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LAGRANGIAN AND HAMILTONIAN NECESSARY CONDITIONS
FOR THE GENERALIZED BOLZA PROBLEM AND

APPLICATIONS

ABDERRAHIM JOURANI

Abstract. Our aim in this paper is to refine the well-known necessary optimal-
ity conditions for the general Bolza problem under a calmness assumption. We
prove Lagrangian and Hamiltonian necessary optimality conditions without stan-
dard convexity assumptions. Our refinements consist in the utilization of a small
subdifferential and in the presence of the maximum condition without convex-
ity assumption on the velocities. Our approach lies in reducing the generalized
Bolza problem in an optimal control problem governed by bounded and measur-
ably Lipschitz differential inclusions. Our results allow us to simplify enough the
proof of the maximum principle, to obtain a new Euler-Lagrange inclusion for
optimal control problems of Mayer type and to develop Lagrangian and Hamil-
tonian necessary conditions for optimal control problems governed by nonconvex
unbounded differential inclusions.

1. Introduction

The general Bolza problem (GBP) concerns the minimization of a Bolza func-
tional whose form is identical to that in the Calculus of Variations :

B(x) := `(x(a), x(b)) +
∫ b

a
L(t, x(t), ẋ(t))dt.

The domain over which the minimization occurs is typically one of the functions
W 1,1([a, b],Rn) (abbreviated W 1,1), consisting of all absolutely continuous functions
x : [a, b] 7→ Rn (ẋ denotes the derivative (almost everywhere) of x). An arc is a
function in W 1,1.

The generalized Bolza problem is distinguished from its classical precursor by the
extremality mild hypotheses imposed on the endpoint cost ` and the integrand L.
Both are allowed to take the value +∞, for example, so that a variety of endpoint
and differential constraints can be handled (e.g, Lagrange problems, differential
inclusions problems, optimal control problems, etc.).

The classical theory of necessary conditions for the Bolza problem suggests that
if an arc z minimizes B, then there should be an arc p satisfying the Euler-Lagrange
equation, and the transversality condition

(ṗ(t), p(t)) = ∇L(t, z(t), ż(t)) a.e. t ∈ [a, b](1.1)

(p(a),−p(b)) = ∇`(z(a), z(b)).(1.2)
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Now in the general case, all the gradients in (1.1) and (1.2) could fail to exist.
The first result concerning the nondifferentiable framework has been provided by
Rockafellar in [23] and [22] under the convexity of ` and L(t, ·, ·) with the use of
the Fenchel subdifferential. Later, Clarke [3] established similar conditions with
his subdifferential when the functions generalized these conditions to the locally
Lipschitz case by using its subdifferential when the functions ` and L(t, ·, ·) are
locally Lipschitz, i.e. he obtained

(ṗ(t), p(t)) ∈ ∂L(t, z(t), ż(t)) a.e.t ∈ [a, b](1.3)

(p(a),−p(b)) ∈ ∂`(z(a), z(b)).(1.4)

where ∂f(x) stands for the Clarke’s subdifferential of f at x. In [13]-[14], Loewen
and Rockafellar obtain the following new conditions which are weaker than the
Clarke’s one by assuming the convexity of L(t, x, ·)

ṗ(t) ∈ co{q : (q, p(t)) ∈ ∂L(t, z(t), ż(t))} a.e.t ∈ [a, b](1.5)

(p(a),−p(b)) ∈ ∂`(z(a), z(b)).(1.6)

Here “co” stands for the convex hull and ∂f(x) denotes the limiting proximal sub-
differential which coincides with the Mordukhovich subdifferential [16]-[19] in finite
dimensional spaces and which is smaller than the Clarke generalized gradient. Note
that, since L(t, x, ·) is convex, relation (1.5) automatically implies the following
maximum condition

〈p(t), ż(t)〉 − L(t, z(t), ż(t)) = max{〈p(t), v〉 − L(t, z(t), v) : v ∈ Rn}.(1.7)

In [4], Clarke established Hamiltonian necessary conditions for the generalized
Bolza problem (GBP), i.e., he replaced the inclusion (1.3) by the following one

(−ṗ(t), ż(t)) ∈ ∂H(t, z(t), p(t)) a.e.(1.8)

where H(t, x, p) = sup
y
{〈p, y〉 − L(t, x, y)}. He assumed that L(t, x, ·) is convex and

that H satisfies a strong Lipschitz condition.
Other necessary conditions for this problem already exist in the literature (see

for example the papers [13]-[15], [8], etc. and references therein for comparisons
with other existence results and the papers [7], [24], etc. and references therein for
the relation between the Hamiltonian and the Lagrangien multipliers).

The case of nonconvex velocities turns out to be more complicated, unless strong
regularity assumptions are imposed. First note that the convexity hypothesis seems
to be rather restrictive and does not hold in many important applications. For
example, in the case of the following optimal control problem

minimize `(x(a), x(b))
over the couples (x, u) satisfying :
ẋ(t) = f(t, x(t), u(t)) u(t) ∈ U(t) a.e.t ∈ [a, b].
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This assumption is close to the linearity of f with respect to u and the convexity
of the control set U(t).

To our knowledge, the first result for nonconvex velocities is due to Mordukhovich
[21] in which he provides necessary optimality conditions for a general variational
problem for which the dynamic constraint is a nonconvex-valued (Lipschitz) dif-
ferential inclusion. Inspired by the paper [21], Ioffe-Rockafellar [8] establish these
necessary conditions by assuming that L is finite valued and satisfies the following
assumption : for any N > 0 there are εN > 0 and a summable function kN (t) such
that for almost all t ∈ [a, b], for all x, x′ ∈ z(t) + εNB, and y ∈ ż(t) + NB one has

L(t, x, y)− L(t, x′, y) ≤ kN (t)‖x− x′‖, and L(t, x, y) ≥ −kN (t).

In [7], Ioffe used the result established in [8] to derive necessary optimality conditions
for optimal control problems of unbounded integrably sub-Lipschitz (in the sense of
Loewen-Rockafellar) differential inclusions. Based on the result by Ioffe-Rockafellar,
Vinter and Zheng [25] provide necessary optimality conditions for problems involv-
ing an integral functional and a Lipschitz differential inclusion. Mordukhovich [20]-
[21] established the same result for nonconvex bounded differential inclusions. It
is worth to mention that the proof proposed in [20] is based on reducing (by the
method of discrete approximations) the nonsmooth optimal control problem under
consideration to a sequence of nonsmooth optimization problems.

A big step was exceeded by Clarke [5] who obtained Hamiltonian conditions
for optimal control problems governed by bounded differential inclusions. These
conditions are expressed in terms of the Clarke’s subdifferential, i.e., inclusion (1.8).
The (uniform) boundedness of the inclusion allows Clarke to work in W 1,2 instead
of W 1,1 and to apply Stegall’s variational principle, which holds in spaces having
the Radon-Nikodym property. Note that this is not the case for W 1,1.

Our goal in this paper is to establish the necessary optimality conditions (1.5)-
(1.7) and to refine the inclusion (1.8) with nonconvexity on the velocities. Our
assumption on the Lagrangian L is more general (in some sense) than that of
Ioffe-Rockafellar. Indeed we assume that L, which may be extended-valued, is
epi-Lipschitzian in the sense of Clarke [4]. Our approach consists in reducing the
generalized Bolza problem in an optimal control problem governed by a bounded
and measurably Lipschitz (in the sense by Clarke [4]) differential inclusion. The key
of our refined and generalized results is the use of a result by Ioffe [7]. Here we use
only a variant of this result, i.e., necessary optimality of optimal control problems of
nonconvex bounded and Lipschitz differential inclusions. Note that our result may
be deduced (not directly) from [7] without reduction in an optimal control prob-
lem of bounded differential inclusions. We use intentionally this approach. Indeed,
as we can easily deduce from [10] that necessary optimality conditions for optimal
control problems of bounded Lipschitz (resp. unbounded integrably sub-Lipschitz)
differential inclusions are equivalent. In other words, we can show that (the local
version of) Mordukhovich’s theorem [20] and Ioffe’s theorem [7] are equivalent. It
can be shown that both results are equivalent to those of Vinter-Zheng [25]. Our
results facilitate enough the proof of the maximum principle, since any relaxation
is needed to obtain the maximum condition and to obtain a new Euler-Lagrange
inclusion for optimal control problems of Mayer type. Under standard assumptions,
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we also investigate Lagrangian and Hamiltonian necessary conditions for the follow-
ing general variational problem for which the dynamic is an unbounded nonconvex
differential inclusion

minimize `(x(a), x(b)) +
∫ b

a
f(t, x(t), ẋ(t))dt

over the arcs x satisfying :
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b], (x(a), x(b)) ∈ S.

where ` : Rn ×Rn 7→ R and f : [a, b]×Rn ×Rn 7→ R∪ {+∞} are given functions,
F : [a, b]×Rn 7→ Rn is a given multivalued mapping and S ⊂ Rn ×Rn is a given
nonempty set.

2. Notations and preliminaries

We begin by stating basic tools of generalized differentiation that are more ap-
propriate for our main purpose. Details may be found in [16]-[19].

Let C be a closed subset of Rn containing some point c. The ε−normal cone to
C at c is the set

N̂ε(C; c) := {ξ ∈ Rn : lim inf
x∈C→c

〈−ξ, x− c〉
‖x− c‖

≥ −ε}.

The normal cone to C at c is the set

N(C; c) := lim sup
x∈C→c
ε→0+

N̂ε(C, x).

Now let f : Rn 7→ R ∪ {∞} be a lower semicontinuous (l.s.c.) function and let
c ∈ Rn be such that f(c) < ∞. The limiting Fréchet subdifferential of f at c is the
set

∂f(c) := {ξ ∈ Rn : (ξ,−1) ∈ N(epif ; (c, f(c)))}
where epif denotes the epigraph of f . We have the following analytic characteriza-
tion of ∂f(c) :

∂f(c) = lim sup
x→c

f(x)→f(c)

ε→0+

∂εf(x)

where

∂εf(x) = {x∗ ∈ X∗ : lim inf
h→0

f(x + h)− f(x)− 〈x∗, h〉
‖ h ‖

≥ −ε}.

Next we consider a multivalued mapping G from Rn to Rm of the closed graph

GrG := {(x, y) : y ∈ G(x)}.
The multivalued mapping D∗G(x, y) : Rm 7→ Rn defined by

D∗G(x, y)(y∗) := {x∗ ∈ Rn : (x∗,−y∗) ∈ N(GrG; (x, y))}
is called the coderivative of G at the point (x, y) ∈ GrG.

Here, and throughout the paper, we will use ‖ · ‖ to denote both the euclidien
norm of Rn and the norm of W 1,1 (‖x‖ = ‖x(a)‖ +

∫ b
a ‖ẋ(t)‖dt), B to denote the

closed unit ball of Rk, and B(z, r) to designate the closed ball in W 1,1 of center z
and of radius r.
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Now we state the result by Ioffe [7] which will be used later. We consider the
following problem which we call (P0):

minimize `(x(a), x(b))
over the arcs x satisfying :
ẋ(t) ∈ F (t, x(t)) a.e.t ∈ [a, b], (x(a), x(b)) ∈ S.
We recall that F (t, x) is measurably Lipschitzian [4] at an arc z if it is locally

Lipschitzian in z with a summable modulus and measurable in t.

Theorem 2.1. Let z be a local optimal solution to the problem (P0) (in W 1,1).
Assume that F is closed-valued and measurably Lipschitzian at z and bounded by a
summable function around z(t) a.e. in [a, b], and that ` is locally Lipschitzian around
(z(a), z(b)) while S is closed. Then there are λ ≥ 0 and an arc p : [a, b] 7→ Rn, not
both zero, such that one has :

ṗ(t) ∈ coD∗F (t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b]

(p(a),−p(b)) ∈ λ∂`(z(a), z(b)) + N(S; (z(a), z(b))

〈p(t), ż(t)〉 = max
v∈F (t,z(t))

〈p(t), v〉 a.e. t ∈ [a, b].

Note that Ioffe [7] established this result for unbounded integrably sub-Lipschitz
(in the sense of Loewen-Rockafellar) differential inclusions. As it can be deduced
from [10] (which is a carrying of the present paper) those necessary optimality
conditions for optimal control problems of bounded Lipschitz (resp. unbounded
integrably sub-Lipschitz) differential inclusions are equivalent, whence the approach
that we propose in Section 4.

In [21] (see also [20]), Mordukhovich established these necessary conditions, with
global minimum instead of local minimum, by using discrete approximations and
doesn’t require any relaxation procedure.

3. Lagrangian conditions for the problem (GBP)

In this section we state our main result on necessary optimality conditions for
the problem (GBP). Here, and throughout the paper we impose the following:

(H) BASIC HYPOTHESES. The functions L : [a, b] ×Rn ×Rn 7→ R ∪ {+∞}
and ` : Rn×Rn 7→ R∪{+∞} are such that for each t ∈ [a, b], the functions L(t, ·, ·)
and ` are l.s.c. on Rn ×Rn.

In this section and the next ones we describe necessary conditions, for which some
additional hypotheses are required. But before proceeding to state our main result,
let us give some definitions.

We begin by the following definition of Clarke [3] on epi-Lipschitzness.

Definition 3.1. The function L is epi-Lipschitzian at an arc z if there exist an in-
tegrable function k : [a, b] 7→ R and a positive ε satisfying the following conditions :
for almost all t ∈ [a, b], given two points z1 and z2 within ε of z(t) and u1 ∈ Rn such
that L(t, z1, u1) is finite, there exist a point u2 ∈ Rn and δ ≥ 0 such that L(t, z2, u2)
is finite and

‖u1 − u2‖+ |L(t, z1, u1)− L(t, z2, u2)− δ| ≤ k(t)‖z1 − z2‖.
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The above definition is equivalent to saying that the multivalued mapping

E(t, x) = {(u, r) ∈ Rn ×R : L(t, x, u) ≤ r}
is Lipschitzian in x on z(t) + εB.

Examples of such functions are given in the Clarke’s paper [3]. We shall adopt the
following conventions. If for a given absolutely continuous function x the integral
or the sum in (GBP) is not defined, we set the functional in (GBP) equal to +∞.
To say that z solves locally (GBP) will mean the following : for x = z the integral
in (GBP) is defined and finite and `(x(a), x(b)) is finite ; for another absolutely
continuous function in some W 1,1-neighbourhood of z for which `(x(a), x(b)) is
finite and the integral in (GBP) defined, the value of the problem is no less than
its value at z. We do not rule out the possibility that the integral in (GBP) equal
−∞ for some absolutely continuous function x.

With these conventions, for any ε in (0,∞) and s ∈ Rn, we define

ϕ0
ε(s) = inf{`(x(a) + s, x(b)) +

∫ b

a
L(t, x(t), ẋ(t))dt : x ∈ W 1,1, ‖x− z‖ ≤ ε}

and we define ϕ1
ε(s) similary for `(x(a) + s, x(b)) replaced by `(x(a), x(b) + s).

Definition 3.2 ([3]). The problem (GBP) is calm at z if for some ε > 0 and for
i = 0 or 1 we have ϕi

ε(0) ∈ R and

lim inf
s→0

ϕi
ε(s)− ϕi

ε(0)
‖s‖

> −∞.

If either of the following is satisfied, then [3] the generalized Bolza problem is
calm at z :

`(z0, z1) = `0(z0) + `1(z0, z1),
where `1 is finite and Lipschitzian in z1 in a neighbourhood of (z(a), z(b));

`(z0, z1) = `1(z1) + `0(z0, z1),

where `0 is finite and Lipschitzian in z0 in a neighbourhood of (z(a), z(b)).

Definition 3.3 ([3]). L is said to be epi-measurable (in t) if for each s ∈ Rn, the
multivalued mapping E(t, s) = epiL(t, s, .) is Lebesgue measurable in t.

From now and in the rest of the paper we will assume that local minimum and
calmness are formulated with the same real, i.e., if this real is, for example, equal
to ε then the minimum is attained on some ball of radius ε and the calmness is
expressed with the same ε.

The notation ∂L will denote the limiting Fréchet subdifferential of the function
L(t, ., .).

Now we are in position to state necessary optimality conditions for the generalized
Bolza problem.

Theorem 3.4. Let z solves locally the generalized Bolza problem (GBP) (in W 1,1),
where the problem is calm at z. Suppose that L(t, x, u) is epi-measurable in t, and
epi-Lipschitzian at z. Then there exists an arc p such that one has :

the Euler-Lagrange inclusion (1.5)
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the transversality inclusion (1.6)
the maximum condition (1.7).

We begin with the following simplification : we shall assume that the calmness
condition of Definition 3.2 holds for i = 1. Where this is not the case, we could
return to this situation by replacing t by (a + b) − t throughout, and L(t, x, y) by
L((a + b) − t, x,−y). The equivalent transformation would satisfy the calmness
condition at 1.

We set σ equal to the following finite number :

σ = −min{0, lim inf
s→0

ϕ1
ε(s)− ϕ1

ε(0)
‖s‖

}.

Reformulation of the problem (GBP)
We adopt the following convention : s∗ will refer to a point of the form (s1, s2, s3, s4)

in Rn ×R ×Rn ×R. Similary, an arc x∗ has component arcs x1, x3 in W 1,1 and
x2, x4 in W 1,1([a, b],R). We define ([3]) the multivalued mapping E by

E(t, s∗) = {(v, r, 0, 0) ∈ Rn ×R×Rn ×R : L(t, s1, v) ≤ r}

for ‖s1 − z(t)‖ ≤ ε
2 , and E(t, s∗) empty otherwise. We also define

z∗(t) = (z(t),
∫ t

a
L(s, z(s), ż(s))ds, z(b), `(z(a), z(b)))

Ca = {s∗ : l(s1, s3) ≤ s4, s2 = 0}, Cb = {s∗ : s1 = s3}.
We set m = 2(σ + 1). We have the following Clarke’s result.

Proposition 3.5 ([3]). Let the assumptions of Theorem 3.4 be satisfied. Then, for
some positive δ, the arc z∗ minimizes

x2(b) + x4(b) + md(x∗(b), Cb)

over the arcs x∗ satisfying :
x∗(a) ∈ Ca, ẋ∗(t) ∈ E(t, x∗(t)) a.e. ‖x1 − z‖ ≤ δ, ‖x3 − z(b)‖ ≤ δ.

4. Proof of Theorem 3.4

We begin this section by establishing necessary optimality conditions for problem
(GBP) with some additional assumptions on the integrand L. We have the following
theorem on which our main result is based.

Theorem 4.1. Suppose in addition to the assumptions of Theorem 3.4 that there
exist ε > 0, K > 0 and integrable functions k1, k2 : [a, b] 7→ R such that for almost
all t ∈ [a, b], L(t, ·, ·) is finite-valued on (z(t) + εB)×Rn, for all s1, s2 ∈ z(t) + εB,
u1, u2 ∈ ż(t) + k2(t)B and all u ∈ Rn, one has :

i) |L(t, s1, u1)− L(t, s2, u2)| ≤ k1(t)(‖s1 − s2‖+ ‖u1 − u2‖);
ii) |L(t, s1, u)− L(t, s2, u)| ≤ k1(t)‖s1 − s2‖;
iii) |L(t, s1, u)− L(t, s1, ż(t))| ≤ K‖u− ż(t)‖.

Then the conclusion of Theorem 3.4 holds.
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For each integer j, we consider the multivalued mapping Gj defined by

Gj(t, s∗) = E(t, s∗) ∩Bj(t)

where

Bj(t) = {ż(t) + (k2(t) + j)B} × {L(t, z(t), ż(t)) + αj(t)[−1, 1]}
×{z(b) + (‖z(b)‖+ 1)B} × {`(z(a), z(b)) + (|`(z(a), z(b))|+ 1)[−1, 1]}

αj(t) = K(k2(t) + j) + 4k1(t)ε.

Here B denotes the closed unit ball of Rn. We set

γj(t) = 2‖ż(t)‖+ k2(t) + j + |L(t, z(t), ż(t))|+ αj(t) + 2‖z(b)‖+ 2|`(z(a), z(b))|+ 3.

With the above notations, we have the following lemmas.

Lemma 4.2. Gj is closed-valued and measurably Lipschitzian (in the sense of
Clarke [4]) of constant k1(t) and bounded by the summable function γj around z(t)
a.e. in [a, b].

Proof. We only need to show that Gj(t, ·) is Lipschitzian of constant k1(t). So let
(s∗, q∗) be such that s1, q1 ∈ z(t) + εB and let (v1, r1, 0, 0) ∈ Gj(t, s∗). Then
L(t, s1, v1) ≤ r1. If L(t, q1, v1) ≤ r1, then (v1, r1, 0, 0) ∈ Gj(t, q∗). If r1 <
L(t, q1, v1), for v2 = v1 we can write (via ii))

r1 < L(t, q1, v2) ≤ L(t, s1, v2) + k1(t)‖s1 − q1‖.

Hence, if we put r2 = L(t, s1, v2) + k1(t)‖s1 − q1‖, we obtain

0 < r2 − r1 ≤ k1(t)‖s1 − q1‖.

Further, by ii) and iii), we have

|r2 − L(t, z(t), ż(t))| ≤ αj(t).

Thus (v2, r2, 0, 0) ∈ Gj(t, q∗) and hence

(v1, r1, 0, 0) ∈ Gj(t, q∗) + k1(t)‖s∗ − q∗‖(B× [−1, 1]×B× [−1, 1]).

Lemma 4.3. For some positive δ, the arc z∗ minimizes

x2(b) + x4(b) + md(x∗(b), Cb)

over the arcs x∗ satisfying :
x∗(a) ∈ Ca, ẋ∗(t) ∈ Gj(t, x∗(t)) a.e., ‖x1 − z‖ ≤ δ, ‖x3 − z(b)‖ ≤ δ.

Proof of Theorem 4.1. By Lemma 4.3 and Theorem 2.1 there are λ ≥ 0 and an arc
p∗ : [a, b] 7→ Rn ×R×Rn ×R, not both zero, such that

ṗ∗(t) ∈ coD∗Gj(t, z∗(t), ż∗(t))(−p∗(t)) a.e. t ∈ [a, b](4.1)

(p∗(a),−p∗(b)) ∈ N(Ca; z∗(a))× {0}+ {0}(4.2)
×λ[(0, 1, 0, 1) + m∂d(z∗(b);Cb)]



THE GENERALIZED BOLZA PROBLEM 9

〈p∗(t), ż∗(t)〉 = max
v∗∈Gj(t,z∗(t))

〈p∗(t), v∗〉 a.e. t ∈ [a, b].(4.3)

We deduce from (4.1) that ṗ2, ṗ3, ṗ4 are 0 a.e., because Gj depends only on s1 and
from (4.2)

p2(b) = p4(b) = −λ, p1(b) = −p3(b) and ‖p1(b)‖ ≤ mλ.

Note that λ > 0, otherwise (λ, p∗) = (0, 0). Indeed, if λ = 0 then p2 = p4 = 0,
p3 = 0 and p1(b) = 0. By relation (4.1) and the Lipschitz property of Gj we get
(Lemma 4.2)

‖ṗ1(t)‖ ≤ k1(t)‖p1(t)‖ a.e.

and, by Gronwall Lemma, we get p1 = 0 and this contradicts the fact that (λ, p∗) 6=
(0, 0). So we may assume that λ = 1 and hence p2(t) = −1 for all t. By the
definition of Gj , we get

N(GrE(t, ·), (z∗(t), ż∗(t)) = {(w, 0, 0, 0, v, α, u, β) :
α, β ∈ R, u ∈ Rn, (w, v, α) ∈ N(epiL(t, ·, ·), (z(t), ż(t), L(t, z(t), ż(t)))}.

The last equality together with p2(t) = −1 and relation (4.1) ensures that

ṗ1(t) ∈ co{q : (q, p1(t)) ∈ ∂L(t, z(t), ż(t))} a.e.t ∈ [a, b](4.4)

(p1(a),−p1(b)) ∈ ∂`(z(a), z(b))(4.5)

It is now time to recall that all the above has been obtained for any j, so that
in the key relations (4.3)-(4.5), the quantity p1 depends on j, which we denote pj .
Note that, by (4.4) and the assumption ii)

‖ṗj(t)‖ ≤ k1(t) a.e. t ∈ [a, b]
and hence

‖pj(a)‖ ≤ m +
∫ b

a
k1(t)dt.

So, because of i), the multivalued mapping Γ defined by

Γ(t, p) = co{q : (q, p) ∈ ∂L(t, z(t), ż(t))}
satisfies all the assumptions of Theorem 3.1.7 in [4] and then there is a subsequence
of (pj) which converges uniformly to an arc p satisfying

ṗ(t) ∈ Γ(t, p(t)) a.e. t ∈ [a, b].

Thus, by (4.5) and (4.3), one has

(p(a),−p(b)) ∈ ∂`(z(a), z(b))

and for almost every t ∈ [a, b]

〈p(t), ż(t)〉 − L(t, z(t), ż(t)) = max{〈p(t), v〉 − L(t, z(t), v) : v ∈ Rn}.

Proof of Theorem 3.4 with the general assumptions. First we state the following
lemma which can be deduced from Theorem 4.1.
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Lemma 4.4 (compare with Lemma 2, pp. 124 in [4]). Let C be a closed set in
Rn and let F : [a, b] ×Rn 7→ Rn be a closed-valued multivalued mapping which is
measurably Lipschitzian at z. Let S be the set of solutions of the system

ẋ(t) ∈ F (t, x(t)) a.e., x(a) ∈ C.

If z ∈ S, then there are r > 0 and α > 0 such that for all x ∈ B(z, r)

d(x, S) ≤ α[d(x(a), C) +
∫ b

a
d(ẋ(t), F (t, x(t)))dt].

Now it remains to remove the Interim Hypotheses. By Proposition 3.5, for some
positive δ, the arc z∗ minimizes

x2(b) + x4(b) + md(x∗(b), Cb)

over the arcs x∗ satisfying :
x∗(a) ∈ Ca, ẋ∗(t) ∈ E(t, x∗(t)) a.e. ‖x1 − z‖ ≤ δ, ‖x3 − z(b)‖ ≤ δ.
Thus by Lemma 4.4 there exists a positive number K > 2 such that z∗ minimizes
locally the function

x∗ 7→ x2(b) + x4(b) + md(x∗(b), Cb) + Kd(x∗(a), Ca)(4.6)

+K

∫ b

a
d(ẋ∗(t), E(t, x∗(t)))dt.

Now we are in the situation of Theorem 4.1 with L and ` replaced by L and `
defined by

L(t, s∗, q∗) = Kd(q∗, E(t, s∗)

and
`(u∗, v∗) = v2 + v4 + md(v∗, Cb) + Kd(u∗, Ca).

Taking into account the inequality (for some constant K(t) depending only on t in
a neighbourhood of (z∗(t), ż∗(t)))

L(t, s∗, q∗) ≤ K(t)[d(epiL(t, ·, ·); (s1, q1, q2)) + ‖q3‖+ ‖q4‖]

we obtain

∂L(t, z∗(t), ż∗(t)) ⊂ {(ξ∗, π∗) : (ξ1, π1, π2) ∈(4.7)
N(epiL(t, ·, ·); ((z(t), ż(t)), L(t, (z(t), ż(t))); ξ2 = ξ4 = 0, ξ3 = 0}.

So the proof is terminated by applying Theorem 4.1.

We may obtain the following corollary.

Corollary 4.5. Let z solves locally the generalized Bolza problem (GBP) (in W 1,1),
where the problem is calm at z. Suppose that

i) for any N > 0 there are ε > 0 and a summable function kN (t) such that
for almost all t ∈ [a, b], for all x, x′ ∈ z(t) + εB, and y ∈ ż(t) + NB, with
L(t, x, y) finite, there exist y′ ∈ ż(t) + NB, with L(t, x′, y′) finite, and δ ≥ 0
such that

‖y − y′‖+ |L(t, x, y)− L(t, x′, y′)− δ| ≤ kN (t)‖x− x′‖;
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ii) there exists an integrable function k such that for almost all t ∈ [a, b] the
partial subdifferential ∂xL(t, z(t), ż(t)) ([11], [9]) of L in x at (z(t), ż(t)) is
included in k(t)B.

iii) there exists a set I ⊂ [a, b] of positive measure such that for almost all t ∈ I,

N(co[domL(t, z(t), ·)], ż(t)) = {0}.
Then the conclusion of Theorem 3.4 holds.

Proof. Consider the function LN : [a, b]×Rn ×Rn 7→ R ∪ {+∞} defined by

LN (t, x, y) =
{

L(t, x, y) if (x, y) ∈ A(t),
+∞ othewise.

where A(t) = (z(t) + εB) × ż(t) + NB. Then LN satisfies all the assumptions
of Theorem 3.4 which may be applied to produce an arc pN ∈ W 1,1 satisfying in
addition to (1.5) and (1.6), the following maximum condition

〈pN (t), ż(t)〉 − LN (t, z(t), ż(t)) = max{〈pN (t), v〉 − LN (t, z(t), v) : v ∈ Rn} a.e.

We will show that the sequence (pN (a)) is bounded. To do this we consider, for
each N , the set

IN = {t ∈ I : N(co[domL(t, z(t), ·)], ż(t)) = {0},
〈pN (t), ż(t)〉 − LN (t, z(t), ż(t)) = max{〈pN (t), v〉 − LN (t, z(t), v) : v ∈ Rn} }

and put I∞ =
⋂
N

IN .

We claim that for each t ∈ I∞, the sequence (pN (t))N is bounded. Suppose the
contrary. Then for some t ∈ I∞, (pN (t))N is unbounded. Without loss of generality,
we may assume that ‖pN (t)‖ → +∞ and wN := pN (t)

‖pN (t)‖ → w, with ‖w‖ = 1. The
maximum condition ensures that for each v ∈ domL(t, z(t), ·) and N ≥ ‖v − ż(t)‖

〈wN (t), ż(t)〉 − 1
‖pN (t)‖

L(t, z(t), ż(t)) ≥ 〈wN (t), v〉 − 1
‖pN (t)‖

L(t, z(t), v).

Thus we get w ∈ N(co[domL(t, z(t), ·)], ż(t)) and this contradicts iii) and estab-
lishes our claim.

Now relation (1.5) and ii) imply that

‖pN (a)− pN (t)‖ ≤
∫ t

a
‖ṗN (τ)‖dτ ≤

∫ t

a
k(τ)dτ

which asserts that our sequence (pN (a)) is bounded. So that the proof is terminated
by applying Theorem 3.1.7 in [4]. �

5. Hamiltonian conditions for the problem (GBP)

We define the Hamiltonian H : [a, b]×Rn ×Rn 7→ R ∪ {+∞} associated to the
Lagrangian L by

H(t, x, p) = sup{〈p, y〉 − L(t, x, y) : y ∈ Rn}.
Based on Theorem 3.4, on the Rockafellar’s dualization result [24] and on the

relaxation theorem by Clarke [3] we may establish the following Hamiltonian nec-
essary optimality result.
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Theorem 5.1. Under assumptions of Theorem 3.4 there exists an arc p ∈ W 1,1

satisfying the transversality inclusion (1.6), the maximum condition (1.7) and the
following Hamiltonian condition

ṗ(t) ∈ co {q : (−q, ż(t)) ∈ ∂H(t, z(t), p(t))} a.e. t ∈ [a, b]

Proof. The arc z∗ continues to minimize locally the function in relation (4.6) by
replacing E(t, x∗) by its convex closure cl coE(t, x∗) ( this is due to the relax-
ation theorem [3]). We observe further that cl coE(t, x∗) satisfies the measurability
assumption and the Lipschitz property. So by Theorem 3.4 there exists an arc
p∗ ∈ W 1,1([a, b],Rn ×R×Rn ×R) such that

ṗ∗(t) ∈ co {q∗ : (q∗, p∗) ∈ K∂d(·; cl coE(t, ·))(z∗(t), ż∗(t))} a.e.

(p∗(a),−p∗(b)) ∈ N(Ca; z∗(a))× {0}+ {0} × [(0, 1, 0, 1) + m∂d(z∗(b);Cb)]

〈p∗(t), ż∗(t)〉 = sup
y∗
{〈p∗(t), y∗〉 −Kd(y∗; cl coE(t, z∗(t))} a.e.

So that ṗ2, ṗ3, ṗ4 are 0 because cl coE depends only on x1 and hence

p2(b) = p4(b) = −1, p1(b) = −p3(b).

Now by Rockafellar result [24] we get

ṗ∗(t) ∈ co {q∗ : (−q∗, ż∗(t)) ∈ H∗(t, z∗(t), p∗(t))} a.e.

where H∗ is the Hamiltonian defined by

H∗(t, x∗, p∗) = sup{〈p∗, y∗〉 −Kd(y∗; cl coE(t, x∗)) : y∗ ∈ Rn ×R×Rn ×R}.
Note that max

t∈[a,b]
‖p∗(t)‖ ≤ K. For each p∗, with ‖p∗‖ ≤ K, we get H∗(t, x∗, p∗) =

sup
y∗∈E(t,x∗))

〈p∗, y∗〉.

The proof of the theorem is terminated by using the following lemma.

Lemma 5.2. Let x̄∗, p̄∗ ∈ Rn × R × Rn × R, with p̄2 = −1, and let (u∗, v∗) ∈
∂H∗(t, x̄∗, p̄∗). Then u∗,2 = u∗,4 = v∗,4 = 0, u∗,3 = v∗,3 = 0 and

(u∗,1, v∗,1) ∈ ∂H(t, x̄1, p̄1).

Proof. Consider the Hamiltonian H̄ defined by

H̄(t, x, p, λ) = sup{〈p, y〉+ λr : (y, r) ∈ epiL(t, x, ·)}.
Then for each p∗, with ‖p∗‖ ≤ K, we have

H∗(t, x∗, p∗) = H̄(t, x1, p1, p2).

So if (u∗, v∗) ∈ ∂H∗(t, x̄∗, p̄∗) then u∗,2 = u∗,4 = v∗,4 = 0, u∗,3 = v∗,3 = 0 and
(u∗,1, v∗,1, v∗,2) ∈ ∂H̄(t, x̄1, p̄1, p̄2). Thus, since p̄2 = −1, we use the definition of the
limiting Fréchet subdifferential to obtain

(u∗,1, v∗,1) ∈ ∂H(t, x̄1, p̄1)

and the proof is complete. �
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Remark 5.3. Our theorem refines and generalizes Theorem 4.2.2 in [4]. Indeed in
[4] it is assumed that L(t, x, ·) is convex and H satisfies a strong Lipschitz condition.

Corollary 5.4. Consider the generalized Bolza problem (GBP) with `(x, y) =
`1(x) + `2(x, y) where we suppose that `2 is finite and Lipschitz in y in some neigh-
bourhood of (z(a), z(b)) and L is epi-measurable and epi-Lipschitzian at the local
solution z of (GBP). Then the conclusion of Theorem 5.1 remains valid.

6. Applications

In this section we give several applications of our results. The first one is the
maximum principle and the second and the third ones concern Lagrangian and
Hamiltonian necessary optimality conditions for optimal control of unbounded non-
convex differential inclusions. The last one concerns a general variational problem
for which the dynamic is an unbounded nonconvex differential inclusion.

6.1. The maximum principle. Our goal in this subsection is to give a simple
proof of the maximum principle using Theorem 3.4 and to obtain a new Euler-
Lagrange inclusion for optimal control problem of Mayer type.

To every integrable map u(t) taking values in a given set U(t) of Rm we associate
the solution x to the differential equation

ẋ(t) = f(t, x(t), u(t)).

The problem : minimize over all such pairs (x, u) the functional

g0(x(a), x(b)) +
∫ b

a
g(t, x(t), u(t))dt

where f : [a, b] ×Rn ×Rm 7→ Rn is a mapping, g0 : Rn ×Rn 7→ R ∪ {+∞} and
g : [a, b]×Rn×Rm 7→ R∪{+∞} are functions, and U : [a, b] 7→ Rm is a multivalued
mapping.

The calmness of this problem is defined in a maner completely analogous to
Definition 3.2. We shall assume the following assumptions :

1) f(t, x, u) is measurable in t and continuous in u
2) g(t, x, u) is l.s.c. in u and for each x, g(., x, .) is measurable with respect to

the σ-field generated by Lebesgue sets in [a, b] and Borel sets in Rm.
3) g0 is l.s.c.
4) U is measurable and closed-valued.

To this problem we associate the Hamiltonian H defined by

H(t, x, p, q) = sup
u∈U(t)

{〈p, f(t, x, u)〉+ 〈q, u〉 − g(t, x, u)}.

Theorem 6.1. (The maximum principle). Suppose (z, v) solves locally the above
control problem, where

(i) the problem is calm at z.
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(ii) there exist ε > 0 and an integrable function k : [a, b] → R such that, for
almost all t ∈ [a, b], given two points z1 and z2 within ε of z(t) and u ∈ U(t)
we have

‖f(t, z1, u)− f(t, z2, u)‖ ≤ k(t)‖z1 − z2‖
|g(t, z1, u)− g(t, z2, u)| ≤ k(t)‖z1 − z2‖.

Then there exists an arc p such that
ṗ(t) ∈ co{q : (−q, ż(t), v(t)) ∈ ∂H(t, z(t), p(t), 0)} a.e.

( Hamiltonian inclusion )
(resp.ṗ(t) ∈ co ∂x[g(t, ., .)− < p(t), f(t, ., .) >](z(t), v(t)) a.e.)

( Euler-Lagrange inclusion ))
(p(a),−p(b)) ∈ ∂g0(z(a), z(b))

(Transversality inclusion )
〈p(t), f(t, z(t), v(t))〉 − g(t, z(t), v(t)) = H(t, z(t), p(t), 0) a.e.

If in addition f(t, ·, ·) and g(t, ·, ·) are locally Lipschitzian around (z(t), v(t)) then
the Euler-Lagrange inclusion may be replaced by the following one :

ṗ(t) ∈ co{q : (q, 0) ∈ ∂[g(t, ·)− 〈p(t), f(t, ·)〉+ ΨU(t)(·)](z(t), v(t)) a.e.

Here ∂xh(z, v) denotes the partial limiting Fréchet subdifferential of h in z with
respect to v (see [11]) and ΨC denotes the indicator function of C.

Proof. We reframe ([3]) the problem to one on Rn+m by the following definitions
((s, s∗) represents a point in Rn ×Rm)

`(s0, s
∗
0, s1, s

∗
1) = g0(s0, s1)

L(t, s, s∗, u, u∗) =
{

g(t, s, u∗) if u∗ ∈ U(t), u = f(t, s, u∗),
+∞ otherwise.

Then the pair (z, v) solves the optimal control problem iff (z, w) solves the above

generalized Bolza problem , where w(t) =
∫ t

a
v(r)dr. By Propositions 3 and 7 in

[3], L is epi-measurable and epi-Lipschitzian at (z, w). So we apply Theorem 3.4
to the last problem. The proof of the last condition, which does not appear in
previous works, follows from the computation of ∂L(t, z(t), w(t), ż(t), v(t)) because
if (ξ∗1 , ξ

∗
2 , ξ

∗
3 , ξ

∗
4) ∈ ∂L(t, z(t), w(t), ż(t), v(t)), then

ξ∗2 = 0 and (ξ∗1 , ξ
∗
4) ∈ ∂[g(t, ·, ·)− 〈ξ∗3 , f(t, ·, ·)〉+ ΨU(t)(·)](z(t), v(t)).

For the proof of the Hamiltonian condition we consider in (4.6) the arc

z∗(t) = (z(t), w(t),
∫ t

a
g(t, z(t), v(t))dt, z(b), w(b), g0(z(a), z(b)))

and the multivalued mapping E defined by

E(t, x∗) = epi L̃(t, x1, ·, ·)× {0}
where x∗ = (x1, w1, r1, x2, w2, r2) ∈ Rn ×Rm ×R×Rn ×Rm ×R and

L̃(t, s, u, u∗) =
{

g(t, s, u∗) if u∗ ∈ U(t), u = f(t, s, u∗),
+∞ otherwise.
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By remarking that

d((y1, v1, r1, y2, v2, r2); coE(t, x∗)) =

d((y1, v1, r1); co epi L̃(t, x1, ·, ·)) + |y2|+ |v2|+ |r2|
we get, as in the proof of Theorem 5.1, the existence of an arc p satisfying, in
addition to the transversality condition and the maximum condition, the following
Euler-Lagrange inclusion

ṗ(t) ∈ co {q : (q, p(t), 0,−1) ∈
∂K(t)d((z(t), ż, v(t), g(t, z(t), v(t)); co epiL̃(t, ·))}.

for some K(t) > 0. Thus by Theorem 3.3 in [24] we have

ṗ(t) ∈ co {q : (−q, ż, v(t), g(t, z(t), v(t))) ∈ ∂H̃(t, z(t), p(t), 0,−1)}
where H̃(t, x, p, q, r) = sup

(y,u,s)∈epi L̃(t,x,·)
{〈p, y〉+〈q, u〉+rs}. The proof is terminated

by using the following lemma.

Lemma 6.2. If (p1, p2, p3, p4) ∈ ∂H̃(t, z(t), p(t), 0,−1) then (p1, p2, p3) ∈ ∂H(t, z(t),
p(t), 0).

Proof. This follows from the definition of the limiting Fréchet subdifferential and
the fact that H̃(t, x, p, q, r) = −rH(t, x,

p

−r
,

q

−r
) for r near −1. �

6.2. Problems with dynamic and endpoint constraints. Our goal in this sub-
section is to give Lagrangian and Hamiltonian necessary conditions for the following
general variational problem for which the dynamic is an unbounded nonconvex dif-
ferential inclusion

minimize `(x(a), x(b)) +
∫ b

a
f(t, x(t), ẋ(t))dt(6.1)

over the arcs x satisfying :
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b], (x(a), x(b)) ∈ S.

where ` : Rn×Rn 7→ R is locally Lipschitzian at (z(a), z(b)), F : [a, b]×Rn×Rn 7→
Rn is a multivalued mapping which is closed-valued and measurably Lipschitzian
([4]) at z, S ⊂ Rn ×Rn is a closed set and f : [a, b]×Rn ×Rn 7→ R is a function
satisfying the following assumption:

Hf ) f(t, x, y) is measurable in t for fixed (x, y) and there exist an integrable
function k : [a, b] 7→ R+ and ε > such that

|f(t, x, y)− f(t, x′, y′)| ≤ k(t)[‖x− x′‖+ ‖y − y′‖]
for all (x, y), (x′, y′) ∈ [z(t) + εB]×Rn.

This problem has been considered by several authors including Loewen-Rockafellar
[12]-[15], Mordukhovich [21], Vinter-Zheng [25], · · · . In [12]-[15], Loewen and Rock-
afellar have considered this problem (with additional state constraints) where they
assume that f(t, x, ·) is convex while the set F (t, x) is convex. Using discrete ap-
proximations, Mordukhovich [21] has established Lagrangian necessary optimality
conditions for this problem without convexity and under some ”closedness assump-
tion”. Using the result by Ioffe-Rockafellar [8], Vinter-Zheng [25] gave necessry
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optimality conditions for this problem without convexity nor closedness assump-
tions. All these results have been proved without a calmness assumption.

Our aim in this subsection is to prove that, under a calmness assumption, La-
grangian and Hamiltonian necessary optimality conditions for this problem hold
without convexity. This follows immediately from our main Theorems 3.4 and 5.1.

Consider the Hamiltonian H̃ defined by

H̃(t, x, p) = sup
y∈F (t,x)

{〈p, y〉 − f(t, x, y)}

Theorem 6.3. Let z solves locally the problem (6.1), where the problem is calm at
z. Then there exists an arc p ∈ W 1,1 such that

ṗ(t) ∈ co{q : (q, p(t)) ∈ ∂f(t, z(t), ż(t)) + N(GrF (t, ·); (z(t), ż(t)))} a.e.

(resp. ṗ(t) ∈ co{q : (−q, ż(t)) ∈ ∂H̃(t, z(t), p(t))} a.e.)

(p(a),−p(b)) ∈ ∂`(z(a), z(b)).

〈p(t), ż(t)〉 − f(t, z(t), ż(t)) = H̃(t, z(t), ż(t)) a.e.

Proof. Consider the Lagrangian L̃ : [a, b]×Rn ×Rn 7→ R ∪ {+∞} defined by

L̃(t, x, y) =
{

f(t, x, y) if y ∈ F (t, x)
+∞ otherwise

and apply Theorem 5.1. �

We have to note that general necessary optimality conditions (whose proof is
based on Theorem 3.4) have been discovred in [2] and [10] for multiobjective optimal
control of nonconvex unbounded differential inclusions with endpoint constraints
involving a general preference.

In the following examples we present sufficient conditions for calmness.

Example 1. Let S ⊂ Rn × Rn be a closed set. Suppose that ` is locally
Lipschitzian at (z(a), z(b)), where z is a local solution to the problem

minimize `(x(a), x(b))(6.2)
over the arcs x satisfying :

(x(a), x(b)) ∈ S, ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b](6.3)

Problem (6.2) is calm at z provided that the system (6.3) is semi-normal ([10]) at
z. As a result, the conclusion of Theorem 6.3 remains valid.

In [7], Ioffe established Hamiltonian necessary optimality conditions for problem
(6.2) under a normality assumption. It is not difficult to see that this assumption
implies the calmness of (6.2). In the following example we give a (nonconvex) opti-
mal control problem which is calm and the corresponding system is not normal at
a solution point.

Example 2. Consider the multivalued mapping F : R3 7→ R3 defined by

F (x, y, z) = {(u, v, w) ∈ R3 : |v| ≤ 7, w = x2v2}.
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Then F is nonconvex-valued and measurably Lipschitzian ([4]) at z. Now we con-
sider the following optimal control problem

min(x1(1)− x1(0))2 + (x2(1)− x2(0))2

subject to
(ẋ1(t), ẋ2(t), ẋ3(t)) ∈ F (x1(t), x2(t), x3(t)) a.e.(6.4)

x(0) ∈ {0} × [−1, 1]× {2}, x(1) ∈ {0} × [2, 4]× {2}(6.5)

The arc z, given by z(t) = (0, t + 1, 2), is a solution to this problem which is calm
at z, but the system (6.4)-(6.5) is not normal at this point.

Example 3. Consider the following optimal control problem

min
∫ 1

0
((ẋ1(t))2 + (ẋ2(t))2)dt

subject to
(ẋ1(t), ẋ2(t), ẋ3(t)) ∈ F (x1(t), x2(t), x3(t)) a.e.(6.6)

x(0) ∈ {0} × [−1, 1]× {2}, x(1) ∈ {0} × [2, 4]× {2}(6.7)

where F is as in Example 2. Then the arc z, given by z(t) = (0, t+1, 2), is a solution
to this problem which is calm at z, but the system (6.6)-(6.7) is not normal at this
point.
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