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Abstract: Our aim in this paper is to prove geometric characterizations of the
free disposal condition for nonconvex economies on infinite-dimensional commodity
spaces even if the cone and the production set involved in the condition have empty
interior such as in L1 with the positive cone L1

+. We then use this characterization
to prove existence of Pareto and weak Pareto optimal points. We also explore
a notion of extremal systems à la Kruger-Mordukhovich. We show that the free
disposal hypothesis alone assures extremality of the production set with respect
to some set.
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1 Introduction

The importance of the free-disposal condition in producer theory and the cor-
responding version of the non-satiation assumption in consumer theory is well-
known and explained in classical references such as Arrow[2], Debreu[14, 15, 16],
Lange [34], Mas-Colell [36, 38] and more recents references Benoist [4], Borwein

∗CMM y Departamento de Ingineria Matematicà Universidad de Chile, Casilla 170, Correo
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and Jofre [8], Fl̊am and Jourani [17], Kahn and Vohra [28, 29, 30], Kreps [32],
Mordukhovich (Chapter 8)[41, 40], Quinzii [42], Villar[46]. These assumptions are
extensively used for obtaining equilibrium or Pareto efficiency in convex economies
and also after the seminal works by Guesnerie [19] and Kahn and Vohra [28] for
nonconvex economies either finite or infinite dimensional commodity spaces. This
assumption is part of the argument for proving the non negativity of equilibrium
prices and without it the existence and properties of equilibria are no longer valid.
To overcome this difficulty in economies with nonconvex production sets, several
notions of equilibria have been proposed. However, the free disposal and nonsa-
tiation conditions are most of the time part of the assumptions. Such existence
issues are largely explored in the literature in the past decades either in finite or
infinite dimensional spaces.

Economic models with intertemporal decisions and infinite horizon with or without
uncertainty such as optimal portfolios in finance and optimal paths in macroeco-
nomics growth models, or models of commodity differentiation in which the deci-
sions space is the Borel measure on a compact metric space. All these cases are
good examples of infinite dimensional economic model. In these cases, the free
disposability assumption is assumed typically taking the natural positive cone L+

of the commodity space L or a transformation of this cone, which is often also
asked to have nonempty interior. Unfortunately, this is not satisfied for example
for commodity space Lp, with 1 ≤ p <∞ or more general reflexive Banach lattice.
Concrete examples of positive cones with empty interior are L2

+ and L1
+, very often

used in financial markets and equilibrium theory.

In infinite dimensional spaces a common condition for overcome empty interior of
the positive cone is the properness property introduced by Mas-Colell (see Mas-
Colell [36, 37, 38]) and its extension to nonconvex sets (Florenzano, Gourdel and
Jofré [18]). However, the main Theorem 1 below shows that no properness condi-
tion is required for the characterization of the free disposal condition.

Our aim in this paper is to prove primal and dual geometric characterizations
of the free disposal hypothesis in nonconvex economies with infinite-dimensional
commodity spaces even if the cone and the production set involved in this condi-
tion have empty interior or the corresponding property for consumers. The proof
of these results are based on Danes’s Drop Theorem. We then use the characteriza-
tion to obtain existence of Pareto and weak Pareto optimal (see [1] for distinctions
between these two notions), extending in this way characterizations of efficient
production vectors in finite dimensional spaces proved by Bonnisseau and Crettez
[7]. We also explore the concept of extremal systems à la Kruger-Mordukovich
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[41], and show that the free disposal hypothesis alone assures extremality of the
production set with respect to a specific set.

An important feature of our characterization is that first it extends the result by
Jofré and Rivera [25] from finite dimensional spaces to general Banach spaces.
Second, our characterization does not require any interiority (or epi-Lipschitzian)
condition on the production or respectively consumption set nor on the positive
cone as was used in [25].

2 Formulation of the free disposal condition

We are given

• two (real) Banach spaces U and V which represent inputs and outputs vectors
respectively.

• two closed sets U+ ⊂ U , V+ ⊂ V

• two closed sets U− = −U+ and V− = −V+

• and the production set which may be defined as

P := {(u, v) ∈ U × V |u can produce v}

The production set P is sometimes described in terms of its sections

P(u) := {v|(u, v) ∈ P}

and
P−1(v) := {u|(u, v) ∈ P}

which form the output feasibility and input requirement sets, respectively.
We say that both inputs and outputs are free disposable [2, 14] if

For u′ − u ∈ U+ and v′ − v ∈ V+ if (u, v) ∈ P then
(u′, v) ∈ P and (u, v′) ∈ P (1)

Free disposability of inputs or positive monotonicity, guarantees that an increase
in inputs cannot result in a decrease in outputs
These free disposability conditions can be characterized as follow:

For α ∈ U+ and β ∈ V+ if (u, v) ∈ P then (u+ α, v) ∈ P and (u, v + β) ∈ P
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m

∀u ∈ U and v ∈ V ;
P(u)− V− ⊂ P(u) and P−1(v)− U− ⊂ P−1(v) (2)

m if P is convex and U+ and V+ are convex cones

P − (U− × V−) ⊂ P (3)

In Economic Theory very often production sets are determined by a set of finite
inequalities, linear or nonlinear:

P := {(u, v) ∈ U × V : gi(u, v) ≤ 0∀i ∈ {1, · · · ,m}}

where g1, · · · , gm : U × V 7→ R are C1-mappings.
The following questions arise:

How to verify the algebraic inclusions (2)?
How to express the algebraic inclusion (2) in terms of the data g1, · · · ,gm?

These two questions constitute the challenge of our paper. To fix ideas and to
avoid overloading the notation, we reduce our study to the case where P(u) and
P−1(v) are fixed sets and we did our study in either of the two spaces. This means
that our conditions can be reduced to the following one:

Y − Z ⊂ Y

where Y and Z are closed sets of some Banach space X.

3 Background

Throughout we shall assume that X is a Banach space, X∗ its topological dual
and 〈·, ·〉 is the pairing between X and X∗. We denote by B and B(x, r) (resp.
B∗ and B∗(x∗, r)) the closed unit ball and the closed ball centered at x (resp. x∗)
with radius r of X (resp. X∗). By d(·, S) we denote the usual distance function
to the set S

d(x, S) = inf
u∈S
‖x− u‖

where ‖ · ‖ is a norm on X. We write x
f→x0 and x

S→x0 to express x → x0 with
f(x) → f(x0) and x → x0 with x ∈ S, respectively. The closed convex hull of a
set A is denoted by c̄oA.
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The Clarke’s tangent cone to S at x0 ∈ S is defined by

T (S, x0) = {h ∈ X : ∀xn
S→x0 ∀tn → 0+, ∃hn → h; xn + tnhn ∈ S ∀n}

and the Clarke’s normal cone to S at x0 is given by

N(S, x0) = [T (S, x0)]
0

where H0 denotes the negative polar of the cone H, that is

H0 = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ H}.

The contingent cone to S at x0 is defined by

K(S, x0) = {h ∈ X : ∃tn → 0+, ∃hn → h; x0 + tnhn ∈ S ∀n}

while the tangent cone to S at x0 is given by

T0(S, x0) = {h ∈ X : ∀tn → 0+, ∃hn → h; x0 + tnhn ∈ S ∀n}.

We always have the following inclusions:

T (S, x0) ⊂ T0(S, x0) ⊂ K(S, x0).

Whenever S is convex then

T (S, x0) = T0(S, x0) = K(S, x0).

4 Primal and dual characterizations of the free

disposal assumption for general sets

The following result gives characterizations of the free disposal hypothesis in terms
of the Clarke’s normal cone without the epi-Lipschitzness assumption on the pro-
duction set nor the interiority or epi-Lipschitzness property on the set occurring
in this hypothesis.
We say that a closed production set Y ⊂ X satisfies the free disposal hypothesis
with respect to a closed set Z ⊂ X, with 0 ∈ Z, if

Y − Z ⊂ Y. (4)

It satisfies the Clarke’s normal geometrical condition with respect to Z if

N(Y, y) ⊂ −[K(Z, 0)]0, ∀y ∈ Y. (5)

We also consider the following free disposal condition involving the closed convex
hull of the contingent cone

Y − Z ∩ c̄oK(Z, 0) ⊂ Y. (6)
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Theorem 1 We have the following implications

(4) =⇒ (5) =⇒ (6).

The formal proof of this main Theorem is long and involved; we defer it to the
last section. At this point, however, it is appropriate to give the proof of the
implication (4) =⇒ (5) in the simplest case where Z is convex or more generally
when in relation (5), we consider T0(Z, 0) instead of K(Z, 0). Indeed it suffices to
establish the following inclusion

−T0(Z, 0) ⊂ T (Y, y) ∀y ∈ Y.

Let h ∈ T0(Z, 0). Then

∀tn → 0+, ∃hn → h; tnhn ∈ Z ∀n.

Now let y ∈ Y and (yn) be an arbitrary sequence of Y converging to y. Then
relation (4) implies that

yn − tnhn ∈ Y, ∀n
and hence −h ∈ T (Y, y).

We have the following characterization in special cases.

Corollary 1 Suppose that Z ⊂ c̄oK(Z, 0). Then

(4)⇐⇒ (5).

The inclusion Z ⊂ c̄oK(Z, 0) is satisfied for convex sets or more generally for the
large class of starshaped sets. A set Z is said to be starshaped at 0 ∈ Z if

t ∈ [0, 1], z ∈ Z =⇒ tz ∈ Z.

Thus we have:

Corollary 2 Suppose that Z is starshaped at 0. Then

(4)⇐⇒ (5)⇐⇒ K(Z, 0) ⊂ −T (Y, y) ∀y ∈ Y.

Remark 1 Corollary 2 extends the result by Jofré-Rivera [25] from finite dimen-
sional spaces to Banach spaces. Furthermore, contrary to what established in [25],
our characterization needs not any interiority (or epi-Lipschitzian) condition on
the production set Y nor convexity on Z.

An important situation in economy is when Z is a closed convex cone. In this case
we obtain the following characterization of the free-disposal assumption.
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Corollary 3 Suppose that Z is a closed convex cone. Then

(4)⇐⇒ N(Y, y) ⊂ −Z0 ∀y ∈ Y ⇐⇒ Z ⊂ −T (Y, y) ∀y ∈ Y.

The important issue in this corollary is the following characterization which tells
us that we may always assume that Z is a closed convex cone. This is due to
the fact that the equivalence 2 ⇐⇒ 3 in the corollary below holds without the
starshapeness condition of Z.

Corollary 4 Suppose that Z is a starshaped set containing 0. Then the following
are equivalent:

1. The free disposal condition (4) holds.

2. The Clarke’s normal geometrical condition (5) holds.

3. The free disposal condition holds with respect to c̄oK(Z, 0), that is

Y − c̄oK(Z, 0) ⊂ Y.

Proof. It suffices to establish the equivalence 2 ⇐⇒ 3. To do this, put Z̃ =
c̄oK(Z, 0). Then Z̃ = K(Z̃, 0) = c̄oK(Z, 0) and hence Z̃ is starshaped at 0 (since
it is a convex cone). Now, it suffices to apply Corollary 3 with Z̃ instead of Z and
the proof is completed. 2

4.1 Verification of the free disposal assumption

In Economic Theory very often production sets are determined by a set of finite
inequalities, linear or nonlinear. In what follows, we give examples characterizing
the free disposal condition for this family of production sets. We start with a set
defined by a finite linear inequalities and then we explore the case of nonlinear
inequalities. All these examples are developed in infinite dimensional Banach
spaces.

`p := {(xn)n : xn ∈ R,∀n ∈ N and
∑
n

|xn|p <∞},

where 1 ≤ p <∞. This characterization is based on computing the Clarke’s normal
cone to the production set Y in terms of the data. In both examples the negative
cone Z := `p+ has empty interior.

Remark 2 Note that the following examples can also be stated in functional spaces,
i.e., Lp(Ω).
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Example 1 Let the space of goods be equal to `1 and the production set be deter-
mined by finite set of linear inequalities

Y := {x ∈ `1 : 〈ai, x〉 ≤ bi, ∀i = 1, · · · ,m}

where a1, · · · , am ∈ `∞ and b1, · · · , bm ∈ R. For each y ∈ `1, put I(y) := {i ∈
{1, · · · ,m} : 〈ai, y〉 = bi}. Then

co{ai : i ∈ I(y)} ⊂ `∞+ ∀y ∈ Y ⇐⇒ Y − `1+ ⊂ Y

Example 2 Let 1 ≤ p < ∞ be an integer. Let the space of goods be equal to `p

and let g1, · · · , gm : `p 7→ R be C1-mappings defining the production set

Y := {x ∈ `p : gi(x) ≤ 0∀i ∈ {1, · · · ,m}}.

For each y ∈ `p, put I(y) := {i ∈ {1, · · · ,m} : gi(y) = 0}. Suppose that for all
y ∈ Y , the vectors {∇gi(y) : i ∈ I(y)} are positively linearly independent, that is,∑

i∈I(y)

λi∇gi(y) = 0, λi ≥ 0∀i ∈ I(y) =⇒ λi = 0∀i ∈ I(y).

Then
co{∇gi(y) : i ∈ I(y)} ⊂ `q+ ∀y ∈ Y ⇐⇒ Y − `p+ ⊂ Y

where 1
p

+ 1
q

= 1.

An other example similar to the last one and containing Example 1 is the following.

Example 3 Let 1 ≤ p <∞ be an integer and q ∈ R∪{+∞} be such that 1
p
+ 1

q
= 1.

Let Y be the production set like in Example 2. Suppose that

∇gi(y) ∈ `q+\{0} if gi(y) = 0.

This condition implies that for all y ∈ Y , the vectors {∇gi(y) : i ∈ I(y)} are
positively linearly independent. Thus, Example 2 ensures that the production set
Y satisfies the free disposal hypothesis with respect to `p+, that is,

Y − `p+ ⊂ Y

5 Applications to Economic Theory

We will consider a production set Y in X-commodity economy, that is Y is a
subset of a Banach space X. The purpose of this section is to show that the
free disposal hypothesis guarantees the existence of Pareto optimality, with and

8



without interiority condition of the production set. There are two types of Pareto
optimal, the so called the Pareto optimal and the weak Pareto optimal. A feasible
allocation 1 is Pareto optimal (or Pareto efficient) if there is no other feasible
allocation that makes at least one of the agents in an economy strictly better off
without making someone else worse off. A feasible allocation is weakly Pareto
optimal if there is no other feasible allocation that makes all the agents in an
economy strictly better off. Clearly, if an allocation is Pareto optimal, then it is
weakly Pareto optimal as well, for if there is no allocation that can make at least
one person better off without making someone else worse off, then there should be
no allocation that can make everybody better off. The reverse does not hold: a
weak Pareto allocation won’t necessarily qualify as a Pareto one. In mathematical
point of view, this can be expressed in a compact way as follows: Suppose that
the preference is determined by some set Z containing 0.

Definition 1 An allocation ȳ ∈ Y is a Pareto optimal with respect to the set Z if

Y ∩ (ȳ + Z) = {ȳ}.

We denote the set of Pareto optimal point of Y with respect to Z by Pareto(Y, Z).

Definition 2 An allocation ȳ ∈ Y is a weak Pareto optimal with respect to the
set Z if

Y ∩ (ȳ + intZ) = ∅.
We denote the set of weak Pareto optimal point of Y with respect to Z by W-
Pareto(Y, Z).

When the set Z has non interior, the concept of weak Pareto optimal has non
sense. In this case we may consider either Pareto optimality or an alternative con-
cept to weak Pareto optimality, called extremality. The concept of extremal points
for general set systems appeared in Kruger and Mordukhovich (1980), where some
approximate and limiting versions for necessary conditions of extremality were
obtained in terms of ε-normals and their sequential limits in Banach spaces ad-
mitting Fréchet smooth renorms. Other necessary conditions for extremality were
obtained by Mordukhovich [40], Fl̊am and Jourani [17], Bellaassali and Jourani [3]
and others.

Definition 3 (Extreme systems, Kruger and Mordukhovich [33]) An allocation
ȳ ∈ Y is extremal with respect to Z if there exists a sequence zk → 0 such that

(Y − ȳ) ∩ (Z + zk) = ∅, ∀k.

We denote the set of extremal point of Y with respect to Z by Ext(Y, Z).

1An allocation is a specification of how much of each good each agent will receive.
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The definition of extremality implies at once the following equality

(Y − ȳ) ∩ Z = bd(Y − ȳ) ∩ bdZ.

Remark 3 It is not difficult to show that, when Z has an interior then the con-
cepts of weak Pareto optimality and extremality coincide. But generally the three
concepts can be very different.

Theorem 2 (A characterization of the boundary of the production set)
Let the free disposal assumption (4) be satisfied. Then

bdY = Ext(Y, Z).

If, in addition intZ 6= ∅, then

bdY = W-Pareto(Y, Z).

Proof. Let ȳ ∈ bdY . We claim that there exists a sequence zk → 0 such that

(Y − ȳ) ∩ (Z + zk) = ∅, ∀k.

Otherwise, for all sequence zk → 0 there exists a subsequence (zϕ(k)) of (zk) such
that

(Y − ȳ) ∩ (Z + zϕ(k)) 6= ∅, ∀k.
Let vk ∈ Z be such that vk + ȳ + zϕ(k) ∈ Y . Using relation (4), we get

ȳ + zϕ(k) ∈ Y, ∀k.

This implies the existence of r > 0 such that

B(ȳ, r) ⊂ Y

and contradicts the fact that ȳ is a boundary point of Y . 2

Does the free disposal assumption guarantee alone the Pareto optimality of bound-
ary points ? Unfortunately, a sample example shows that this condition is not suf-
ficient to get Pareto optimality. To see this, take Y = R− ×R and Z = R+ ×R+.
Then 0 is a boundary point of Y , but 0 /∈ Pareto(Y, Z).
In the following, we will give several conditions ensuring Pareto optimality.

Theorem 3 (Existence of Pareto optimal under a tangential condition)
Suppose, in addition to the free disposal assumption (4), that Z is starshaped at 0
and either the following tangential relation holds at ȳ ∈ Y :

T0(Y, ȳ) ∩ T0(Z, 0) = {0} (7)

or T0(Y, ȳ) does not contain any line. Then ȳ is a Pareto optimal to Y with respect
to Z.
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Proof. Let z ∈ (Y − ȳ) ∩ Z. Suppose that z 6= 0. Then, relation (4) ensures
that for all t ∈ [0, 1]

ȳ + z − tz ∈ Y
and this is equivalent to

ȳ + tz ∈ Y, ∀t ∈ [0, 1].

Consequently,
tz ∈ (Y − ȳ) ∩ Z, ∀t ∈ [0, 1]

and hence
z ∈ T0((Y − ȳ) ∩ Z, 0) ⊂ T0(Y, ȳ) ∩ T0(Z, 0).

If relation (7) holds then z = 0 and this is a contradiction with z 6= 0. On the
other hand, Corollary 2 ensures that

−z ∈ T0(Y, ȳ)

and as T0(Y, ȳ) does not contain any line, we obtain that z = 0. Again we obtain
a contradiction with z 6= 0. So the proof is completed. 2

Now, we are going to establish Pareto optimality under a normality condition.
This condition will be constructed from Theorem 1 and its corollaries. Indeed,
under the starshapeness assumption of Z at 0, the free disposal hypothesis (4) is
equivalent to the Clarke’s normal geometrical condition (5). We know that this
condition alone is not sufficient for guaranteeing Pareto optimality. To get this
later one we introduce the following interiority normal condition at ȳ ∈ Y :

N(Y, ȳ)\{0} ⊂ −int[K(Z, 0)]0. (8)

But in infinite dimensional case, the existence of nonzero vector in the Clarke nor-
mal cone can be problematic, even if ȳ is a boundary point of Y , and then relation
(8) does not make sense. So, we need additional assumption on the production set
Y . It is shown in [[27], Theorem 8.1], that when Y is compactly epi-Lipschitzian
at ȳ in the sense of Borwein-Strojwas [9], that is, there exist a norm-compact set
K and r > 0 such that

Y ∩B(ȳ, r) + tB ⊂ Y − tK ∀t ∈ [0, r], (9)

then
ȳ ∈ bdY ⇐⇒ ∃ p∗ ∈ N(Y, ȳ), with p∗ 6= 0.

As in [26], we will easily show that when Y is epi-Lipschitzian at ȳ in the sense of
Rockafellar [43]

ū ∈ bdT (Y, ȳ) ⇐⇒ T (Y, ȳ) has a supporting hyperplane at ū. (10)

The following theorem is a generalization of the result by Bonnisseau and Crettez
[7] from the finite dimensional spaces to the infinite dimensional ones.
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Theorem 4 (Existence of Pareto optimal under a normal condition) Let
ȳ be a boundary point of Y . Suppose that Z is convex with nonempty interior.
Then ȳ is a Pareto optimal of Y with respect to Z, provided that relations (4) and
(8) hold.

Proof. The free disposal hypothesis together with intZ 6= ∅ implies that the
set Y is epi-Lipschitzian at ȳ in the sense of Rockafellar [43] and hence compactly
epi-Lipschitzian at ȳ. It results that relation (8) makes sense and [43]

intT (Y, ȳ) = {h ∈ X : ∃ε > 0, Y ∩B(ȳ, ε)+]0, ε]B(h, ε) ⊂ Y }. (11)

Let z ∈ (Y − ȳ) ∩ Z. As in the proof of Theorem 3, relation (4) assures that

tz ∈ (Y − ȳ) ∩ Z, ∀t ∈ [0, 1]

and by Corollary 2 we obtain

−z ∈ T (Y, ȳ).

By the interiority normal condition (8), we have for all p∗ ∈ N(Y, ȳ), with ‖p∗‖ = 1,
there exists δ > 0 such that

δ‖h‖ ≤ 〈p∗, h〉 ∀h ∈ K(Z, 0)

and hence
δ‖z‖ ≤ 〈p∗, z〉.

If z 6= 0 then

〈p∗,−z〉 < 0∀p∗ ∈ N(Y, ȳ)\{0}. (12)

We claim that −z ∈ intT (Y, ȳ). Otherwise, relation (10) implies that T (Y, ȳ) has
a supporting hyperplane at −z, that is there exists p∗ ∈ N(Y, ȳ), with p∗ 6= 0, such
that

〈p∗, h〉 ≤ 0, ∀h ∈ T (Y, ȳ) and 〈p∗,−z〉 = 0

and this is in contradiction with (12). By invoking (11), we obtain

∃ ε > 0, Y ∩B(ȳ, ε)+]0, ε]B(−z, ε) ⊂ Y.

Then, for a small t ∈]0, ε[, we get

ȳ + tz ∈ Y ∩B(ȳ, ε)

and hence
ȳ + tz + tB(−z, ε) ⊂ Y.

This yields ȳ ∈ intY and contradicts our assumption ȳ ∈ bdY . 2

12



6 Proof of Theorem 1

Let us start with some background needed in the proof of our main theorem. If f
is an extended-real-valued function on X, we write for any subset S of X

fS(x) =

{
f(x) if x ∈ S,
+∞ otherwise.

The function
d− f(x, h) = lim inf

u→h
t↓0

t−1(f(x+ tu)− f(x))

is the lower Dini directional derivative of f at x in the direction h, and the Dini
ε-subdifferential of f at x is the set

∂−ε f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h) + ε‖h‖,∀h ∈ X}

for x ∈ Domf and ∂−ε f(x) = ∅ if x /∈ Domf, where Domf denotes the effective
domain of f. For ε = 0 we write ∂− f(x).
By F(X) we denote the collection of finite dimensional subspaces of X. The ap-
proximate subdifferential of f at x0 ∈ Domf is defined by the following expression
(see Ioffe [21]-[23])

∂Af(x0) =
⋂

L∈F(X)

lim sup
x

f→x0

∂−fx+L(x) =
⋂

L∈F(X)

lim sup
x
f
→x0
ε↓0

∂−ε fx+L(x)

where

lim sup
x
f
→x0
ε↓0

∂−ε fx+L(x) = {x∗ ∈ X∗ : x∗ = w∗−limx∗i , x
∗
i ∈ ∂−εifxi+L(xi), xi

f→x0, εi ↓ 0},

that is, the set of w∗-limits of all such nets.
It is easily seen that the set-valued mapping x→ ∂Af(x) is upper semicontinuous
in the following sense

∂Af(x0) = lim sup
x

f→x0

∂Af(x)

and in [22] and [23] Ioffe has shown that when S is a closed subset of X and x0 ∈ S

∂Ad(x0, S) =
⋂

L∈F(X)

lim sup
x
S→x0
ε↓0

∂−ε dx+L(x, S) ∩ (1 + ε)B∗. (13)

The following lemma will be used later. The first part was established by Ioffe [21,
Lemma 1], while the second part uses a penalization property by Clarke [12].
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Lemma 1 Let L ∈ F(X) and x∗ ∈ ∂−ε fx+L(x). Then the function

u 7→ f(u)− 〈x∗, u− x〉+ 2ε‖u− x‖

attains a local minimum at x on x+ L.
If additionally f is locally Lipschitz near x with constant K, then the function

u 7→ f(u)− 〈x∗, u− x〉+ 2ε‖u− x‖+ (K + ‖x∗‖+ 2ε)d(u, x+ L)

attains a local minimum at x.

Proof. (4) =⇒ (5): We use the following relation ([22]-[23]) between the the
Clarke’s normal cone and the Ioffe’s approximate subdifferential ∂Ad(Y, y) of the
distance function of Y

N(Y, y) = w∗ − cl[R+co∂Ad(Y, y)].

Hence it suffices to show that

∂Ad(Y, y) ⊂ −[K(Z, 0)]0. (14)

So let p∗ ∈ ∂Ad(Y, y). Then, by (13) we have for all finite dimensional space L ⊂ X

the existence of nets yi
Y→y, p∗i

w∗→p∗ and εi → 0+ such that

p∗i ∈ ∂εidyi+L(yi, Y ) ∩ (1 + εi)B
∗.

Now Lemma 1 implies that for each i there exists δi > 0 such that,

(2 + 3εi)d(y, yi + L)− 〈p∗i , y − yi〉+ 2εi‖y − yi‖ ≥ 0∀y ∈ Y ∩B(yi, δi).

Now let h ∈ K(Z, 0). Then there exist sequences tn → 0+ and hn → h such that

tnhn ∈ Z ∩B(0, δi)∀n.

Thus, by relation (4), yi − tnhn ∈ Y ∩B(yi, δi), we obtain

(2 + 3εi)d(hn, L) + 〈p∗i , hn〉+ εi‖hn‖ ≥ 0

and hence
(2 + 3εi)d(h, L) + 〈p∗i , h〉+ εi‖h‖ ≥ 0 ∀h ∈ K(Z, 0).

By passing to the limit on i, this yields

2d(h, L) + 〈p∗, h〉 ≥ 0∀h ∈ K(Z, 0)

and this asserts that for all finite dimensional space L ⊂ X

−p∗ ∈ [K(Z, 0)]0 ∩B(0, 3) + L⊥

where L⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0∀x ∈ L}. Thus as [K(Z, 0)]0 ∩ B(0, 3) is
weak-star closed, we have

−p∗ ∈ [K(Z, 0)]0.

(5) =⇒ (6): The proof of this implication is based on the following drop theorem.
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Theorem 5 (Daneš’s drop theorem) Let A ⊂ X be a closed set and B ⊂ X be a
closed convex and bounded set be such that

inf
(a,b)∈A×B

‖a− b‖ > 0.

Then for each a ∈ A there exists a0 ∈ X such that

a0 ∈ A ∩Drop[a,B] and A ∩Drop[a0, B] = {a0}
where Drop[a,B] denotes the drop generated by a and B, that is,

Drop[a,B] = {a+ t(b− a) : t ∈ [0, 1], b ∈ B}.
Proof of Theorem 1 (be continued). Now, let us come back to the proof of
our implication (5) =⇒ (6). Pick y ∈ Y and z ∈ Z ∩ c̄oK(Z, 0). Suppose that
y − z /∈ Y . Then there exists δ > 0 such that

B(−z, δ) ∩ (Y − y) = ∅. (15)

Theorem 5, applied with A = Y − y, B = B(−z, δ) and a = 0, yields the existence
of y0 ∈ X such that

y0 ∈ (Y − y) ∩Drop[0, B(−z, δ)] (16)

(Y − y) ∩Drop(y0, B(−z, δ)) = {y0}. (17)

Relation (16) implies the existence of b ∈ B(0, δ) and t0 ∈ [0, 1[ such that y0 =
t0(−z + b). Let ε > 0 be such that t0 + ε < 1. Using relation (17), we obtain that
for all w ∈ B(−z − y0, δ(t0 + ε))

(Y − y) ∩ (y0+]0, 1]B(w, δ(1− t0 − ε))) = ∅
and this implies that w /∈ T (Y, y + y0). Consequently,

B(−z − y0, δ(t0 + ε)) ∩ T (Y, y + y0) = ∅.
By separation theorem, there exists p∗ ∈ N(Y, y + y0), with ‖p∗‖ = 1, such that

0 ≤ 〈p∗, v〉 ∀v ∈ B(−z − y0, δ(t0 + ε))

or equivalently
δ(t0 + ε) ≤ 〈p∗,−z − y0〉.

As y0 = t0(−z + b), we have

δ(t0 + ε) ≤ 〈−p∗, (1− t0)z〉+ 〈p∗,−t0b〉. (18)

Relation (5) implies that −p∗ ∈ [K(Z, 0)]0. Then as z ∈ Z ∩ c̄oK(Z, 0), we have
〈−p∗, z〉 ≤ 0. So, relation (18) and the fact that b ∈ B(0, δ) ensure the inequality

δ(t0 + ε) ≤ t0‖b‖ ≤ t0δ

and this contradiction allows us to say that y−z ∈ Y . Thus Y −Z∩c̄oK(Z, 0) ⊂ Y .
2
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