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Abstract. In this paper, we study conditioning problems for convex
and nonconvex functions defined on normed linear spaces. We extend
the notion of upper Lipschitzness for multivalued functions introduced
by Robinson, and show that this concept ensures local conditioning in
the nonconvex case via an abstract subdifferential; in the convex case,
we obtain complete characterizations of global conditioning in terms of
an extension of the upper-Lipschitz property.
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1. Introduction

To solve the optimization problem

or the inclusion

one may consider some iterative methods. In 1970,. Martinet (Refs. 1-2)
introduced the proximal method as a regularization in the context of convex
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optimization in Hilbert spaces. Since then, it has been studied by many
people for the general maximal monotone inclusion problem under various
instances (see Ref. 3 for survey). The proximal method consists in finding
a zero of a maximal monotone operator T from a Hilbert space H into itself.
This method generates iteratively a sequence as follows:

with x0 known, where I denotes the identity operator and {Ak} is a given
sequence of positive reals. Note that this algorithm can be considered as a
discretization of the following differential inclusion:

The finite convergence of the algorithm (1) was first proved by
Rockafellar (Ref. 4, Proposition 8) for T the subdifterential in the sense of
convex analysis of a proper closed polyhedral convex function defined on a
finite-dimensional space. To ensure the finite convergence of the algorithm
in the general convex case, several authors imposed the assumption

for all z near zero, or

for some c>0, where S=arg min f is assumed to be a nonempty set. In his
paper (Ref. 4), Rockafellar studied this algorithm in the case of an arbitrary
maximal monotone operator T. He showed that the algorithm (1) converges
superlinearly if the sequence {Ak} is such that Ak -»+00, and if the operator
T is such that T-1 satisfies the following condition: there exist a>0 and
r>0 such that

for ||z|| <,r and xeT-1(z), when T-1(0) is a singleton. Note that this result
has been extended by Cornejo and Jourani (Ref. 5) to the case where T-1(0)
is a nonempty set. In the case where T= 8f, with f a convex function, Lemaire
(Refs. 6-7) used the so-called ^-conditioning to get the finite convergence
of Algorithm (1) when y is a linear function. A real-valued function f is
said to be ^-conditioned if
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where y: R+-> R+. In finite-dimensional spaces, Zhang and Treiman (Ref.
8) showed that (4) implies (5) whenever/is a lower-semicontinuous function
(for short, l.s.c. function) and \i/(t) = ct2, c>0, by using the Mordukhovich
subdifferential (Ref. 9).

In this paper, we study the conditioning problems for convex and non-
convex functions defined on normed linear spaces. For other related results,
see the recent paper of Penot (Ref. 10). We extend the notion of upper
Lipschitzness for multivalued functions introduced by Robinson (Ref. 11),
and we show that this concept ensures the local conditioning in the noncon-
vex case via an abstract subdifferential. In the convex case, we obtain com-
plete characterizations of global conditioning in terms of an extension of
the upper-Lipschitz property. Other characterizations are also investigated
in the paper.

2. Background

Throughout this paper, X denotes a normed vector space and X* its
topological dual endowed with its dual norm. If xeX and x*eX*, the ele-
ment x*(x) is denoted by <x, x*> or <x*, x>. If A<=X, int A denotes its
interior, while conv A denotes the closed convex hull of A. The set
.Ru{-oo,+oo} is denoted by R, while R+ and R+ denote the sets of non-
negative reals and R+u{oo}, respectively. Consider a function
f:X->Rv{co}. The domain of f is the set

/ is proper if dom f ̂ 0. The function f is convex if

f(Ax + ( l -A)y)<Af(x) + (l-A)f(y), Vx,.yedom f ,VAe[0, 1].

The subdifferential of f at xedom f (in the sense of convex analysis) is the
set

If x^dom f, then df(x) = 0. If the function is convex, we consider always
this subdifferential. The conjugate of / is the w*-l.s.c. convex function
f*:X* -> R, defined by
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The indicator function of the set AcX is the function I A : X - * R < j { < x > } ,
defined by

The convolution of the functions f and g is denoted by fAg and is defined
by

For a subset A of X, we denote the distance from the point xeX to A by

with the convention that d(x, 0) = oo. The closed ball centered at xeX and
having radius p>0 will be denoted by Bx(x, p); we also denote by Bx the
ball 5(0, 1) and by Bx* the ball BX*(0, 1). For C and D subsets of X, the
Hausdorff excess of C over D is defined by

with the convention e(0, D) = 0; the p-Hausdorff excess of C over D, for
p>0, is defined by

Let X, Y be normed linear spaces. We endow X x Y with the box norm

Generally, a multivalued mapping T: X^. Y will be identified with its graph

the inverse of F will be denoted by F-1; of course,

3. Upper o-Lipschitz Multivalued Mappings: Error Estimates

We recall first the notion of diagonally stationary sequences introduced
by Lemaire in Ref. 12.

Definition 3.1. Let {T"} be a sequence of multivalued mappings from
X into A"*. A sequence {xn} in X is diagonally stationary for {T"} [for short,
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{Tn}-DS] if

Definition 3.2. Let T:X^X* be a multivalued mapping with
T-1(0)^0, and let q>: R+-+R+ be a function. We say that T-1 is upper <p-
Lipschitz at 0 on the nonempty set CcX* containing 0 if

Note that, for q>(t) = t, we recover the definition of upper Lipschitzness
given by Robinson (Ref. 11). See Refs. 9, 13-15 for more details on various
Lipschitzian behaviors, other than the upper-Lipschitz continuity of multi-
valued mappings.

Example 3.1. Let the operator T be strongly monotone. Then, T-1 is
upper <p-Lipschitz at zero with <p(t) = at for some a>0.

Example 3.2. See Zhang-Treiman (Ref. 8). Let f: Rn-»R u {00} and
zedom f. The subdifferential of f at z, in the sense of Mordukhovich (Ref.
9), is the set

where

is the contingent directional derivative of f at z in the direction w, and where
z U z means that z -»z and f(z) -*f(z). Let C be a closed subset of R".

(i) If f(x) = d(*, C), there exists r>0 such that, for all zerBR" and
xe(3"/)~'(z), one has

(ii) If f(x) = (d(x, C))2, there exists r >0 such that, for all zerBa- and
x e ( d ~ f ) ~ l ( z ) , one has
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The next result was established by Lemaire for subdifferentials
(Ref. 12).

Proposition 3.1. Let {xn} be a {Tn}-DS sequence with lim sup \\xn\\ <p
for some p>0. Assume that limn,..̂  ep(T", T) = 0 and that T~1 is upper (p-
Lipschitz at 0 on rBx», r>0, where q>: [0, oo[ -> [0, oo] is a nondecreasing
function with <p(0) = 0 and such that cp is increasing, finite, and continuous
on [0, t0] for some t0>0. Then, there exists a sequence {x*} <=X* converging
to 0 such that, for n sufficiently large, x* e T"(xn) and

Proof. By hypothesis, there exists a sequence {x*}<=X* such that
x*eT"(xn) and ||x*||->0. Also, from the hypothesis, there exists
5e]0, p[, 6<(p(t0), and n0eN such that T~l is upper ^-Lipschitz on
BX*(0, S), ||Xn|| <S/3, \\xn\\ <p, and ep(T", T)<6/3, for n>n0. It follows
that, for n>n0,

Let us fix ee ]0, 5/3[. Then, there is a sequence {(un, u*)} c T such that

It follows that

By the upper <p-Lipschitz property of T 'on .By*(0, 8), and using the prop-
erties of <p and (7), we get

So, for n^n0, we obtain

Letting e -»0, we obtain that (6) holds for « > «0. D

In the next proposition, we obtain the following best approximation.

Proposition 3.2. Let {*„} be a {Tn}-DS sequence with lim sup ||xn\\ <p
for some p>0. Assume that lim,,.^ ep(Tn, T) = 0 and that there exists r>0
such that
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{Tn}-DS] if

Definition 3.2. Let T:X^X* be a multivalued mapping with
T-1(0)^0, and let q>: R+-+R+ be a function. We say that T-1 is upper <p-
Lipschitz at 0 on the nonempty set CcX* containing 0 if

Note that, for q>(t) = t, we recover the definition of upper Lipschitzness
given by Robinson (Ref. 11). See Refs. 9, 13-15 for more details on various
Lipschitzian behaviors, other than the upper-Lipschitz continuity of multi-
valued mappings.

Example 3.1. Let the operator T be strongly monotone. Then, T-1 is
upper <p-Lipschitz at zero with <p(t) = at for some a>0.

Example 3.2. See Zhang-Treiman (Ref. 8). Let f: Rn-»R u {00} and
zedom f. The subdifferential of f at z, in the sense of Mordukhovich (Ref.
9), is the set

where

is the contingent directional derivative of f at z in the direction w, and where
z U z means that z -»z and f(z) -*f(z). Let C be a closed subset of R".

(i) If f(x) = d(*, C), there exists r>0 such that, for all zerBR" and
xe(3"/)~'(z), one has

(ii) If f(x) = (d(x, C))2, there exists r >0 such that, for all zerBa- and
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Definition 4.1. Let y: R+ -*• R+. Consider a function f: X -»R u {+ oo}
whose set of critical points, defined by S = ( d f ) - 1 ( 0 ) , is nonempty. We say
that f is ip-conditioned on the subset A of X with Ar\S^0, if inffeR and

If A=^, we simply say that f is ^-conditioned.

We give now some examples of ^-conditioning, putting in evidence the
function y/.

Example 4.1. Consider the quadratic programming problem

where A is a positive-definite symmetric n x n matrix and ceR". It is known
that f is convex and that the unique optimal solution of p is

therefore,

and so,

One has

whence

where

Therefore,f is w-conditioned with y ( t ) = Kt2.

(P3) df(x) is equal to the subdifferential of f at x in the sense of
convex analysis whenever f is convex and l.s.c.;

(P4) Oedf(x), whenever xedom f .is a local minimum point of f;
(P5) if f is l.s.c. on a neighborhood of x, and if g is convex and

continuous, then
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Another example is given by Bahraoui and Lemaire in Ref. 19, where
the solution set S is not a singleton.

Example 4.2. See Lemaire (Ref. 12) and Tiba (Ref. 20). Let f: X -» R
be a convex proper function satisfying the Slater condition [i.e., there exists
x0eX such tnat f (xo)<0], and consider

Then, for all r>0, there exists ar>0 such that

i.e., g = max(f, 0) is w-conditioned on x0 + rBx with \i/(t) = art.

Indeed, for xe(x0+rBx)\C, we have

We can assume that f (x) < oo. Let us take

By the convexity of f, we get

whence

this implies that

Example 4.2 can be stated in a more general situation.

Example 4.3. See Robinson (Ref. 11) and Ursescu (Ref. 21). Let X
and Y be Banach spaces, and let F: X^ Y be a multivalued mapping with
closed and convex graph. Suppose that 0 is an internal point of the range
of F. Then, for every jcoeF-1(0), there exist c, r>0 such that
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i.e., g(x) = d(0, F(x)) is (w-conditioned on x0 + rBx with \i/(t) = (\/c(\ +r))t.
So, Example 4.2 is a direct consequence of this example. Indeed, it suffices
to consider F(x) = —f(x) + R- as a multivalued mapping.

Note that this result is extended in Jourani (Ref. 22) to y-paraconvex
multivalued mappings with y > 1; F is y-paraconvex, y > 0, if there exists
c>0 such that, for all x,yeX, Ae[0, 1],

We establish now a relation between the upper-Lipschitz property of
the inverse of the subdifferential and the conditioning of a function /. Our
proof is in line with that given by Zhang and Treiman (Ref. 8). It uses the
Ekeland varational principle (Ref. 23).

Theorem 4.1. Let q>: R+->R+ be an increasing function with < p ( 0 ) =
0, and suppose that there exists r > 0 and t0 > 0 such that

Lelf:X-*Rv { + 00} be a l.s.c. proper function, such that the set of its
critical points S=(df)~\0) is nonempty. Suppose that (df) - 1 is upper cp-
Lipschitz on rBx*. Then, f is w-conditioned on S + rBx, where y(t) =
(1 — f)ttp(ft) for t>0, with ye]0, 1[ a fixed number satisfying yr<t0.

Proof. Let ye]0, 1[ be such that yr<t 0 - Suppose that / is not y-
conditioned on S + rBx, where w is defined above. Then, there exists
x0eS+rBx such that

It follows that

whence there exists ce ]0, 1[ such that

Take

By the Ekeland variational principle (Ref. 23), there exists ueX such that
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From (12), taking into account (P5), we obtain the existence of u*edf(u)
such that ||«e|| <e, while from (10) and (11) we get

By the assumption and the choice of e, we have

But

and thus we obtain the contradiction

Therefore, f is ^-conditioned on S+rBx. D

Theorem 4.2. Suppose that T- df satisfies relation (8) of Proposition
3.2. Then, f is w-conditioned with y a linear function from R+ into R+.

Proof. The proof is analogous to that of Theorem 4.1. D

5. Conditioning and Upper p-Lipschitz Inverse Subdifferentials: Convex
Case

In this section, we give necessary and sufficient conditions to get the
upper p-Lipschitzness and linear conditioning (i.e., w is a linear function)
in the convex case.

Theorem 5.1. Let x be a normed vector space, f: X -» R a convex
proper l.s.c. function, Sc:X a nonempty closed convex set, and ce]0, oo[.
Consider the following statements:

Then, (i)«s>(ii)=>(iii). Moreover, if X is a Banach space, then (i)**-
(ii)«s*(iii).
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Proof.

(i)=>(ii). Clearly,

Since

and taking into account that

from (i) we have that

Therefore,

Moreover, if aeS, then

whence

Thus,

Since cd( •, S) is a continuous convex function, we have that

Condition (ii) implies that

passing to conjugates, we obtain the inequality in (i). As

(ii) => (i). As shown above, one has that
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for x* in a neighborhood of 0, one has that

thus,

(iii)=>(i). Suppose that X is a Banach space. Since S=df*(0), we
have that

(ii) => (iii). This is obvious because

By contradiction, suppose that there exists x eX such that

It follows that x$S. Therefore, there exists 0<c'<c such that

Fix c' < e < c. Using the Ekeland variational principle (Ref. 23), one obtains
ueX such that

The relation (15) is equivalent to

Therefore, there exists u* with

From (iii), it follows that df*(u )cS, whence ueS. Therefore, using also
(13) and (14), we have

As d(x, S) > 0, we get the contradiction e < c'. D

Remark 5.1. Note that (i)=*(ii) in Theorem 5.1 is true for f and 5
not necessarily convex, since the formula
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is valid for nonconvex functions. If (ii) of Theorem 5.1 holds, taking into
account that

from (ii)=>(i) of Theorem 5.1 we get that

and

But

so that

If we already know that S = arg min f and S is (closed) convex, we obtain
that the implication (ii) => (i) from Theorem 5.1 is true for/not convex. So,
we obtain Proposition 3.3 of Lemaire (Ref. 6), stated for/not convex, but
with S=arg min f a nonempty closed convex set. Note that, without assum-
ing that S is convex, (ii) =>(i) in Theorem 5.1 can be false as shown by the
following example: take f(x) = ||x| - 1|; then,f* verifies (ii) for S=[-l, 1]
and c=l , but arg min f={-1, 1}.

Corollary 5.1. Let X be a Banach space and f: X -»R be a proper
l.s.c. convex function, xeX, and ce]0, oo[. The following statements are
equivalent:

Proof. The equivalences (i) <*> (ii) o (iv) are stated in Theorem 5.1.
The implications (ii) => (iii) => (iv) are obvious. Also, from (iii) it follows
easily that

As df(x) is closed (even w*-closed),
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Thus, we have (iii) => (v).

It follows that

The implication is proved. D

When X is not complete and/is not convex, we still have some of the
equivalences stated above.

Corollary 5.2. Let X be a normed linear space, f:X->Ra proper l.s.c.
function, xeX, and c>0. The following statements are equivalent:

(i) f ( x ) z f ( x ) + c\\x-x\\,VxeX;
(ii) f*(0)ER and f*(x)=f*(0) + <Jc,**>,Vx*eX*, l l**l l<c;
(iii) cBx'<=df(x), df(x) being meant in the sense of convex analysis;
(iv) cBx.<=df**(x).

Proof.

(i) =>(iii). This is obvious: if ||x*|| <c, one has

(iii) => (i). This is the same as (v) =*• (i) from Corollary 5.1.
(i)=>(ii). This follows from Theorem 5.1 and the discussion after its

proof.
(ii)=>(i). As in Remark 5.1, one obtains that arg min f** = {x} and

One must show that f ( x ) = inf f. In the contrary case, take u such that
f ( x ) > n > inf f. As f is l.s.c. at x, there exists r>0 such that

From the relation stated above, for \\x — x\\ >r we have

Therefore

whence inff>inf f, a contradiction; the implication holds.
(ii)-«>(iv). This follows from (ii)«*>(iii) applied to f**. D
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Remark 5.2. The equivalences (i) <=> (ii) «t> (iv) from Corollary 5.1,
when X is a reflexive Banach space, follow from Theorem 2.1 in Ref. 24.
The equivalence (i) <=> (iv) in a milder form is established in Hilbert spaces
by Tossing (Ref. 25, Proposition 4.8). The equivalences (i) <=>(ii) <=>(iv) from
Corollary 5.2 are stated by Lemaire in Ref. 6, Proposition 3.1.

Let us consider the function

Proposition 5.1. Let X be a normed vector space, and let f : X - R be
a proper convex function. Suppose that S=arg min f is nonempty. Then,

or equivalently t-wf ( t ) / t is nondecreasing on ]0, oo[.

Proof. Penot (Ref. 10, Proposition 2.2) obtained the same conclusion,
even for f starshaped at every ueS, so we omit our original proof. D

The aim of the following corollary is to show that the local conditioning
implies the global conditioning but with a different function w (more exactly,
with a prolongation of w).

Corollary 5.3. Let X and / be as in the preceding proposition. If
y. [0, a] -»[0, oo[, where a >0, is such that

then

where

Proof. We have that y//> y on [0, a]. For d(x, S) = y > a, we have

Thus, the corollary is proved. D
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Now, under Corollary 5.3, in the convex case we can work with global
conditioning; the next theorem gives several characterizations for this. Con-
sider first the following class of functions:

F={\]/\ y convex, l.s.c., v/(0 = 0<*/ = 0 and \i/(t0)<oo for some t0>0}.

Theorem 5.2. Let X be a Banach space, let f: X-+ R be a l.s.c. proper
convex function with S=argmin f^0. The following statements are
equivalent:

(i) there exists a function y. [0, oo[ -» [0, oo] and t0>0 such that
w ( t ) >0 for te ]0, t0[ and f is w-conditioned on X;

(ii) there exists w e F such that f is w-conditioned on X;
(Hi) there exists w e F such that f *(x*)<f*(0) + I*(x*) + v^dl**!!),

Vx*eX*;
(iv) there exists (f/eF such that (x-x, x*>> y(d(x, S)),

V(x,x*)ef,VxeS;
(v) there exists <p: [0, oo[-»[0, °o[ nondecreasing such that <p(t) =

Oot = 0 and df* is upper o-Lipschitz at 0 on X*;
(vi) there exists 6: [0, oo[ -> [0, oo] nondecreasing such that

lim,^0
+0(t) = 0(0) = 0and

d(x,S)<e(\\x*\\), V(x,x*)edf;

(vii) / has good asymptotical behavior; i.e., (see Ref. 26), if {xn} aX
is such that d(0, d f ( x n ) ) - + 0 , then d(xn, S) -»0.

Moreover, in the implications (ii)o(iii)=>(iv), one can take the same
y; in (iv)=>(v), one can take (p(t) = y(t)/t for />0 and <p(0) = 0; in
(v)<*(vi), one can take p and 0 to be quasi-inverse to each other; in
(v)=>(ii), one can take

with ye]0,1[ arbitrary, but fixed.

Proof.

(i) =*• (ii). It is obvious that v//^ v, so that y/(t) > 0 for te ]0, t0]. As
t H* Vf(t)/t is nondecreasing on ]0, oo[ (see Proposition 5.1), it follows that
!///(/)>0 for t>0 and liminf.-.co y f ( t ) / t>0 . Using Ref. 24, Proposition
A.5, we obtain that y = conv yj^F. Of course,f is w-conditioned.

(ii) => (i). This is obvious.
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(ii) => (iii). Let x* eX *. Then,

because y* is nondecreasing.
(iii) => (ii). In the first part, we got

Since the function x t-» \f/(d( •, S)) is convex, proper, and l.s.c., we have that

Dualizing the inequality in (iii), we get (ii).
(i) => (iv). Let xeS and (x, x*)edf. Then,

Adding the above two inequalities, we get the conclusion with the same y.
(iv) => (v). From (iv), we obtain

whence
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Taking

and cp(0) = 0 we have the desired conclusion.

The function 0 is nondecreasing and

Moreover, from its definition,

Consider the function <p: [0, oo[ -» [0, oo] defined by

It is obvious that ( p ( 0 ) = 0 and <p is nondecreasing. If t>0, then p(t)>0;
otherwise, there exists sn->0+ such that 0(sn)>t, contradicting
lim^o* 0(s) = 0. From its definition, one obtains that

Suppose that (ii) does not hold for this y/. Then, there exists xeX such that

It follows that x$S and there exists 0<c< 1 such that

Take

Using the Ekeland variational principle (Ref. 23), there exists ueX such that

(vi) => (v). Suppose that

(v) =*• (ii). Let us fix ye ]0,1[, and consider i//: R+-* R+ defined by
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The last relation being equivalent to df n cB* = O, there exists u* such that

It follows that

But

whence

a contradiction. Therefore, (ii) holds for this y. As

we can replace ^ by ij/eF, where

It is obvious that q is nondecreasing and

If lim,_o+<P (t)>0, there exists (tn)l0 and e0>0 such that (p(tn)>€0 for every
«. By the definition of <p, we have that, for every n, there exists
(xn ,x*)edf such that

Remark 5.3. We have used that w is convex only for the equivalence
(i)«*>(ii). For the other equivalences, it suffices to consider that t-» y(w)/t
is nondecreasing. As seen in Proposition 5.1, the function yf satisfies this
condition.

Note that Theorem 5.2 covers Proposition 3.1 of Lemaire (Ref. 26).
The implication (i) => (iv) of Theorem 5.2 is just Ref. 26, Proposition 4.1; a

(vi) => (viii). This is obvious.
(vii) => (vi). Let us consider p: [0, oo[0, oo] defined by
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similar result to (iv) => (i), under different conditions, is proved in Ref. 26,
Proposition 4.2. Taking in (i) of Theorem 5.2,

and taking its prolongation to [0, oo[ as in Corollary 5.3, and p(t) = ct in
(vi), one obtains Theorem 4.3 of Zhang and Treiman (Ref. 8). Applying
Theorem 5.2 for w(t) = ct, one obtains a weaker form of Theorem 5.1.
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Then for n large enough, we have

d
(
xn, T

−1(0)
)
≤ eρ(T

n, T ).

Proof. The proof is analogous to that of Proposition 3.1.

It is known that many problems in mathematical programming can be
formulated as inclusion problems for monotone operators. The proximal
algorithm is the most general method known for solving such inclusions.

Example 3.3 Let T be a maximal monotone operator from a Hilbert space
into itself and let {xn} be generated by the proximal point algorithm, i.e.

xn+1 = (I + λn T )
−1(xn), (9)

where λn > 0 for every n and limn→∞ λn = ∞. The relation (9) is equivalent
to

0 ∈ T (xn+1) +
xn+1 − xn

λn
.

Let T n = T + ·−xn
λn

and suppose that T−1(0) ̸= ∅. Then the sequence {xn}
is bounded and, obviously,

lim
n→∞

d(0, T n(xn+1)) = 0.

Moreover, for every ρ > 0, we have

eρ(T
n, T ) → 0 as n→ ∞.

Thus we get that limn→∞ d(xn, T
−1(0)) = 0 provided that T−1 is upper-

Lipschitz at 0.

4 Conditioning and upper φ-Lipschitzian in-

verse subdifferentials: the nonconvex case

In this section we assume that X is a Banach space. Following Refs. 16–18,
we will call subdifferential on X an operator ∂ which satisfies the following
properties for functions f, g from X into IR ∪ {+∞}:

P1) ∂f(x) ⊂ X∗ and ∂f(x) = ∅ if x /∈ dom f ,

P2) ∂f(x) = ∂g(x) whenever f and g coincide on a neighbourhood of x,
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