively.
Let f be an extended real-valued function on X. The Morddukhovich’s
or limiting subdifferential of f at x0 is the set

∂Lf(x0) = seq Lim sup
x

f→x0, ε↓0

∂Fε f(x),

where seqLim sup stands for the weak-star (w∗) sequential upper limit of
subsets in X∗, and where for ε ≥ 0

∂Fε f(x) = {x∗ ∈ X∗ : lim inf
h→0

f(x+ h)− f(x)− 〈x∗, h〉
‖ h ‖

≥ −ε}
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is the Fréchet ε-subdifferential of f at any x where f is finite. We adopt
the convention ∂Fε f(x) = ∅ when |f(x)| = +∞. We also put ∂Ff(x) =
∂F0 f(x) for ε = 0.
The ε−Fréchet and limiting normal cones to a closed set S ⊂ X at a
point x0 ∈ S are given by

NF
ε (S, x0) = ∂Fε δS(x0) and NL(S, x0) = ∂LδS(x0),

where δS denotes the indicator function of S, i.e., δS(x) = 0 if x ∈ S and
δS(x) = +∞ otherwise. The theory of Fréchet and limiting subdifferen-
tials are developed, with fairly comprehensive references and remarks, in
the paper by Mordukhovich and Shao [17] and in Mordukhovich’s books
[18, 19].
Next we consider a multivalued mapping G from X into a Banach space
Y of graph

GrG := {(x, y) : y ∈ G(x)} .

The multivalued mapping D∗G(x, y) : Y ∗ 7→ X∗ defined by

D∗LG(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ NL(GrG; (x, y))}

is called the Mordukhovich’s coderivative of G at the point (x, y) ∈ GrG.
Here Y ∗ denotes the dual space of Y .

3 Error bound

It is well-known that some Banach spaces may be characterized in terms
of some subdifferentials. For example the Dini subdifferential character-
izes the Weak Trustworthy spaces. The ε−Fréchet ( and limiting Fréchet)
subdifferential gives a characterization of Asplund spaces. To give suf-
ficient conditions for error bounds for systems in terms of the limiting
Fréchet subdifferential, the previous works assume that the space is As-
plund. Our aim here is to obtain these results in general Banach spaces.
Here we consider the following system:

x ∈ C and g(x, u) ∈ D (S)

where C and D are closed sets in X and H, and g : X × U 7→ H
is a mapping. Here X is a Banach space, U is a metric space called
parameters set and H is a real Hilbert space
The corresponding parametric solution set of (S) is defined by the mul-
tivalued mapping

S(u) = {x ∈ C : g(x, u) ∈ D}.
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Our results are in the line of those obtained in [1] in the case where H
is a finite dimensional space. Here we use the following Mordukhovich’s
condition, called sequential normal compactness (SNC): A set A is said to
be sequentially normally compact at a ∈ A if for any sequences εn → 0+,

an
A→a and a∗n ∈ NF

εn(A, an) one has

a∗n
w∗→0 =⇒ ‖a∗n‖ → 0.

Theorem 3.1 Suppose that

i) (x̄, ū) is a solution of the system (S).

ii) g is of class C1 at (x̄, ū) in x with respect to u ,i.e. g and its partial
derivative Dxg(x, u) are continuous at (x̄, ū).

iii) Either H is of finite dimension or D is convex and sequentially
normally compact at g(x̄, ū).

Then β) =⇒ α), where
α) there exist a > 0 and r > 0 such that

d(x, S(u)) ≤ ad(g(x, u), D)

for all x ∈ C ∩B(x̄, r) and all u ∈ B(ū, r);
and
β) there is no y∗ ∈ NL(D, g(x̄, ū)), y∗ 6= 0, satisfying 0 ∈ y∗◦Dxg(x̄, ū)+
NL(C, x̄).

Proof. The case where H is a finite dimensional space was obtained in
[1]. Let assume that D is convex and sequentially normally compact at
g(x̄, ū). Consider the function f : X × U 7→ R ∪ {+∞} defined by

f(x, u) =

{
d(g(x, u), D) if x ∈ C,
+∞ otherwise.

Then
S(u) = {x ∈ X : f(x, u) ≤ 0}.

With these definitions and taking into account the continuity of g in both
variables x and u, assertion α) is equivalent to the conclusion of Theorem
2 in [1]. Suppose that α) is false. Then, by Theorem 2 in [1], there are
sequences xn → x̄, with xn ∈ C, un → ū and εn → 0+ such that

xn /∈ S(un) and 0 ∈ ∂εnx f(xn, un). (2)

So there exists rn → 0+ such that

f(xn, un) ≤ f(x, un) + 2εn‖xn − x‖ ∀x ∈ B(xn, rn)
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or equivalently

d(g(xn, un), D) ≤ d(g(x, un), D) + 2εn‖xn − x‖ ∀x ∈ B(xn, rn) ∩ C. (3)

Let dn ∈ D be the projection of g(xn, un) over D, that is,

d(g(xn, un), D) = ‖g(xn, un)− dn‖.

Then dn → g(x̄, ū) and by (3) we obtain

‖g(xn, un)− dn‖ ≤ ‖g(x, un)− dn‖+ 2εn‖x− xn‖ ∀x ∈ B(xn, rn) ∩ C

and
‖g(xn, un)− dn‖ ≤ ‖g(xn, un)− y‖ ∀y ∈ D.

Set y∗n = g(xn,un)−dn
‖g(xn,un)−dn‖ . Using the fact that g is of class C1 at (x̄, ū) in x

with respect to u we get a sequence sn → 0+ such that

−y∗n ◦Dxg(xn, un) ∈ NF
sn(C, xn)

and
y∗n ∈ NF

sn(D, dn).

Extracting a subsequence if necessary we may assume that y∗n → y∗ and
since D is SNC at g(x̄, ū) and ‖y∗n‖ = 1, we get y∗ 6= 0. Thus there exists
y∗ ∈ NL(D, g(x̄, ū)), y∗ 6= 0, such that 0 ∈ y∗ ◦Dxg(x̄, ū)+NL(C, x̄). But
this inclusion contradicts the assertion β). ♦

4 A general result on seminormality and strong local controlla-
bility

Let H be a real Hilbert space and F : [a, b] ×H 7→ H be a multivalued
mapping. We consider the set C of solutions of the differential inclusion

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b]. (4)

We introduce the multivalued mapping G : H ×H 7→ W 1,p defined by

G(u, v) = {x ∈ W 1,p : ẋ(t) ∈ F (t, x(t)) a.e., (x(a) + u, x(b) + v) ∈ S} (5)

Let z be a solution of system (1). This system is said to be semi-normal
at z if there exist α > 0 and r > 0 such that

d(x,G(u, v)) ≤ αd((x(a) + u, x(b) + v);S) (6)

for all x ∈ B(z, r) ∩ C and u, v ∈ rB. Here B stands for the closed unit
ball of H and

B(z, r) = {x ∈ W 1,p : ‖x− z‖ ≤ r}.
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It is clear that seminormality implies strong local controllability. Here-
after we give a sufficient condition ensuring seminormality of the system
(1). This condition uses the linear continuous mapping w : W 1,p 7→ H×H
defined by

w(x) = (x(a), x(b)).

Theorem 4.1 Let 1 ≤ p ≤ ∞. Suppose that either H is of finite dimen-
sion or S is convex and sequentially normally compact at (z(a), z(b)).
Then the system is semi-normal at z (in W 1,p) provided that C is closed
(which is the case when the multivalued mapping x 7→ F (t, x) has closed
graph for almost all t) and

w∗(∂Ld(S, (z(a), z(b))) ∩ −∂Ld(C, z) = {0} (7)

where w∗ denotes the adjoint mapping of w.

Proof : Let us consider the following linear continuous mapping g :
W 1,p×H×H 7→ H×H defined by g(x, u, v) = (x(a)+u, x(b)+v). Then

G(u, v) =
{
x ∈ W 1,p : x ∈ C, g(x, u, v) ∈ S

}
and then (z, 0, 0) is a solution of the system

x ∈ C, g(x, u, v) ∈ S.

It suffices to show that part β) of Theorem 3.1 holds for this system. On
the contrary, suppose that there exists (a∗, b∗) 6= 0 such that:

(a∗, b∗) ∈ NL(S, g(z, 0, 0))

and
0 ∈ D∗xg(z, 0, 0)(a∗, b∗) +NL(C, z)

However, we have for all x ∈ W 1,p

Dxg(z, 0, 0)(x) = (x(a), x(b)) = w(x)

and then

〈D∗xg(z, 0, 0)(a∗, b∗), x〉 = 〈Dxg(z, 0, 0)(x), (a∗, b∗)〉
= 〈w(x), (a∗, b∗)〉
= 〈w∗(a∗, b∗), x〉

and hence D∗xg(z, 0, 0)(a∗, b∗) = w∗(a∗, b∗), but we have supposed that
(a∗, b∗) ∈ NL(S, (z(a), z(b)) and then

w∗(NL(S, (z(a), z(b))) ∩ −NL(C, z) 6= {0}
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or equivalently

w∗(∂Ld(S, (z(a), z(b))) ∩ −∂Ld(C, z) 6= {0}

which leads to a contradiction with the hypothesis of the proposition. So
part β) of Theorem 3.1 holds and then there exist a > 0 and r > 0 such
that

d(x,G(u, v)) ≤ ad(g(x, u, v), S)

for all x ∈ C ∩B(z, r) and all u, v ∈ B(0, r). Therefore

d(x,G(u, v)) ≤ ad((x(a) + u, x(b) + v), S)

and this completes the proof. ♦

5 Seminormality and strong controllability of sub-Lipschitz dif-
ferential inclusions

In this section we will give sufficient conditions for seminormality and
strong controllability of system (1) using the sub-Lipschitz property on
the differential inclusion in the case where H = Rm.

Definition 5.1 F is said to be sub-Lipschitzian in the sense of Loewen-
Rockafellar [11] at z if there exist β > 0, ε > 0 and a summable function
k : [a, b] 7→ R such that for almost all t ∈ [a, b], for all N > 0, for all
x, x′ ∈ z(t) + εB and y ∈ ż(t) +NB one has

d(y, F (t, x))− d(y, F (t, x′)) ≤ (k(t) + βN)|x− x′|.

This is not the original definition by Loewen-Rockafellar [11], but both
concepts are equivalent.

Before giving the results, we make a significant focus on the Sobolev space
W 1,1. Using the Hahn-Banach theorem and the Riesz representation
theorem, we obtain that for each element x∗ of the dual space (W 1,1)∗

of W 1,1 there exist two elements v0 and v1 in L∞ := L∞([a, b],Rn) such
that

〈x∗, x〉 = 〈v0, x〉L∞×L1 + 〈v1, x〉L∞×L1 ∀x ∈ W 1,1.

Set V0(t) = −
∫ b
t
v0(s)ds. Then V0(b) = 0 and V̇0(t) = v0(t). Integrating

by part, we get

〈x∗, x〉 = 〈x(a),−V0(a)〉Rn×Rn + 〈v1 − V0, ẋ〉L∞×L1 , ∀x ∈ W 1,1.

Now if we put w(t) =
∫ t
a
(v1 − V0)(s)ds− V0(a), then w ∈ W 1,∞ and

〈x∗, x〉 = 〈x(a), w(a)〉Rn×Rn + 〈ẇ, ẋ〉L∞×L1 , ∀x ∈ W 1,1.
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Thus for each x∗ ∈ (W 1,1)∗ there exists w ∈ W 1,∞ such that

〈x∗, x〉 = 〈x(a), w(a)〉Rn×Rn + 〈ẇ, ẋ〉L∞×L1 , ∀x ∈ W 1,1.

To avoid burdening the notation, we will put

w = x∗ 〈·, ·〉 = 〈·, ·〉Rn×Rn and 〈·, ·〉 = 〈·, ·〉L∞×L1 .

Thus the pairing between W 1,1 and (W 1,1)∗ may be defined by

〈x∗, x〉 = 〈x∗(a), x(a)〉+ 〈ẋ∗, ẋ〉L∞×L1 , ∀x ∈ W 1,1 ∀x∗ ∈ (W 1,1)∗. (8)

With the help of Theorem 2.1 in [8], Corollary 4.1 in [9] and Theorem
3.1.7 in [2], we obtain the following result.

Theorem 5.1 Let C ⊂ W 1,1 be the set of solutions of the system (1),
with S = Rm × Rm. Suppose that C is closed and F is sub-Lipschitzian
at z ∈ C. Then for each x∗ ∈ ∂Ld(C, z) there exists an arc p ∈ W 1,1

such that

ṗ(t) ∈ coD∗LF (t, ·)(z(t), ż)(−p(t)−ẋ∗(t)) a.e. t, p(a) = −x∗(a), p(b) = 0

and
〈p(t) + ẋ∗(t), ż(t)〉 = max

y∈F (t,z(t))
〈p(t) + ẋ∗(t), y〉 a.e. t.

We will show that the following sufficient conditions ensure strong con-
trollability of system (1) : there is nontrivial arc p satisfying

ṗ(t) ∈ coD∗LF (t, z(t), ż(t))(−p(t)) a.e. (9)

(p(a),−p(b)) ∈ NL(S, (z(a), z(b)) (10)

and

〈p(t), ż(t)〉 = max
v∈F (t,z(t))

〈p(t), v〉 a.e. (11)

In fact, we will show that these relations imply (7) and then, by Theorem
4.1, the seminormality as well as the strong local controllability.

Using the definition of the pairing between W 1,1 and its topological dual,
we obtain

Lemma 5.1 For each a∗, b∗ ∈ Rm satisfying u∗ := −w∗(a∗, b∗) ∈ ∂Ld(C, z),
we have

u∗(t) = −a∗ − b∗ − b∗(t− a) ∀t ∈ [a, b].
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Proof. For all x ∈ W 1,1 we have

〈u∗, x〉 = 〈−w∗(a∗, b∗), x〉 = −〈(a∗, b∗), w(x)〉 = −〈a∗, x(a)〉 − 〈b∗, x(b)〉

and hence

〈u∗(a), x(a)〉+

∫ b

a

〈u̇∗(t), ẋ(t)〉dt = −〈a∗, x(a)〉 − 〈b∗, x(b)〉. (12)

Now pick an arbitrary v ∈ Rm and put x(t) = v for all t ∈ [a, b]. Then

〈u∗(a), v〉 = −〈a∗, v〉 − 〈b∗, v〉.

Thus
u∗(a) = −a∗ − b∗.

Now replace u∗(a) in relation (12) we obtain

〈b∗, x(b)− x(a)〉+

∫ b

a

〈u̇∗(t), ẋ(t)〉dt = 0 ∀x ∈ W 1,1

or equivalently, for B∗(t) = b∗ for all t ∈ [a, b],∫ b

a

〈B∗(t) + u̇∗(t), ẋ(t)〉dt = 0 ∀x ∈ W 1,1.

This last one gives the desired equality. ♦

Theorem 5.1 and Lemma 5.1 guarantee the following result.

Theorem 5.2 The assumptions in Theorem 5.1 ensure the following im-
plication

(9) + (10) + (11) =⇒ (7).

Proof. Let (a∗, b∗) ∈ ∂Ld(S, (z(a), z(b)) be such that u∗ := −w∗(a∗, b∗) ∈
∂Ld(C, z). By Lemma 5.1, we have

u∗(t) = −a∗ − b∗ − b∗(t− a) ∀t ∈ [a, b].

Theorem 5.1 ensures the existence of p ∈ W 1,1 such that

ṗ(t) ∈ coD∗LF (t, ·)(z(t), ż)(−p(t)−u̇∗(t)) a.e. t, p(a) = −u∗(a), p(b) = 0

and
〈p(t) + u̇∗(t), ż(t)〉 = max

y∈F (t,z(t))
〈p(t) + u̇∗(t), y〉 a.e. t.

Put p0(t) = p(t) + u̇∗(t) for all t ∈ [a, b]. Then p0 ∈ W 1,1 and

ṗ0(t) = ṗ(t), a.e.t ∈ [a, b], p0(a) = a∗, p0(b) = −b∗.

Thus p0 satisfies relations (9), (10) and (11) and hence p0 = 0. Conse-
quently, we obtain that a∗ = b∗ = 0 and u∗ = 0. This asserts that relation
(7) holds true. ♦
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6 Controllability and strong controllability of pseudo-Lipschitz
differential inclusions

Let F : [a, b] × Rm 7→ Rm be a multivalued mapping and R : [a, b] ×
[0,+∞[ 7→]0,+∞] be a measurable function, in the first variable, referred
as the radius function.
Following Clarke [3], F is said to satisfy

1) a pseudo-Lipschitz property for radius R near z if for each s ≥ 0
there exist εs > 0 and a summable function ks such that for almost
all t ∈ [a, b], for every x and x′ in B(z(t), εs)

F (t, x) ∩B(ż(t), R(t, s)) ⊂ F (t, x′) + ks(t)|x− x′|B (13)

2) the tempered growth condition for radius R near z if for each s ≥ 0
there exist εs > 0, λs ∈]0, 1[ and a summable function rs such that
for almost every t ∈ [a, b] we have 0 < rs(t) ≤ λsR(t, s) and

|x− z(t)| ≤ εs =⇒ F (t, x) ∩B(ż(t), rs(t)) 6= ∅ (14)

Note that it is not the original Clarke’s definition, but its parametrized
version.

For the class of pseudo-Lipschitzian differential inclusions, the definitions
of controllability and strong controllability will be modified as follows:

1) The system (1) is said to be locally controllable at z if there exists
s ≥ 0 such that for each ε > 0 there exists δ > 0 such that for all
v ∈ B(0, δ) there exists a trajectory x for F , with ‖x − z‖ ≤ ε,
satisfying (x(0), x(1) + v) ∈ S and for almost all t ∈ [0, 1], ẋ(t) ∈
B(ż(t), R(t, s)).

2) It is said to be strongly locally controllable at z if there exist a >
0 and δ > 0 such that for all u and v in B(0, δ) there exists a
trajectory x for F , with ‖x − z‖ ≤ a(|u| + |v|), satisfying (x(0) +
u, x(1) + v) ∈ S and for almost all t ∈ [0, 1], ẋ(t) ∈ B(ż(t),R(t)),
where

R(t) = lim inf
s→+∞

R(t, s).

6.1 Strong controllability under Mordukhovich’s regularity

In this subsection the Lipschitz constant as well as the radius R for F
near z are not depending on the parameter s.
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In this section we are interested in the strong controllability of the system
(1) under Mordukhovich regularity of the solution set C to the following
system :

ẋ(t) ∈ F (t, x(t)) ∩B(ż(t), R(t)) a.e. t ∈ [0, 1] (15)

We say that C is Mordukhovich regular at z if

∂Ld(C, z) = ∂Fd(C, z).

This happens, for example, when the set-valued mapping x 7→ F (t, x) is
convex, in the sense that its graph is.

Theorem 6.1 Let z be a solution of the system (1). Suppose that C
is closed and Mordukhovich regular at z and that F is Clarke’s pseudo-
Lipschitz and satisfies the tempered growth condition for radius R near
z. Then the system (1) is strongly locally controllable at z, provided that
there is nontrivial arc p satisfying the inclusions (9) and (10) as well as
the following maximum condition

〈p(t), ż(t)〉 = max
v∈F (t,z(t))∩B(ż(t),R(t))

〈p(t), v〉 a.e. (16)

The proof of the theorem uses the following lemma whose proof’s is a
consequence of Theorem 4.1.1 in [3].

Lemma 6.1 Let a∗, b∗ ∈ Rm be such that −w∗(a∗, b∗) ∈ ∂Ld(C, z).
Then, under the assumptions of the theorem, there exists un arc p which
satisfies, in addition to relations (9) and (16), the following ones : p(a) =
a∗ and p(b) = −b∗.

Proof. Let −w∗(a∗, b∗) ∈ ∂Ld(C, z). Since C is Mordukhovich regular
at z, we have for all γ > 0 there exists δ > 0 such that

〈w∗(a∗, b∗), x− z〉+ γ‖x− z‖ ≥ 0∀x ∈ B(z, δ) ∩ C

or equivalently

〈a∗, x(a)−z(a)〉+〈b∗, x(b)−z(b)〉+γ|x(a)−z(a)|+γ
∫ b

a

|ẋ(t)−ż(t)|dt ≥ 0

for all x ∈ B(z, δ) ∩ C. Since F is pseudo-Lipschitz for radius R near z,
with a summable function k, there exists ε > 0 such that for almost all
t ∈ [a, b], for every x and x′ in B(z(t), ε)

F (t, x) ∩B(ż(t), R(t)) ⊂ F (t, x′) + k(t)|x− x′|B (17)
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The tempered growth condition for radius R near z implies the existence
of εs > 0, λs ∈]0, 1[ and a summable function rs such that for almost
every t ∈ [a, b] we have 0 < rs(t) ≤ λsR(t, s) and

|x− z(t)| ≤ εs =⇒ F (t, x) ∩B(ż(t), rs(t)) 6= ∅

We may assume that ε = ε0 = δ. Consider the function L : [a, b]× Rm×
Rm 7→ R ∪ {+∞} and ` : Rm × Rm 7→ R defined by

L(t, x, y) =

{
γ|y − ż(t)| if y ∈ F (t, x)
+∞ otherwise

and
`(u, v) = 〈a∗, u− z(a)〉+ 〈b∗, v − z(b)〉+ γ|u− z(a)|.

So z is a local solution of radius R (in the Clarke sense [3]) of the problem

min `(x(a), x(b)) +

∫ b

a

L(t, x(t), ẋ(t))dt.

It is not difficult to see that all the assumptions of Theorem 4.1.1 in [3]
are satisfied and to apply this theorem to complete the proof.♦

Proof of Theorem 6.1. We are ready to show that relation (7) is
satisfied and to apply Theorem 4.1. Let (a∗, b∗) ∈ ∂Ld(S, (z(a), z(b)))
be such that w∗(a∗, b∗) ∈ −∂Ld(C, z). Then, Lemma 6.1 ensures the
existence of un arc p satisfying relations (9) and (16) and p(a) = a∗

and p(b) = −b∗. So that (p(a),−p(b)) ∈ ∂Ld(S, (z(a), z(b))), and the
assumption of the theorem implies that p = 0. Thus a∗ = b∗ = 0. The
proof is then completed. ♦

6.2 Controllability under the closedness of the attainable set

In this section, the set S in (1) takes the following form

S = S0 × S1

where S0 and S1 are closed sets in Rm.
We are concerned with local controllability of the system (1) under the
closedness of the attainable set A(F, S0) with a pseudo-Lipschitz differ-
ential inclusion. For a set S0 ⊂ Rm and a parameter s ≥ 0, the attainable
set for trajectories of F emanating from S0 is defined by

As(F, S0) := {x(b) : ẋ(t) ∈ F (t, x(t))∩B(ż(t), R(t, s)) a.e., x(a) ∈ S0}.

For s ≥ 0, we say that As(F, S0) is locally closed near z if for each ε > 0
sufficiently small the following set is closed in Rm :

As,ε(F, S0) := {x(b) : ‖x− z‖ ≤ ε, ẋ(t) ∈ F (t, x(t)) ∩B(ż(t), R(t, s)) a.e.,

x(a) ∈ S0}.
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Theorem 6.2 Let z be a solution of the system (1). Suppose that, for
each s ≥ 0, the attainable set As(F, S0) is locally closed near z and that F
is Clarke’s pseudo-Lipschitz and satisfies the tempered growth condition
for radius R near z. Then the system (1) is locally controllable at z,
provided that there is nontrivial arc p satisfying relations (9) as well as
the following ones

p(a) ∈ NL(S0, z(a)), −p(b)) ∈ NL(S1, z(b)) (18)

〈p(t), ż(t)〉 = max
v∈F (t,z(t))∩B(ż(t),R(t))

〈p(t), v〉 a.e. (19)

Where for almost all t ∈ [a, b], we set

R(t) = lim inf
s→+∞

R(t, s) (20)

Proof. Note that we may put a = 0 and b = 1 and assume that
S is a compact set and so there exists r > 0 such that S ⊂ 2rB. We
introduce the following transformation of system (1), which is in the line
of Theorem 3.5.3 in [2] :

(ẋ(t), ẏ(t)) ∈ F̃ (t, x(t), y(t)) a.e.t ∈ [0, 2]; (21)

(x(0), y(0)) ∈ C0, (x(2), y(2)) = (0, 0) (22)

where F̃ : [0, 2] × Rm × Rm 7→ Rm × Rm is the multivalued mapping
defined by

F̃ (t, x, y) =

{
F (t, x+ y)× {0} if 0 ≤ t ≤ 1
{0} × 2rB if 1 ≤ t ≤ 2

and C0 = {(c0 − c1, c1) : (c0, c1) ∈ S}. Define the arc z̃ by

z̃(t) =

{
(z(t)− z(1), z(1)) if 0 ≤ t ≤ 1
(0, (2− t)z(1)) if 1 ≤ t ≤ 2

It is not difficult to see that z̃ is a solution of system (23) and F̃ is Clarke’s
pseudo-Lipschitz and satisfies the tempered growth condition for radius
R̃ near z̃, where

R̃(t, s) =

{
R(t, s) if 0 ≤ t ≤ 1
2r if 1 < t ≤ 2

Then, we have the following properties.
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Lemma 6.2

1. Define two functions ft and gt by

ft(y, z, v) = d(v, F (t, y + z)) and gt(x, v) = d(v, F (t, x)).

Let (y∗, z∗, v∗) ∈ ∂Lft(ȳ, z̄, v̄). Then y∗ = z∗ and (y∗, v∗) ∈ ∂Lgt(ȳ+
z̄, v̄).

2. If 0 ≤ t ≤ 1, v̄ ∈ F (t, ȳ+z̄) and (y∗, z∗) ∈ D∗LF̃ (t, (ȳ, z̄), (v̄, 0))(v∗, w∗)
then y∗ = z∗, y∗ ∈ D∗LF (t, ȳ + z̄, v̄)(v∗).

3. If 1 ≤ t ≤ 2 and (y∗, z∗) ∈ D∗LF̃ (t, (0, (2−t)z(1)), (0,−z(1)))(v∗, w∗),
then y∗ = z∗ = w∗ = 0.

4. Let (x0, y0) ∈ C0 and (x∗, y∗) ∈ NL(C0, (x0, y0)). Then x∗ ∈
NL(S0, x0 + y0) and y∗ − x∗ ∈ NL(S1, y0).

Proof. We establish only the item 1. The other ones are easy to ob-
tain. Let (y∗, z∗, v∗) ∈ ∂Lft(ȳ, z̄, v̄). Then, by the definition of the Mor-
dukhovich’s subdifferential, there are sequences (y∗n, z

∗
n, v

∗
n)→ (y∗, z∗, v∗),

(yn, zn, vn)→ (ȳ, z̄, v̄), δn → 0+ and εn → 0+ such that

d(v, F (t, y + z)− d(vn,F (t, yn + zn)− 〈y∗n, y − yn〉 − 〈z∗n, z − zn〉−
〈v∗n, v − vn〉+ εn[‖y − yn‖+ ‖z − zn‖+ ‖v − vn‖] ≥ 0

for all y ∈ B(yn, δn), z ∈ B(zn, δn) and v ∈ B(vn, δn). Putting xn =
yn + zn and x = y + z, the last inequality implies that

d(v, F (t, x)− d(vn,F (t, xn)− 〈y∗n, x− xn〉 − 〈z∗n − y∗n, z − zn〉−
〈v∗n, v − vn〉+ 2εn[‖x− xn‖+ ‖z − zn‖+ ‖v − vn‖] ≥ 0

for all x ∈ B(xn,
δn)
2

, z ∈ B(zn,
δn)
2

) and v ∈ B(vn, δn). Take z = zn (resp.
x = xn and v = vn) we get

d(v, F (t, x)− d(vn, F (t, xn)− 〈y∗n, x− xn〉−〈v∗n, v − vn〉+
2εn[‖x− xn‖+ ‖v − vn‖] ≥ 0

for all x ∈ B(xn,
δn)
2

and v ∈ B(vn, δn) (resp. ‖y∗n − z∗n‖ ≤ 2εn). Thus
(y∗, v∗) ∈ ∂Lgt(ȳ + z̄, v̄) and y∗ = z∗.♦

The following lemma shows that the local closedness of the attainable
set for F implies that for F̃ .

Lemma 6.3 For each s ≥ 0 , the attainable set As(F̃ , C0) for trajecto-
ries of F̃ emanating from C0 is locally closed near z̃.
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Proof. Let ((un, vn)) be a sequence of As(F̃ , C0) converging to some
(ux, vy). We will show that (ux, vy) ∈ As(F̃ , C0). Indeed, let (xn, yn) be
a trajectory for F̃ be such that

(ẋn(t), ẏn(t)) ∈ B( ˙̃z(t), R̃(t, s)), (xn(0), yn(0)) ∈ C0, (xn(2), yn(2)) = (un, vn).

Then xn(0) + yn(0) ∈ S0, yn(0) ∈ S1 and{
ẏn(t) = 0, ẋn(t) ∈ F (t, xn(t) + yn(t)) ∩B(ż(t), R(t, s)) a.e. t ∈ [0, 1]
ẋn(t) = 0, ẏn(t) ∈ 2rB a.e. t ∈ [1, 2]

It follows that xn(1) = xn(2) = un and yn(1) = yn(0) ∈ S1. Set wn(t) =
xn(t) + yn(t) for all t ∈ [0, 2]. Then wn(0) ∈ S0 and{

ẇn(t) ∈ F (t, wn(t)) ∩B(ż(t), R(t, s)) a.e. t ∈ [0, 1]
ẇn(t) ∈ 2rB a.e. t ∈ [1, 2]

First, we consider the case ẇn(t) ∈ 2rB a.e.t ∈ [1, 2], with wn(1)− un =
yn(1) ∈ S1. Set Wn(t) = wn(t)− un. Since S1 is compact, Theorem 3.1.7
in [2] asserts that there exists a subsequence of (Wn) which converges
uniformly to an arc W satisfying

Ẇ (t) ∈ 2rB a.e. t ∈ [1, 2] and W (1) ∈ S1

and hence (wn) converges uniformly to an arc w which satisfies

ẇ(t) ∈ 2rB a.e.t ∈ [1, 2] and w(1)− ux ∈ S1

Second, (wn(1)) is a sequence of the set As(F, S0) which is closed. Then,
since wn(1)→ w(1) ∈ As(F, S0), there exists an arc v such that

v̇(t) ∈ F (t, v(t))∩B(ż(t), R(t, s)) a.e.t ∈ [0, 1], v(0) ∈ S0, v(1) = w(1).

Now since yn(1) = wn(1)− un, then yn(1)→ w(1)− ux. Set

x(t) =

{
v(t)− v(1) + ux if 0 ≤ t ≤ 1
ux if 1 ≤ t ≤ 2

and y(t) =

{
w(1)− ux if 0 ≤ t ≤ 1
w(t)− ux if 1 ≤ t ≤ 2

with w(2) = ux + vx. Then (x, y) is a trajectory for F̃ which satisfies

(ẋ(t), ẏ(t)) ∈ B( ˙̃z(t), R̃(t, s)), (x(0), y(0)) ∈ C0, (x(2), y(2)) = (ux, vy)

and the proof is completed.♦

The following result is a consequence of Theorem 2.3.3 in [3].
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Lemma 6.4 Let z be a solution to the system

ẋ(t) ∈ F (t, x(t)) a.e., x(0) ∈ S0 (23)

where S0 ⊂ Rm is closed and F is Clarke’s pseudo-Lipschitz and satisfies
the tempered growth condition for radius R near z, and that for each
s ≥ 0 there exists εs > 0 such that z(1) is a boundary point of the set

As(F, S0) := {x(1) : ‖x−z‖ ≤ εs, ẋ(t) ∈ F (t, x(t))∩B(ż(t), R(t, s)) a.e., x(0) ∈ S0}.

Then there exists a nontrivial arc p such that

ṗ(t) ∈ coD∗LF (t, z(t), ż(t))(−p(t)) a.e.

p(0) ∈ NL(S0, z(0))

〈p(t), ż(t)〉 = max
v∈F (t,z(t))∩B(ż(t),R(t))

〈p(t), v〉 a.e.

Proof of Theorem 6.2 (be continued) : It is easy to see that F̃
satisfies the Clarke’s pseudo-Lipschitz property near z̃ as well as the
tempered growth condition of radius R̃ near z̃. We will show that the
conlusion of Lemma 6.4 does not hold for F̃ at z̃. Let p and q be two
arcs satisfying:

the Euler-Lagrange inclusion

(ṗ(t), q̇(t)) ∈ coD∗F̃ (t, z̃(t), ˙̃z(t))(−p(t),−q(t)) a.e. (24)

the transversality condition

(p(0), q(0)) ∈ NL(C0, z̃(0)) (25)

as well as the maximum condition

〈(p(t), q(t)), ˙̃z(t)〉 = max
(w1,w2)∈F̃ (t,z̃(t)∩B(z̃(t),R̃(t))

〈p(t), w1〉+ 〈q(t), w2〉(26)

By Lemma 6.2, the Euler-Lagrange inclusion (24) implies that

ṗ(t) = q̇(t) and ṗ(t) ∈ coD∗LF (t, z(t), ż(t))(−p(t)) a.e.t ∈ [0, 1] (27)

This implies, in particular, that p(1)− p(0) = q(1)− q(0). The transver-
sality condition (25) and Lemma 6.2 ensure that

p(0) ∈ NL(S0, z(0)) and q(1)− p(1) = q(0)− p(0) ∈ NL(S1, z(1))(28)
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It follows from the maximum condition (26) that

〈p(t), ż(t)〉 = max
w∈F (t,z(t))∩B(ż(t),R(t))

〈p(t), w〉 a.e.t ∈ [0, 1] (29)

and q(t) = 0 for all t ∈ [1, 2]. So that q(1) = 0 and hence −p(1) ∈
NL(S1, z(1)). Now, it is time to use relations (9), (18) and (19) to get
p = q = 0. This allows us to apply Lemma 6.4 to get the existence of
s ≥ 0 such that for all ε > 0, z̃(2) is not a boundary point of the set

As,ε(F̃ , C0).

But as this set is closed and z̃(2) ∈ As,ε(F̃ , C0), it follows that z̃(2)
is an internal point of As,ε(F̃ , C0). A simple computation leads to the
conclusion of our theorem.♦

The following example shows the necessity of the tempered growth con-
dition.

Example 6.1 Let k : [0, 1] 7→ [0,+∞[ be a summable function, which is
unbounded on any open interval. Define ([3]) the multivalued mapping
F : [0, 1] × R 7→ R by F (t, x) =] − ∞,−k(t)|x|]. Then F is pseudo-
Lipschitz for any choice of radius function R near z = 0. Then for
any essentially bounded function R, the attainable set A(F, {0}) = {0}
(since the only trajectory x for F emanating from 0 and satisfying ẋ(t) ∈
B(0, R(t)) is x = 0) and hence the following system is not locally con-
trollable at z = 0:

ẋ(t) ∈ F (t, x(t)) a.e.t ∈ [0, 1] x(0) = 0.

However the only adjoint arc p satisfying relations (9), (18) and (19) is
p = 0.
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