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Intersection formulae are central to the development of subdifferential calculus
and the differentiation of marginal functions. In this paper, we reexamine the
connection between independence conditions and intersection formulae. Then we
apply the formulae to a general parametric mathematical programming problem
in which the constraints are defined by multivalued functions. These results allow
us to obtain generalized chain rules for composite functions. Corollaries of this
work include several well-known intersection formulae and calculus rules. @ 1995

Academic Press, Inc.

1. INTRODUCTION

Given two subsets C, and C, of a Banach space X and a point
xy € C, N C,, our objective in this paper is to study conditions ensuring
the inclusion

3d(xy, C, N C,) C k[0d(x,, C) + 3d(xq, C>)], (1.1

where k is a positive real number and dd(x,, C) is the subdifferential of
the distance function d(x, C) to C at x, (see Sections 2 and 3). This formula
plays an important role in optimization theory, namely in subdifferential
calculus rules (see Rockafellar [24], Mordukhovich [20-22]), Ward and
Borwein [29], loffe [10-11], Jourani and Thibault [14, 18]), in the study
of necessary optimality conditions (see Clarke [5], Ioffe [9], Raissi [23],
Journai [12]), and in the differentiability of the marginal function (see
Rockafellar [25-26], Mordukhovich [20-22], Borwein [2], Thibault {27]).
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Several conditions have been proposed to ensure formula (1.1). Some
are stated in terms of the subdifferential of the distance function, and
others in terms of the tangent cone or the normal cone.

In finite dimensions, Aubin and Ekeland [I, pp. 441] (see also Ward
and Borwein [29]) establish formula (1.1) under the condition that the
difference of the tangent cones to C; and C, at x is equal to the space X.
In Banach spaces, Rockafellar [24] shows that formula (1.1) holds when-
ever the tangent cone to C, at x, meets the interior of the tangent cone
to C, at xy and C, is epi-Lipschitzian at x;. Ioffe [11] obtains formula (1.1)
under the two assumptions that

3d(xy, C\) N (~8d(x,, C,) = {0} (1.2)

and that C, is epi-Lipschitzian at x;. In Hilbert spaces, Clarke and Raissi [6]
establish inclusion (1.1) by assuming that C, is compact and requiring that

for all Ve > 0 38 > 0, 3 neighbourhood V of x; such that
Vx,€ C,NV,Vx}¥ € dd(x;, C) i=1,2, (1.3)

satisfying || xF| + || x¥[| = e then || x} + x¥|| = 8.

In [28], Ward has extended the results in [1, 29] to the case in which X
is a Banach space and C, and C, are epi-Lipschitz-like at x, (see [3-4]).
This class of sets includes epi-Lipschitzian sets and finite dimensional sets.

In infinite dimensional spaces most of the criteria ensuring inclusion
(1.1) require that either C, or C, is epi-Lipschitzian, or C; and C, are epi-
Lipschitz-like, or they require certain conditions to hold at all points in
a neighbourhood of x,. Morever they are stated in a complicated way.
Recently, Jourani and Thibault [ 18] have shown that condition (1.2) implies
formula (1.1) when C, is compactly epi-Lipschitzian at x; in the sense of
Borwein and Strojwas [4]. Let us note (following Borwein [3]) that the
class of compactly epi-Lipschitzian sets includes epi-Lipschitzian sets,
epi-Lipschitz-like sets, and finite dimensional sets.

The purposes of this paper are threefold. First, we show that, when C,
is compactly epi-Lipschitzian, condition (1.2) is equivalent to condition
(1.3) and both are equivalent to a third condition introduced in Section 3
below. Second, we extend the result of Clarke and Raissi [6] to general
Banach spaces without any compactness assumption on C,. The results
obtained generalize those of Ioffe [11] and Rockafellar [24]. Finally we
apply our results to estimate the subdifferential of the marginal function
m defined by

m(x) := inf {f(x, y): y € F(x)},
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where fis an extended-real-valued function on X X Y, X and Y are Banach
spaces, and F is a multivalued function from X into Y. These results allow
us to derive chain rules for nonsmooth functions. Such rules includes sum
formulae as well as the calculus rules in [11, 20-22].

Throughout the paper, we will let X and ¥ be Banach spaces equipped
with the norm || || and X* and Y* their topological dual spaces endowed
with the weak-star topology w*. We denoted by (-, -) the pairing between
the space and its topological dual and by By, B}, ..., the closed unit balls
of X, X*, .... For an extended-real-valued function fon X, we write

epif:={(x,r) EX X R: f(x) = r}
and
dom f:= {x € X: |f(x)] < +}.

For a multivalued function F from X into Y, we denote the graph of F by
Gr F, that is,

GrF={x,yY)EXX Y.y € F(x)}.

The abbreviations for interior, weak-star closure, and convex hull are
“int,”” ‘““cl*,”" and ‘‘conv.”’ The distance function d(x, 5) to a given set
Sis

d(x, S) = inf ||x — u]|.
u€S

We write x-f»x(, and x-s+x0 to express x — x, with f(x) — f(x) and x —

x, with x € §, respectively. Finally, if not specified, the norm in a product
of two Banach spaces is defined by |[(«, v)|| = |lu]| + |lv].

2. PRELIMINARIES

In this paper we will use the notations and definitions in loffe [10-11]
and Clarke [5]. Let fbe a function from X into R := R U {—, +} and
let € > 0. We write for any subset § of X

] 'f Sy
Filx) = {f 0, ifxe

+oc, otherwise.
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Recall that for x € dom fthe lower Dini directional derivative, the Dini
subdifferential and the Dini e-subdifferential of f at x are defined by

d™f(x,h) = liminf =" (f(x + tu) — f(x))
w—h

tl0

I flx)={x*EeX*: (x* hy=d flx, h),Yhe X}.
and
a; f(x) ={x* € X*: (x*, hy=d f(x,h)+ &||h|, Yh € X}.

If x & dom fwe put 8~ f(x) = 3 f(x) = &.

Let F(X) be the family of all finite dimensional subspaces of X and let
fbe alower semicontinuous function at x, € dom f. The A-subdifferential
of f at x; (see loffe [10-11]) is defined by

8.fx) = [ ) limsupa~ £, (x),

LEFX) A

.¥—‘>XU
where

. . S
lim sup 87 f,, (x) = {x* € X*: x* = w* — lim x}*, x* € 37 £, .(x}), x;— xo},
S

X=rxg

that is, the set of weak-star limits of all such nets. )
The normal cone generated by d,d(x,, S) is denoted by N(S, x,), that is,

NS, x0) = | Noxd(xo, S).

A>0

The G-subdifferential 3, f(x,) of fat x, € dom fand its singular counterpart
9% f(x,) are given by (see [10-11])

36.f(xg) = {x* € X*: (x*, —1) € N(epi £ x, S (xe))},
9GS (xp) = {x* € X*: (x*,0) € N(epif; x5, f(xp)}-
Following Clarke [5], a vector & € X will be in the Clarke tangent cone
TS, xp) to § at x, if for any sequence (x,) C S converging to x, and any

t,— 0" there exists s, — h such that for all positive integers n,

X, + t,h, € S.
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The Clarke normal cone N(S, xg) to § at x, is the polar of T(S, x); i.e.,
NS, xg) = {x* € X*: (x*, x) = 0, Vx € TS, xp)}.
Clarke’s subdifferential of f at x; is given by
3c fxg) = {x* € X*: (x*, —1) € Nlepi f; xy, f(x0))}.
Suppose finally that F is a multivalued function from X into Y. The G-

coderivative and the Clarke coderivative of F at (x;, y,) € Gr F, respec-
tively, are the multivalued functions of y* € ¥* defined by

DgF(xg, y(y*) = {x* € X*: (x*, —~y*) € NGr F, x,, yo)}
and
D(F(xg, yo)(y¥) = {x* € X*: (x*, =y*) € N(Gr F, xo, yo)}.

The following theorem lists some of the important properties of the G-
subdifferential.

THEOREM 2.1. [10-11]. Let f be an extended-real-valued function on
X which is lower semicontinuous around x, € dom f and let S be a closed
subset of X containing x,:

8,d(x0, )= [ ) limsupa;d,..(x, 5), Q.1
LEF(X) x-i.rn
el0

8 f(xg) = cl*conv(daf(xg) + 9% £(x)). 2.2)

If fis Lipschitz near xo with Lipschitz constant k;,

df(xXo) = 4 f(xg) = n lim sup [8; fr+1(x) N (K, + £)BY], (2.3)

LEFX) A X
el0
dgf(xy) = limsup d5f(x)  (upper semicontinuity condition). (2.4)

!
X

A thorough discussion of these concepts can be found in [10-11, S].
We mention here that if fis convex, then the G-subdifferential coincides
with the subdifferential of convex analysis. The singular G-subdifferential
reduces to zero whenever fis Lipschitz near x,.
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Following Borwein and Strojwas [4], we call a set S C X compactly epi-
Lipschitzian at x, € S if there exist a norm-compact set K and a scalar
r > 0 such that
SN(x,+rBy) +trByCS — K, veelo, rl.

The following proposition gives us an important property of such sets.

ProposiTiON 2.2. [17]. If S is compactly epi-Lipschitzian at x, € S,
then there exist ky, ..., k,, € X and r > 0 such that

[ = max Kx*, k)l
i=1,m
for all x € xy + rBy and x* € d5d(x, S).
Proof. Let K be a compact subset of X and r € 10, 1[ such that
SN(xqg+3rBy) +trBy CS — K, forallt €]0, r[.
Choose an open neighbourhood V of x, with V C x, + rBy and d(x, §) =

r for all x € V. For all € € 10, i[ there exist Ay, ..., h,, € K such that

Kc | (h+erBy).
i=1

Foreachx € Vand each ¢ € ]0, r] we may select some p(x, t) € S such that
lx = p(x, O = d(x, $) + £ 2.5
By the choice of V we have for each x € V and each ¢ € |0, r]

lxo — p(x, Dl = [lx — pCx, D] +[|x — x|
<d(x,S)+ 1 +r<3r

and, hence, p(x, t) € x; + 3rBy. Fix any x € V and any x* € 3,d(x, §).
Fix any b € By and any L € #(X) with {b, h,, ..., h,} C L. We may write
x* = w* — limy, x* with x} €674, ,,(x;, §) and x; — x. Choose j, € J
such that x; € Vforany j € J, j = j;. Let (1,) C 10, r] converging to zero.
For each n € N and each j € J, j = j; choose hy, ; € {h,, ..., h,} and
b,; € By with

p(xj, t,) + t,(rb + hy, ;, + erb, ) € S. (2.6)
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For each j € J, j = j,, we may suppose that h, ;, = h,;), for all n € N.
Then for each j € J, j = j, (recalling that d, ,,(x, §) = d(x, S) if x € x; +
L and deoy(x,8) = += if x € x; + L), we have
51 1,(rb + hy ), S) = dyy (x5, S))

= t,,”[a'(xj + t(rb + hy), S) — d(x;, S)]

=1,'[d(p(x;, 1) + 1,(rb + hy), S) + x; — plx;, 1)l — d(x;, $)]

=1, '[d(p(x;,1,) + t,(rb+ h,;), S) + 1, (by (2.5))

=1, +erllb, J| + 67'd(p(x;. 1) + 1,(rb + by, + erb, ), S)

=t,+er  (by(2.6).

So for each j = j, we have
d—d\'j'FL(" S)(xj; I‘b + th') =gr
which implies (x}, rb + h,;) = er and, hence,

r{x}¥, b) <er+ _max Kx¥, Al

Therefore we get for each £ € 10, }[ and each b € By

(x*,b)<¢e+r! max |(x*,h)|

i=1,..., m

<&+ r ' sup [(x*, )|
hek

and, hence,

= oy, max K, Al

¥ =

and the proposition is proved. |

Remarks. (1) Itfollows from this proposition that in ded(x, S), weak-
star and strong convergences of nets to zero are equivalent, that is,

50 iff|xH—o.
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(2) Loewen [19] has shown that in weakly locally compact cones
(of reflexive Banach spaces), weak-star and strong convergences of se-
quences to zero are equivalent.

3. INDEPENDENCE CONDITIONS

DEeFINITION 3.1, Let C and C, be two nonempty subsets of X and let
X €C, NC, Letd =dgorad=aC.
(a) C, and C, and d-independent at x, [11] if (1.2) holds for a.
(b) C,and C, are strongly 3-independent at x, [6] if (1.3) holds for 4.
Remark. Since the approximate subdifferential of Lipschitz functions

is always a subset of the Clarke subdifferential, 3~indepencence implies
dg-independence, and this implication can be strict (see Example 6.5).

PrROPOSITION 3.2. Let C| and C, be two nonempty subsets of X, with
C, compactly epi-Lipschitzian at x, € C; N C,. Then the following asser-
tions are equivalent:

(i) For all € > 0 there exifts 8 > 0 and a neighbourhood V of x,
such that for all x;, € V, x}f € dgd(x;, C), i = 1, 2, satisfying |x¥H| +
x5l = & then || xf + x3| = 8.

(ii) C, and C, are strongly d;-independent at x,,.
(iii) C, and C, are dg-independent at x,.
Proof. The implications (i) = (ii) = (iii) are obvious.

(ii)) = (i) Suppose that (i) is false. Then there are ¢ > 0, u, — x,,
v, = X, UF € ded(u,, C,), and v* € d,d(v,, C,) such that

laxl + vl =e  and  Jluy + vl =< Un. G.1
Since the function d(x, C) is Lipschitz with constant 1, the sequences
(u})and (v}¥) are bounded. So, extracting subnets if necessary, we may
suppose that u* — u* and v} — —u*. By (2.4),
U* € 36d(Cy, xg) N (= 3d(Cy, xy)).
We shall arrive at a contradiction with (iii) if we show that u* # 0. So
suppose that #* = 0. Then Proposition 2.2 implies the existence of &,

., k,, in X (not depending on n) satisfying

ez = max [, k.

.....
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Thus ||u}| — 0. Now, by (3.1), [lu*| — 0 (because —1/n + ||u}|| = |v}]| =<
|ek]| + 1/n) and so & =< 0 which leads to the contradiction and terminates
the proof. |

Remark. Assuming that C, is epi-Lipschitz-like at x, in the sense of
Borwein [3] and using the result of Jourani and Thibault [18], instead of
Proposition 2.2, we may show that the result of Proposition 3.2 is valid
if we replace o by 8.

To close this section let us give an other characterization of the d;-
independence condition.

ProrosiTION 3.3. Let Cy and C, be two closed subsets of X, with
xy € C; N C,. Then C| and C, are ds-independent at xq iff
Ng (Cy, x) N (=NG(Cy, xp)) = {0}

Proof. First note that if 7 € [0, 1] and u* € d;d(x,, C) then tu* €
d;d(xy, C). Let x* € [NG(C,, xp) N (—~NHC;, xy))]. Then there are r > 0
and s > 0 such that x*/r € d5d(x,, C;) and —x*/s € d,d(x,, C,). Suppose,
for example, that r = 5. Then —sx*/rs € d5d(x,, C,) and, hence,

x*/r € 95d(xy, Cp) N (—dgd(xy, Cy))

which implies that x* = 0. i R
The converse is immediate, since dgd(xy, C) T Ng(C, xp). |

4. INTERSECTION FORMULAE
We start this section by establishing the following important result which
represents the key to the proof of our intersection theorem.

ProrosiTION 4.1 Let C, and C, be two closed subsets of X, with
xo € C, N C,. Suppose that one of the following assumptions is satisfied:

(i) C, and C, are strongly i -independent at x,, or
(i) C, is compactly epi-Lipschitzian at x, and C, and C, are éG-
independent at x,.

Then there exist r > 0 and a > 0 such that
dix, G, N(C,—y)=adx+y, C) 4.1)

Jorall x € C; N (x4 + rBy) and y € rBy. In particular,
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dix, C, N C)) = (a + I)d(x, C) + d(x, Cy))
for all x € x4 + rBy.

Proof. Suppose, for example, that (i) holds. Consider the multi-
valued function

~x + C,y, ifxe G,
o, otherwise.

F(x)= {

Then (4.1) is equivalent to
d(x, F'(y)) = a d(y, F(x))

for all x € x, + rBy and y € rBy, since F !(y) = C, N (C, — y). Suppose
that (4.1) is false. Then, by Lemma 1.2 of Journai [12], there are s, | 0,
withs, = 1, x, = x5, 2,— 0, y,— 0, and ny € N such that for all n = n,

(%0, 2) €Gr F,  y, & F(x,), (4.2)
and for all (x, y) € Gr F,

2, = yll = lly = >l + salllx = 5[ + Iy = 2D
and, hence, the function
(x, )= lly = vl + 2d(x, y; Gr F) + s,(lx = x| + Iy = )

attains a local minimum at (x,, z,). Since for all x € C,

d(x,y; Gr F) =d(y, F(x))
= d(x + )’, C]),

Proposition 2.4.3 in Clarke [5] implies that (x,, z,) is a local minimum of
the function

L,y =y — vl + 4ld(x + y; C) + di(x; Cy)]
+ 5,0l = xf + 1y = 2,/

Thus by subdifferential calculus rules [10-11]
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0E a1 (X0s 2)

C{O}XS(Zn’yn)+4I: (y*’y*)+éGd(xn’C2)x{0}J

y‘EéGd(x,,+z,,,Cl)
+ 5,(BX X B¥),

where S(z,, y,) = {z* € X*: |2¥] = 1 and (2%, z, — y,) = |z, = y,[}- Thus
there are z¥ € S(z,, y,), y¥ € d5d(x, + z,, C)), and x} € dsd(x,, Cy)
such that

lzx + 4yl =s, and  |yx+ xf =s5,/4.
So y* € dgd(x, + z,, Cy), X} € d5d(x,, Cy), and
lx¥ + ly¥|l= (1 —s)/4 and  ||x* + y¥| < s5,/4.

These inequalities contradict (i), since by (4.2), x, € Candx, + z, € C,. |

Ioffe [11] has proved the last part of Proposition 4.1 for the case in
which C, is epi-Lipschitzian at x,. He used the following result.

LEMMA 4.2. Suppose that S C X is closed and epi-Lipschitzian at x,.
Then there are an h € X, |h|| = 1, and r > 0 such that
x*e 5Gd(x, S)=>{(x* h)<—r,

provided x & S and x sufficiently close to x.

Note that we can use Proposition 2.2 instead of Lemma 4.2 and loffe’s
techniques, which are based on Ekeland variational principle [7], to prove
Proposition 4.1.

COROLLARY 4.3. Let all the hypotheses of Proposition 4.1 be satisfied,
with dq-independence replaced by d.-independence. Then the results of
Proposition 4.1 are valid.

Proof. Observe that 3Gd(x, D) C 3-d(x, D) for all x and apply Proposi-
tion4.1. |

We now use Proposition 4.1 to establish the intersection theorem.
THEOREM 4.4. Under assumptions of Proposition 4.1 there exists a

real number k > 0 such that

dgd(xy, C, N Cy) C k[dgd(xy, C)) + dgd(x,, Cy)).
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Proof. Let f(x) = d(x, C; 0 C;) and g(x) = d(x, C,) + d(x, C)). Let

x* € éG Sf(x,). Then by (2.1), we have for all L € %(X) the existence of

NG, .
nets x;— x,, £ — 07, with g; < 1, and x} — x* such that

=2 and  xF €0 fu(n).

Let ¢ > 0 be given. By Lemma 1 in loffe [9], x; is a local minimum of
the function

x> fro () = (xF o x—x) + (e + g)llx — xj|. 4.3)
By Proposition 4.1 there exist £ > 0 and r > 0 such that
d(x, C, N C)) = k(d(x, C)) + d(x, Cy))

for all x € x; + rBy. Combining this and (4.3) we find that x; is a local
minimum of the function

x> kg4 (x) = (Fox —x)+ (e + &) x — x|
Thus
xt € a(_e+s,-)kgx,-+L(xi)

and, hence,
X* € kdgg(xo)

C k [dgd(xy, C) + d5d(xg, C)1. |

Remark. loffe {11] has obtained this result under the hypothesis that
C, is epi-Lipschitzian. But every epi-Lipschitz set is compactly epi-
Lipschitzian and the converse does not hold.

COROLLARY 4.5. If assumptions of Theorem 4.4 are satisfied, then

Ny(C, N Cy, x) T NLCy, x0) + NACs, xo).

As a consequence of Theorem 4.4 we obtain the following result which
extends the main theorem of Clarke and Raissi [6].
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COROLLARY 4.6. Let all the hypotheses of Theorem 4.4 be satisfied.
Then there exists a real number k > 0 such that

acd(xO, Cl N Cz) Ck [acd(XD, Cl) + Bcd(xo, Cz)].
Proof. By Theorem 4.4 there exists k > 0 such that

ded(xg, C, N Cy) C k[dgd(xy, Cy) + dgd(xy, Cy)]
Ck [acd(xo, Cl) + acd(xO, Cz)].

Since dq-d(xy, Cp) + 9-d(xy, C,) is convex and weak-star compact it fol-
lows that

cl*conv dgd(x,, C, N C,) C k[8cd(xy, Cy) + 3cd(xy, Cy)]
and, hence,
6Cd(x0, Cl n Cz) C k [acd(XO, CI) + acd(xO, Cz)]. l

Remark. Note that this result has been established by Clarke and
Raissi [6], but with X a Hilbert space and C, a compact set.

5. MARGINAL FUNCTION

Intersection formulae can readily be applied to produce estimates for
subdifferentials of the marginal function

m(x) := inf{f(x, y): y € F(x)}, 5.1

where fis an extended-real-valued function on X X Y and Fis a multivalued
function from X into Y. For all x € dom m we consider the set of minimizers

M(x) = {y € F(x): m(x) = f(x, y)}.

To estimate the subdifferential of m we need a stability assumption of
the type

There exist a norm-compact set K C Y and a neighbourhood V of x;
such that forallx € V, M(x) # Jand M(x) CK + p(x)By, (5.2)
where p is a real-valued function on V satisfying lim,_,, p(x) = 0.
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Remarks. (1) 1t is easy to see that, under the hypothesis (5.2) and
the fact that fis lower semicontinuous and Gr F is closed, the marginal
function m is lower semicontinuous at x;.

(2) Similar conditions to (5.2) have been used in the study of the
directional derivative and the Clarke’s subdifferential of the marginal func-
tion m (see, for example, [8, 25-27]).

THEOREM 5.1. Let the multivalued function F have closed graph, let
f be lower semicontinuous around any point (xy, yo) with y, € F(xy), and
let (5.2) hold. Suppose that, for all y, € M(x,), one of the following
conditions holds:

(i) epi fand Gr F x R are strongly éc-independent at (xg, Yo,
S (x5 ¥o)),

(i) epifis congpactly epi-Lipschitzian at (xy, ¥y, f(xg, yo)) and epi
fand Gr F X R are d;-independent at (xy, ¥y, f(Xo, Yo)),

(i) Gr Fis compactly epi-Lipschitzian at (xy, yo) and epi f and Gr
F X R are og-independent at (x4, ¥y, f(Xg, yo)).

Then

semixpc |J UJ o+ DEFCo, )

YeEM(xg) (x* y*)IEI;f(xg.¥p)

and

dzm(xy) C U U {x* + DEF(xo, y)(y*)}.

YoEM(x) (.x‘,y“)EéF;f(xo.yo)
Remark. The results of Theorem 5.1 remain true if we replace the
stability assumption (5.2) by the following one:
There exist a continuous selection s of the multivalued function M
on some closed ball x, + rBy.

In this case, for y, = s(xg),

bemxgC | e* + DEF G,y

(x* y*)EdGS (xg.¥0)

and

mepC U 0+ DEF(x0, Y3},

(x* YIEIGS (50,50
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We will prove our theorem in two steps. The first step reduces the proof
to that of a simpler estimate.

LEMMA 5.2. Set C| = epi fand C, = Gr F X R. Let the multivalued
Junction F have closed graph, let [ be lower semicontinuous around any
goint (xg, yo) with y, € F(x,), and let (5.2) hold. Then for all (x*, B) €
dgd(xy, m(xy), epi m) there exist y, € M(x,) and k > 0 such that

(x*,0, B) € kdgd(xy, ¥, f(xg, ¥o), C; N Ca).

Proof. Set g(x, r) = d(x, r, epi m) and h(x, y, r) = d(x, y, r, C; N
C,). Then, by (2.1), we have for all L € F(X) the existence of nets

(X;, 1) =25 (xo, m(xg)), &;— 07, with &; < 1, and (x*, ) — (x*, B) such that
(xF,B) €I, g(x,—,r,—)+LxJR(xi’ r).

Let € > 0 be given. By Lemma 1 in loffe [9] and Proposition 2.4.3 in
Clarke [5], (x;, r;) is a local minimum of the function

(x,r)—=>glx,r) = (xF, x —x)— (B, r—ryp
+(e+e)|x— x| +|r—r) +4dx,x; + L)

and, hence, there exists s; > 0 such that
—(x* x—x)—{Bnr—r)+e+e)lx—x{{+|r—r)+4dx,x; + L) =0

for all (x, r) € epi m N ((x;, r) + 5;Byxg)- By (5.2), there exists y; €
F(x,) satisfying

m(x;) = f(x;, y)

and, extracting a subnet if necessary, we may suppose that y, — y,.
Because Gr F is closed, we have y, € F(xg). Further, since m(x)) = f(x,,
¥), m(xy) < r;, and fis lower semicontinuous around (x;, ¥o), it follows that

vo € Flxy) and m(xy) = f(xp, Yo)-
Thus y, € M(xp). On the one hand, (x;, y;,, r) € C, N C,, and, on the

other hand, if (x, y, r) € C, N C, then (x, r) € epi m. So invoking (5.3)
and Proposition 2.4.3 in Clarke [5] we obtain that (x;, y;, r;) is a local
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minimum of the function
(x’yvr)_)Gd(x,yyr1 Cl n CZ) - <x;'<"x _xi> - (Biir_ ri)
+(e+e)x — x|+ |r—r) +4d(x, x;, + L).

It follows that for all E € %(Y),
(x¥,0,B) € a(_e+e,-)6h(xi,yi,r,)+LxExR(xi’ Vi 1)

and, hence,

(x*, 0, B) € 6dsh(xy, Yo, f(x0, yo)). |

The second step shows that the sets C, and C, are d;-independent (resp.
strongly d,-independent) at x, and satisfy the intersection formulae.

LEMMA 5.3. Let the multivalued function F have closed graph and
let f be lower semicontinuous around (x,, y,) with y, € F(x,). Suppose
that condition (i) (resp. (ii)) (resp. (iii)) holds. Then C, and C, are strongly
éc-independent at (xg, o, (x4, yo)) (resp. C, is compactly epi-Lipschitzian
at (x4, yo, f (X0, ¥o)) and C, and C, are d;-independent at this point) (resp.
C, is compactly epi-Lipschitzian at (xy, vy, f(xy, ¥o)) and C, and C, are
dg-independent at this point). In addition there exists a > 0 such that

éGd(x()v )’o,f(xo, J’o), Cl ﬂ C2) Ca [éGd(x01 yO’f(-xO’ .Y())y eplf)
+ dgd(xg, ¥, Gr F) x {0}].

Proof. 1t suffices to see that
36d(x0, ¥, f (X0, ¥o), C\) = 8Gd(xq, Yo, f(Xo, ¥0), epif)
and
dgd(Xg, Yo, f(Xo, o) C) = dd(xq, ¥,, Gr F) X {0}

and apply Theorem 4.4. |

Proof of Theorem 5.1.  Let u* € dzm(x,). Then there exist A > 0 and
(x*, B) € dgd(x,, m(xy), epi m) such that

u* = Ax* and AB = —1.
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By Lemma 5.2 there exist a real number & > 0 and a point y, € M(x,)
such that

x*,0,8) € kécd(xo, Yor f (x4, ¥0), C, N Cy)

and by Lemma 5.3 there exist a > 0, (z*, y*, y) € dcd(xy, Yo f(Xo, Yo,
epi f) and (v*, p*) € dgd(xy, o, Gr F) satisfying

x* = ak(z* + v*),

0 = ak(y* + p*),

and
B = aky.
Thus
u* = Ax* = hak(z* + v¥),
~1 = AB = Aaky,

and

Aaky* = —hakp*.
Hence

(Aakz*, haky*) € d¢ f(xy, ¥o)

and

u* € (Aakz*) + DgF(x,, yo)(Aaky*).

The proof of the second part is similar to that of the first one. |

It is easy to obtain a number of corollaries of Theorem 5.1 by considering
certain special forms for f and F. In particular, the theorem implies the
following result which was first obtained in Mordukhovich [20-22] in
finite dimensions.

COROLLARY 5.4. Let the hypotheses of Theorem 5.1 be satisfied with
f(x,y) = g(y). Then

dgm(x,) C U U DEF(xy, yo)(y*)

YIEM(x)) y*es;a(yg)
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and

moc | U DEFGo v

YoEM(xq) y*Ed5g(vp)

In the case where F is a single-valued function we obtain the following
generalized chain rules.

THEOREM 5.5. Let F be a single-valued function from X into Y which
is continuous around x, and let g be an extended-real-valued function on
Y which is lower semicontinuous around y, = F(x,) € dom g. Suppose
that one of the following conditions holds:

(') X X epi g and Gr F X R are strongly ds-independent at (x,,
Yo» £(Y)),
(ii") epigis cornpactly epi-Lipschitzian at (y,, g(y) and X X epi
g and Gr F X R are dg-independent at (xy, o, 8(¥o)),
(iii') Gr F is gompactly epi-Lipschitzian at (xy, yo) and X X epi g
and Gr F X R are ds-independent at (xy, ¥y, £(yo)).

Then

dolg P C | DEF(xe. y(3®)

y*Edge(yy)

and

be(g° P C () DEF(x, 30 (3.

Y*Edge(yg)

Remark. Theorem 5.5 implies the estimates

dlg P C L 6o F)xp)
Y*EdGe(vg)
and

§g P C | 3o P

y*EdG(vy)
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whenever F belongs to the large class of strongly compactly Lipschitzian
functions [15], since following Jourani and Thibault [16],

(x*, —y*) € N{Gr F, xy, F(xp)) & x* € d5(y* © F)(xy).
In particular, when F is strictly differentiable at x, (that is, when
lim |F(x) = F(x') = VF(xo)(x = x')|| =0

s Rl
x'—xq

’

where VF(x,) is the Fréchet derivative of F at x;), we have both

50(3 o F)(xy) C écg(}’()) o VF(xy)
and
358 ° F)xo) C 858(yo) ° VF(xo).
COROLLARY 5.6. Let F and g be as in Theorem 5.5, with epi g com-
pactly epi-Lipschitzian at (yq, g(y,)). Suppose that
Y*EFe(y) and  0E DFlxy, y)(y*) > y* =0.

Then the results of Theorem 5.5 are valid.

Proof. It suffices to show that the sets C, := X x epigand G, := Gr
F X R are ds-independent. So let (x*, y*, r) € dgd(xy, ¥o, £(¥), C)) N
(—dgd(xq, ¥, €(¥o), C)). As

dgd(xo, Yo, 8(¥), C1) = {0} X dd(¥y, 8(¥o), epig)
and
36d(x0. Yo, 8(30), C;) = 8gd(x0, yo, Gr F) x {0},
we have x* = 0, r = 0. Thus,
y*e égg(xo) and 0e ﬁGF(xo, Yo (»r*)

which implies by assumption that y* = 0, and the proof is complete. |

Remark. Corollary 5.6 was first obtained by Ioffe [11, Theorem 7.5],
under the hypothesis that g is directionally Lipschitz at y, or, equivalently,
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that epi g is epi-Lipschitz [24] at (y,, g(yy)). But (following Borwein
[3]) every epi-Lipschtiz set is compactly epi-Lipschitzian and in finite

dimensions each subset is compactly epi-Lipschitzian at all its points, and
this is not the case for the epi-Lipschitz sets.

As a consequence of Theorem 5.5 we obtain the following chain rule
for Clarke’s subdifferential.

CoRroLLARY 5.7. Under the assumptions of Theorem 5.5 we have

dclgo P Cel* | ) DEF(x,, 50(%).

y*E3cg(yy)

Proof. Letx*€ éq( g° F)(xy) and u* € dx(geoF )(x,). Then, by Theorem
5.5, there exist y* € d;g(y,) and v* € dz g(y,) such that

(x*, —y*) € NG(Gr F, xy, o), (u*, —v*) € NG(Gr F, xg, Yo).

As Ng(Gr F, x,, yo) C NAGr F, x,, y,) and NAGr F, x,, y) is a closed
convex cone it follows that

(x* + w*, —(y* + v¥) € NAGr F, x4, yo)
and, hence,
X* 4+ u* € DEF(x0, y(y* + 0%, y* + v* € dgelyg) + 52(0).
Invoking (2.2), we conclude that

dc{ g ° F)(xo) C cl* U DEF (xg, yo)(y*). |

y*Edcelyy
To complete this section we consider F of the special form
F(x) = {y € C: g(x, y) € D}, (5.4)
where g: X X Y — Z is a Lipschitz function at all points (x, y,) with
Yo € F(xy), Z is a Banach space, and C and D are two closed subsets of

Y and Z, respectively. Suppose that there exist two neighbourhoods V
and W of x; and y,, respectively, and a real number a > 0 such that

d(y, F(x)) < ad(g(x, y), D) (5.5)
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foral x € Vand y € W N C. Then there exists kK > 0 such that
d(x, y; Gr F) < k [d(g(x, y), D) + d(y, C)}
for all x € V and y € W. Thus, using (2.1), we get
dgd(xq, yo; Gr F) C kd(d(g(-, -), D) + d(-, C))(xq, ¥o)

- U DGg(xo’ yo)(z*) + {0} x NG(C, Yo)-
*ENGD. glxg, o)
These arguments establish the following corollary of Theorem 5.1.

COROLLARY 5.8. Let f be as in Theorem 5.1, let F be given by (5.4),
and let (5.2) hold. Suppose that (5.5) holds for all y, € M(x,). Then

écm(xo) C l ’ l ' {x* + u*: (u*, —y*)
YoEM(xo) (X*.Y*)Eéof(.tg‘yo)

€ U ng(xm yo)(z*) + {0} x NG(C’ yool.
*€NHD, glxg yg)

6. CoOMPARISON OF INDEPENDENCE CONDITIONS

In finite dimensions, Aubin and Ekeland [1] establish (1.1) under the as-
sumption

TC(CI’ xO) - TC(CZ’ .xO) = X. (6-1)

Their result can easily be extended to infinite dimensions and without any
additional effort we can prove the following corollary of Theorem 4.4.

CoRrOLLARY 6.1. Let C, and C, be two closed subsets of X, with C,
compactly epi-Lipschitzian at x, € C; N C,. Then (6.1) implies (1.1).
Therefore,

NJAC, N Cy, xg) T NACy, x0) + NALCs, xp). 6.2)

Proof. Itis not difficult to show that (6.1) implies the d;-independence

of C, and C,. So using Corollary 4.6 and the fact that NA{C;, x;) =
cl*(R, dcd(xy, C})) (see [5]) we get

NAC, N Cy, x) C cI*INKC,, x) + NACs, x)].
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Theorem 6.3 in Borwein [3] implies that

CI*INACy, xo) + NACy, x)1 = NAC\, xp) + NLC;, x¢)
and, hence,

N Ci N Cy,x9) C Nc(Cl, Xo) + Nc(Cz, Xo)- 1

Remark. Corollary 6.1 is established in [28] under the hypothesis that
C, and C, are epi-Lipschitz-like at x,. But every epi-Lipschitz-like set is
compactly epi-Lipschitz and the converse cannot hold (see Example 4.1
in [3]).

In infinite dimensions, Rockafellar [24] shows that the assumption

int TC(C| s Xo) N TACy, xy) # )

C e o 3
C, is epi-Lipschitzian at x; (6.3)

implies (6.2). i
The following lemma shows that our d-independence condition is
weaker than (6.1), (6.3), and the J-independence condition.

LEMMA 6.2. The following implications hold:

(6.3) > (6.1) > dpd(xy, Cp) N (=3 -d(x,, Cy)) = {0}
> Ne(Cyx0) N (= N{Cy, xp)) = {0}
& dd(xg, C)) N (—dd(x,, Cy)) = {0}

Proof. The implication (6.3) = (6.1) is immediate.

For (6.1) = d-d(xy, Cy) N (—dcd(xy, Cy)) = {0}, it suffices to see that
(6.1) = N(C), xp) N (=NACy, x0)) = {0} and dcd(xy, C)) C N(C, xo).

Finally, the d.-independence condition implies the d;-independence
condition, since d5d(x,, C) C dcd(xy, C). |

The following example shows that the implication (6.3) => (6.1) is strict.

ExaMPLE 6.3. Take C, = {0} x Rand C, = R x {0} and x, = (0, 0).
Then (6.1) holds while int T{(C,, x3) = int T(C,, x;) = &.

The implication (6.1) = d-d(x,, C)) N (—3dcd(x,y, C,)) = {0} is also strict.

ExaMPLE 6.4. [6,23]. Let C, = [-1,1] x {0} x [—1, 1] and C, = epi
f, where
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y*/2)x], if x #0
flx,yy=10, ifx=y=0
®, ifx=0,y#0,

and let x, = (0, 0, 0). Then [23]

ded(xg, C)) = {0} x [—1, 1] x {0},

dcd(xg, Cy) = coan(x, Y, 2)EBpiz= 2;‘%‘ X # O}

U{(x,y,z)EBR::x=y=O,ZSO}],
NACy, x9) = {0} X R x {0},
and

NAC,, xp) = {(x, y, 2) € R z < 0},

So 9cd(xg, C) N (—dcd(x,, Cy) = {0} while NLC,, x) N
(=NLCy, x)) = {0} x R x {0}

Finally we give an example in whicih the converse qf the implication
a('d(xO, C|) m (_a(‘d(.xO, Cz)) = {0} j BGd(XO, C|) ﬂ (“aGd(Xo, Cz)) - {O}
does not hold.

ExaMPLE 6.5. Let C, = {0} x R, C, = {(x, y) € R%: y = x|}, and
Xy = (0, 0). Then

dgd(xy, C)) = [—1, 1] x {0},
écd(-"()v G)={(x,y)EBz:y= ’X'} U{lx,y) EBpiy = —fx[},
ded(xy, Cy) = conv dgd(x,, C)) = [—1, 1] x {0},

and

dcd(xy, Cy) = B

S0 d5d(xe, Cp) N (—85d(xe, Co)) = {(0, 0} while dcd(xy, C) N (—dcd(xy,
Cy)) = [—1, 1] x {0}.
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