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Abstract. In this paper we show that theG – subdifferential of a lower semicontinuous function
is contained in the limit superior of theG – subdifferential of lower semicontinuous uniformly
convergent family to this function. It happens that this result is equivalent to the corresponding
normal cones formulas for family of sets which converges in the sense of the bounded Hausdorff
distance. These results extend to the infinite dimensional case those of Ioffe forC2 – functions and
of Benoist for Clarke’s normal cone. As an application we characterize the subdifferential of any
function which is bounded from below by a negative quadratic form in terms of its Moreau–Yosida
proximal approximation.
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1. Introduction

In 1984, Ioffe [8] showed that in finite dimensional space theG – subdifferential
∂Gf (x0) of a functionf atx0 is smaler than any Warga’s derivative containers [18]
of f atx0. He established the following result which is essentially due to Kruger–
Mordukhovich [12–13] who proved it under some what stronger assumptions.

THEOREM 1.1. Let f , fn, n = 1,2, . . . , be real-valued functions defined on
some finite dimensional spaceX. Supposefn, n = 1,2, . . . , are C2 and the
sequence(fn) converges uniformly tof aroundx0. Then

∂Gf (x0) ⊂ lim sup
n→∞
un→x0

{∇fn(un)}. 2

Here, as usual,∇fn(un) denotes the gradient offn atun.
In 1993, Benoist [4] extended this result to the uniformly convergent sequence

(fn) which are strictly differentiable. In fact he established the following more
general result for normal cones to sets in finite dimension. His proof is essentially
geometric.
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THEOREM 1.2. Let (Cn) be a sequence of nonempty closed subsets of some finite
dimensional spaceX and C a nonempty closed subset ofX such that for any
bounded setQ ⊂ X

lim
n→∞ hausQ(C,Cn) = 0.

Then for each boundary pointx0 ofC

NG(C, x0) ⊂ lim sup
n→∞

un∈Cn→x0

NC(Cn, un). 2

HerehausQ(C,Cn) denotes the bounded Hausdorff distance between the setsC

andCn, NG(Cn, un) is the G-normal cone of Ioffe [10] andNC(Cn, un) is the
Clarke’s normal cone toCn at un. Note that the Clarke normal cone contains the
G-normal cone and this containment may be strict.

Our aim in this paper is twofold. First we extend both result to Banach spaces.
Second we show that Theorem 1.1 remains true for any lower semicontinuous uni-
formly convergent sequence(fn), by replacing∇fn(un) by ∂Gfn(un) and Theorem
1.2 is valid if we replace the Clarke normal cone by theG-normal cone. We show
that both extension are equivalent. Note that our proof is completely different from
the previous ones and it is essentially analytic and based on Ekeland variational
principle [7].

The obtained results are used to characterize the subdifferential of lower semi-
continuous functions which are bounded from below by a negative quadratic form
in terms of their Moreau–Yosida proximal approximations.

2. Notations and Preliminaries

Throughout the paperX will be a Banach space,X∗ its topological dual equipped
with the weak-star topologyw∗. We will denote byBX the closed unit ball ofX
and byd(·, S) the distance function to a subsetS of X

d(x, S) = inf
u∈S ‖x − u‖.

We will write x
f→ x0 andx

S→ x0 to expressx → x0 with f (x) → f (x0) and
x → x0 with x ∈ S, respectively and we will denote byepif the epigraph of a real
valued extended function, i.e.,

epif = {(x, r) : f (x) ≤ r}.
If C andD are nonempty subsets ofX and ifQ is a bounded subset ofX, the
bounded Hausdorff distance betweenC andD is denoted by

hausQ(C,D) = inf{ε > 0 : Q ∩ C ⊂ D + εBX andQ ∩D ⊂ C + εBX}.
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If not specified the norm in a product of two Banach spaces is defined by
‖(a, b)‖ = ‖a‖ + ‖b‖.

We will use the notations in Ioffe [9, 10].
Let f : X→ R∪{+∞} be a lower semicontinuous function in a neighborhood

of x0 ∈ X with f (x0) < ∞. The approximate subdifferential (see Ioffe [9, 10]),
which is an extension to the context of Banach spaces of the concept introduced by
Mordukhovich [14, 15] for finite dimensional spaces is defined by

∂Af (x0) =
⋂

L∈F (X)
lim sup
x
f→x0

∂−fx+L(x)

where

∂−f (x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f (x;h),∀h ∈ X},

d−f (x;h) = lim inf
u→h
t↓0

t−1(f (x + tu)− f (x)).

Here, forS ⊂ X, fS denotes the function defined by

fS(x) =
{
f (x) if x ∈ S
+∞ otherwise,

F (X) is the family of all finite dimensional subspaces ofX and

lim sup
x
f→x0

∂−fx+L(x) = {x∗ ∈ X∗ : x∗ =

w∗ − lim x∗i , x
∗
i ∈ ∂fxi+L(xi), xi

f→ x0},
that is the set ofw∗-limits of all such nets.

TheG-normal cone toS atx0 ∈ S is denoted byNG(S, x0), that is,

NG(S, x0) = cl∗
⋃
λ>0

λ∂Ad(x0, S).

TheG-subdifferential∂Gf (x0) of f atx0 with f (x0) <∞ is given by (see [9, 10])

∂Gf (x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ NG(epif ; x0, f (x0))}.
Following Clarke [6], a vectorh ∈ Xwill be in the Clarke tangent coneTC(S, x0)

to S at x0 if for any sequence(xn) ⊂ S converging tox0 and anytn → 0+ there
existshn→ h such that for all positive integersn

xn + tnhn ∈ S.
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The Clarke normal coneNC(S, x0) to S atx0 is the negative polar ofTC(S, x0),
i.e.,

NC(S, x0) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, ∀x ∈ TC(S, x0)}.
The following theorem lists some of the important properties of theG-subdiffer-

ential.

THEOREM 2.1 [8–10]. Letf be an extended real-valued function onX which is
lower semicontinuous aroundx0, with f (x0) <∞ and letS be a closed subset of
X containingx0.

(i) NC(C, x0) containsNG(C, x0).
(ii) If f is Lipschitz nearx0 with Lipschitz constantkf

∂Gf (x0) = ∂Af (x0)x =
⋂

L∈F (χ)
lim sup
x
f→x0

ε→0+

∂−ε fx+L(x) ∩ (kf + ε)BX∗,

where

∂−ε f (x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f (x;h)+ ε‖h‖,∀h ∈ X}.
(iii)

∂Af (x0) = lim sup
x
f→x0

∂Af (x) (upper semicontinuity condition).

(iv) If g is a locally Lipschitz function aroundx0 then

∂G(f + g)(x0) ⊂ ∂Gf (x0)+ ∂Gg(x0).

(v) x∗ ∈ ∂Ad(C, x0) iff there exist a family(Li) of finite dimensional subspaces

of X cofinal withF (X), x∗i → x∗, xi
C→ x0, εi → 0+ such thatx∗i ∈

∂−εi dxi+Li (C, xi) ∩ (1+ εi)BX∗ for all i.

A thorough discussion of these concepts can be found in [8–10] and [6]. We
mention here that iff is convex, then theG-subdifferential coincides with the
subdifferential of convex analysis.

3. Equivalence of the Extended Theorems

We begin by an extension of Ioffe’s theorem [8] to the infinite dimensional spaces
and for lower semicontinuous functions.

THEOREM 3.1. Let f, fj , j ∈ J be lower semicontinuous real valued functions
onX such that the net(fj ) converges uniformly tof aroundx0. Then

∂Gf (x0) ⊂ lim sup
j∈J
u→x0

fj (u)→f (x0)

∂Gfj (u). 2 (3.1)
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The following theorem is a smooth version of the previous one.

THEOREM 3.2. Letf, fj : X→ R, j ∈ J be Lipschitz functions onX such that
the net(fj) converges uniformly tof aroundx0. Then

∂Gf (x0) ⊂ lim sup
j∈J
u→x0

∂Gfj (u). 2

Since the Clarke normal cone contains theG-normal cone, the following theo-
rem is an extension of those of Benoist [3–5] to Banach spaces.

THEOREM 3.3. Let (Cj)j∈J be a net of nonempty closed subsets ofX andC a
nonempty closed subset ofX such that

(i) x0 is a boundary point ofC and
(ii) there existsr > 0 such that

lim
j∈J

hausx0+rBx (C,Cj) = 0.

Then

∂Ad(x0, C) ⊂ lim sup
j∈J

u∈Cj→x0

5∂Ad(u,Cj)

and consequently

NG(C, x0) ⊂ lim sup
j∈J

u∈Cj→x0

NG(Cj , u). 2

COROLLARY 3.4. Suppose, in addition to the assumptions of Theorem 3.1 that
the functionsf , fj , j ∈ J are convex. Then (3.1) holds as equality.

THEOREM 3.5. Theorems 3.1, 3.2 and 3.3 are equivalent.

Proof. Theorem 3.1 implies Theorem 3.2: evident.
Theorem 3.3 implies Theorem 3.1: We need the following lemma whose proof

is based on Theorem 3.3.

LEMMA 3.6. Letf , fj , j ∈ J be lower semicontinuous real valued functions on
X such that for somer > 0

lim
j∈J

haus(x0,f (x0))+rBX×R(epi f, epi fj ) = 0.

If (x∗, α∗) ∈ ∂Ad(epi f, x0, f (x0)), withα∗ 6= 0, then

(x∗, α∗) ∈ lim sup
u
j→x0

fj (u)→f (x0)

5∂Ad(epi fj , u, fj (u)).
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Consequently, if(x∗,−1) ∈ NG(epi f, x0, f (x0)), then

(x∗,−1) ∈ lim sup
u
j→x0

fj (u)→f (x0)

NG(epi fj , u, fj (u)).

Proof of Lemma 3.6.By Theorem 3.3 there are nets(uj , rj ) → (x0, f (x0)),
with (uj , rj ) ∈ epi fj , for all j ∈ J , and(x∗j , α

∗
j )→ (x∗, α∗) such that

(x∗j , α
∗
j ) ∈ 5∂Ad(epi fj , uj , rj ),∀j ∈ J.

Thus for allj ∈ J,L ∈ F (X), ε > 0 and weak-star neighbourhoodV of 0 there
exists(u, s) := (xj,L,ε,V , rj,L,ε,V ) ∈ ((xj , rj )+ εBX×R) ∩ epi fj such that

1/5(x∗j , α
∗
j ) ∈ ∂−ε d(u,s)+L×R(epi fj , u, s) + V × εBR.

So there exists(u∗j,L,ε,V , s
∗
j,L,ε,V ) ∈ ∂−ε d(u,s)+L×R(epi fj , u, s) such that

(x∗j , α
∗
j )− 5(u∗j,L,ε,V , s

∗
j,L,ε,V ) ∈ 5(V × εBR).

Sinceα∗ 6= 0 we gets = fj(u). Indeed from Lemma 1 in [8] and Proposition 2.3.4
in [6] there existsrj > 0 such that for all(x, r) ∈ (u, s) + rjBX×R

d(x, r, epi f )− 〈u∗j,L,ε,V , x − u〉 − s∗j,L,ε,V (r − s)
+ 2ε[‖x − u‖ + |r − s|] + 3d(x, u + L) ≥ 0.

So if fj(u) < s we obtain for somer ′j ∈]0, rj [ that for allr ∈ s+ r ′jBR, fj(u) < r
and hence

−s∗j,L,ε,V (r − s)+ 2ε|r − s| ≥ 0

and this implies that|s∗j,L,ε,V | ≤ 2ε. But ε is arbitrary and(s∗j,L,ε,V ) goes to
α∗, then we obtain a contradiction withα∗ 6= 0. Sos = fj(u). As (x∗j , α

∗
j ) −

5(u∗j,L,ε,V , s
∗
j,L,ε,V )→ 0, it follows that

(x∗, α∗) ∈ lim sup
u
j→x0

fj (u)→f (x0)

5∂Ad(epi fj , u, fj (u)).

Proof of Theorem 3.5 (continued).Since(fj) converges uniformly tof around
x0 there existsr > 0 such that

lim
j∈J

haus(x0,f (x0))+rBX×R(epi f, epi fj ) = 0.

Let x∗ ∈ ∂Gf (x0), then (x∗,−1) ∈ NG(epi f, x0, f (x0)) and there exist, by
Lemma 3.6,uj → x0, fj (uj ) → f (x0) and (x∗j , α

∗
j ) → (x∗,−1) such that
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(x∗j , α
∗
j ) ∈ NG(epi fj , uj , fj (uj )). By Proposition 3.5 in [10],α∗j ≤ 0, and hence

x∗j
−α∗j ∈ ∂Gfj (uj ). Thus

x∗ ∈ lim sup
j∈J
uj→x0

fj (uj )→f (x0)

∂Gfj (uj ).

Theorem 3.2 implies Theorem 3.3: Setf (x) = d(C, x) andfj(x) = d(Cj , x).
It is easy to see that(fj ) converges uniformly tof aroundx0. So Theorem 3.2
ensures that

∂Gf (x0) ⊂ lim sup
j∈J
uj→x0

∂Gfj (uj ).

The proof is complete if we show that

lim sup
j∈J
u→x0

∂Ad(Cj , u) ⊂ lim sup
j∈J

u∈Cj→x0

5∂Ad(Cj , u).

So letx∗ in the left hand side. Then there existxj → x0 andx∗j → x∗ such that
x∗j ∈ ∂Ad(Cj , xj ).

Suppose thatxj 6∈ Cj for all j . Then there exist, by Theorem 2.1, a family(Lj)
of finite dimensional subspaces ofX cofinal withF (X), y∗j → x∗, yj → x0, with
yj 6∈ Cj , εj → 0+ such thaty∗j ∈ ∂−εj dyj+Lj (C, yj ) ∩ (1+ εj )BX∗ for all j (to
simplify, our nets are also indexed by the same directed set as(Cj), see the proof
of Lemma 3.6 for details). So by Lemma 1 in [8] and Proposition 2.3.4 in [6] there
existsrj → 0+ such that

(yj + rjBX) ∩ Cj) = ∅ (3.2)

and for ally ∈ yj + rjBX
d(Cj , y)− 〈y∗j , y − yj 〉 + εj‖y − yj‖
+ (2+ 2εj )d(y, yj + Lj) ≥ d(Cj , yj ).

Let y′j ∈ Cj such that

‖y′j − yj ≤ d(Cj , yj )+ r3
j .

Then for allx ∈ Cj andy ∈ yj + rjBX
r3
j + ‖x − y‖ − 〈y∗j , y − yj 〉 + εj‖y − yj‖
+ (2+ 2εj )d(y, yj + Lj) ≥ ‖yj − y′j‖.
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Setgj (x, y) = ‖x − y‖ − 〈y∗j , y − yj 〉 + εj‖y − yj‖+ (2+ 2εj )d(y, yj +Lj), so
gj (y

′
j , yj ) = ‖y′j − yj‖ and hence for allx ∈ Cj andy ∈ yj + rjBX
gj (y

′
j , yj ) ≤ gj (x, y) + r3

j .

Thus by Ekeland’s variational principle [7], there exists(uj , vj ) ∈ Cj×(yj+rjBX)
such that

‖uj − y′j‖ + ‖vj − yj‖ < r2
j (3.3)

and for allx ∈ Cj andy ∈ yj + rjBX
gj (uj , vj ) ≤ gj (x, y) + rj (‖x − uj‖ + ‖y − vj‖).

By Proposition 2.3.4 in [6] we get that(uj , vj ) is a local solution of the function

(u, y)→ gj (x, y) + rj (‖x − uj‖ + ‖y − vj‖)+ 5d(Cj , x)

because, by (3.3),vj is an internal point toyj + rjBX. By Theorem 2.1 there exist
u∗j ∈ 5∂d(Cj , uj ) andv∗j ∈ X∗, with ‖v∗j ‖ = 1, (because by (3.2)uj 6= vj ) such
that

v∗j + x∗j ∈ L⊥j + (rj + εj )BX.
and

‖u∗j + v∗j ‖ ≤ rj + εj .
Thusv∗j + x∗j → 0 which implies thatv∗j →−x∗ andu∗j → x∗ and hence

x∗ ∈ lim sup
j∈J

uj∈Cj→x0

5∂Ad(Cj , uj )

and the proof is terminated.

4. Proof of Theorem 3.1

Because of Theorem 3.5, it suffices to prove Theorem 3.3.
Let x∗ ∈ ∂Ad(C, x0). Then, by Theorem 2.1 there exist a family(Li) of finite

dimensional subspaces ofX cofinal withF (X), x∗i → x∗, xi
C→ x0, εi → 0+ such

thatx∗i ∈ ∂−εi dxi+Li (C, xi)∩(1+εi)BX∗ for all i. By Lemma 1 in [8] and Proposition
2.3.4 in [6] there existsri → 0+ such that the functiongi(x) = −〈x∗i , x − xi〉 +
2εi‖x−xi‖+(2+2εi)d(x, xi+Li) attains its local minimum atxi onC∩(xi+riBX).
As for all i

lim
j∈J hausxi+

ri
2 BX

(C,Cj) = 0
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there existsji ∈ J (we may suppose that the net(ji)i is increasing with respect to
the preorder onJ ) such that

C ∩
(
xi + ri2BX

)
⊂ Cji + r3

i BX

and

Cji ∩
(
xi + ri

2
BX

)
⊂ C + r3

i BX.

Sincexi = vi + bi , with vi ∈ Cji andbi ∈ r3
i BX, then the setCji ∩ (xi + ri

2BX) is
nonempty. Thus for allx ∈ Cji ∩ (xi + ri

2BX) there existwi ∈ C andai ∈ r3
i BX

such that

x = wi + ai
and hencewi ∈ C ∩ (xi + riBX) and

gi(wi) ≥ gi(xi)
or equivalently

gi(x − ai) ≥ gi(vi + bi)
and so

16r3
i − 〈x∗i , x − vi〉 + 2εi‖x − vi‖ + 2(1+ εi)d(x, vi + Li) ≥ 0.

Sethi(x) = −〈x∗i , x − vi〉 + 2εi‖x − vi‖ + 2(1+ εi)d(x, vi + Li). Then

hi(vi) ≤ h(x)+ 16r3
i , ∀x ∈ Cji ∩

(
xi + ri2BX

)
.

By Ekeland’s variational principle [7] there existsui ∈ Cji ∩
(
xi + ri

2BX
)

such that

‖vi − ui‖ ≤ 16r2
i

and

hi(ui) ≤ hi(x)+ ri‖x − ui‖,∀x ∈ Cji ∩
(
xi + ri

2
BX

)
.

Sinceui is an internal point toxi + ri
2BX, Proposition 2.3.4 in [6] ensures thatui is

a local minimum of the function

x → hi(x)+ ri‖x − ui‖ + 5d(x,Cji )

and hence by subdifferential calculus rules

x∗i ∈ 5∂Ad(Cji , ui)+ L⊥i + (2εi + ri)BX∗ .
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So

x∗ ∈ lim sup
i

ui∈Cji→x0

[5∂Ad(Cji , ui)+ L⊥i ].

Consequently

x∗ ∈ lim sup
j∈J

u∈Cj→x0

5∂Ad(Cj , u).

5. An Application to Moreau–Yosida Proximal Approximations

In this section we study the limit superior of subdifferentials of Moreau–Yosida
proximal approximations.

DEFINITION 5.1. Let f be an extended real valued function onX. For every
λ > 0, the Moreau–Yosida proximal approximation of indexλ of f is the function
fλ : X→ R defined by

∀x ∈ X fλ(x) = inf
{
f (u)+ 1

2λ
‖x − u‖2 : u ∈ X

}
.

This approximation enjoys nice properties which are summarized in the follow-
ing proposition which can be found in Attouch [1].

PROPOSITION 5.2.Letf be an extended real valued lower semicontinuous func-
tion onX satisfying

∃c > 0 ∃x̄ ∈ X such thatf (x) ≥ −c(‖x − x̄‖2+ 1), ∀x ∈ X.
We say in this case thatf is bounded from below by a negative quadratic form.
Then

(i) for all x ∈ X, f (x) = supλ>0 fλ(x), and (fλ(x)) increases tof (x) asλ
decreases to zero.

(ii) fλ is locally lipschitz.

The following lemma is included in Lemma 3.6 of [2]. For the convenience of
the reader, we give a proof following the one of these authors.

LEMMA 5.3. Let f be an extended real valued function onX which is lower
semicontinuous. Suppose thatf is bounded from below by a negative quadratic
form. Then the real valued functiongλ defined onX × R by

gλ(x, r) = d(epi fλ, x, r)
converges uniformly, asλ→ 0+, to the function

g(x, r) = d(epi f, x, r)
around any point(x0, r0) ∈ epi f .
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Proof.We may suppose(x0, r0) = (0,0). We show that for allα > 0

lim
λ→0+

haus
αBX×R

(epi fλ, epi f ) = 0.

Sincefλ(x) ≤ f (x) for all x, we get

epi f ⊂ epi fλ. (5.1)

By assumptions there existx̄ andc > 0 such that

f (x) ≥ −c(‖x − x̄‖2+ 1) ∀x ∈ X. (5.2)

Let ε ∈]0, 1
(2c) [ and setηε = ε2(1−2cε)

2(α+ε2+2c[(α+‖x̄‖)2+1)] . Then for allλ ∈]0, ηε[ and
(x, r) ∈ epi fλ ∩ αBX×R there existsu ∈ X such that

f (u)+ 1

2λ
‖x − u‖2 ≤ fλ(x)+ λ ≤ r + λ ≤ α + λ.

As

‖u− x̄‖2 ≤ 2‖u− x‖2 + 2‖x − x̄‖2 ≤ 2‖u− x‖2 + 2(α + ‖x̄‖)2

we get, by (5.2), that

‖u− x‖2 (1− 2cε)

2λ
≤ α + ε2+ 2c[(α + ‖x̄‖)2+ 1])]

and hence

‖u− x‖2 ≤ ε2.

Thus(x, r) ∈ (u, r + ε)+ εBX×R, with (u, r + ε) ∈ epi f , and consequently

epi fλ ∩ αBX×R ⊂ epi f + εBX×R. (5.3)

Then (5.1) and (5.3) show that

lim
λ→0+

hausαBX×R(epi fλ, epi f ) = 0

which is equivalent to(gλ) converges uniformly, asλ→ 0+, to g on any bounded
subset ofX ∈ R.

Now we may state the theorem concerning the limit superior of subdifferen-
tials of these functions. This theorem is a direct consequence of Theorem 3.1 and
Lemmas 3.6 and 5.3.
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THEOREM 5.4. Let f be a lower semicontinuous real valued extended function
onX. Suppose thatf is bounded from below by a negative quadratic form. Then
for all x0 such thatf (x0) <∞

∂Gf (x0) ⊂ lim sup
λ→0+
u→x0

fλ(u)→f (x0)

∂Gfλ(u). 2

In the following theorem, we show that the equality holds for the limiting
Fréchet subdifferentials in the case where the space is Asplund, i.e., Banach space
on which every continuous convex function is Fréchet differentiable at a dense set
of points. On these spaces, the limiting Fréchet subdifferentials∂Ff (x0) of f atx0

has good chain rules and important properties of sequential weak-star closedness
(see for example [12-13]). The Fréchetε- subdifferential∂Fε f (x) of some extended
real- valued functionf onX atx

∂Fε f (x) =
{
x∗ ∈ X∗ : lim inf

h→0

f (x + h)− f (x)− 〈x∗, h〉
‖h‖ ≥ −ε

}
.

if f (x) < ∞ and∂Fε f (x) = ∅ if f (x) = +∞. The limiting Fréchet subdifferen-
tials off atx0 is the set

∂Ff (x0) = seq-lim sup
x
f→x0

ε→0+

∂Fε f (x).

As mentioned in [16], the following result can be deduced from [17]

∂Ff (x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ R+∂Fd(epi f, x0, f (x0))}.
THEOREM 5.5. LetX be Asplund space andf be a lower semicontinuous real
valued extended function onX. Suppose thatf is bounded from below by a nega-
tive quadratic form. Then for allx0 such thatf (x0) <∞

∂Ff (x0) = seq − lim sup
λ→0+
u→x0

fλ(u)→f (x0)

∂Ffλ(u).

Proof. For the first inclusion, it suffices to show that if(x∗, α∗) ∈ ∂Fd(epi f ,
x0, f (x0)), with α∗ 6= 0 then

(x∗, α∗) ∈ seq − lim sup
λ→0+
u→x0

fλ(u)→f (x0)

3∂Fd(epi fλ, u, fλ(u)).

By definition, there are sequences(xn, rn) → (x0, f (x0)), with (xn, rn) ∈ epi f ,
εn→ 0+, γn→ 0+ and(x∗n, α∗n)→ (x∗, α∗) such that the function

(x, r)→d(x, r, epi f )−〈x∗n, x−xn〉−α∗n(r−rn)+εn(‖x−xn‖+|r−rn|)
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attains a local minimum at(xn, rn) on(xn, rn)+γnBX×R. Thusrn = f (xn) because
α∗ 6= 0. By Lemma 5.3, for eachn there existsλn ∈]0,1/n[ such that

epi fλn ⊂ epi f + γ 3
n BX×R

and

epi f ⊂ epi fλn + γ 3
n BX×R.

So as in the proof of Theorem 3.1 we show that there exists(un, sn) ∈ epi fλn ∩
[(xn, f (xn))+ γn/2BX×R] such that

‖xn − un‖ + |f (xn)− sn| < 16γ 2
n

and for all(x, r) ∈ epi fλn ∩ [(xn, f (xn))+ γn/2BX×R]
hn(un, sn) ≤ hn(x, r) + γn[‖x − un‖ + |r − sn|]

wherehn(x, r) = −〈x∗n, x−xn〉−α∗n(r−rn)+εn(‖x−xn‖+|r−rn|). Thus(un, sn)
is an internal point to(xn, f (xn))+ γn/2BX×R and(un, sn) is a local minimum of
the function

(x, r)→ 3d(x, r, epi fλn)+ hn(x, r) + γn[‖x − un‖ + |r − sn|].
We also note that sinceα∗ 6= 0, we getsn = fλn(un). Taking into account that
fλn(un)→ f (x0), the subdifferential calculus implies that

(x∗, α∗) ∈ seq − lim sup
λ→0+
u→x0

fλ(u)→f (x0)

3∂Fd(epi fλ, u, fλ(u)).

This completes the proof of the first inclusion.

Let us prove the second one. So let

x∗ ∈ seq − lim sup
λ→0+
u→x0

fλ(u)→f (x0)

∂Ffλ(u).

Then there are sequencesλn→ 0+, un→ x0 with fλn(un)→ f (x0) andu∗n→ x∗
such that

u∗n ∈ ∂Ffλn(un), ∀n.
Thus there are sequencesxn → x0, with fλn(xn) → f (x0), x∗n → x∗, εn → 0+
andrn→ 0+ such that forn sufficiently large

fλn(xn + h)− fλn(xn)− 〈x∗n, h〉 + εn‖h‖ ≥ 0, ∀h ∈ rnBX. (5.4)
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On the other hand there existsvn ∈ X such that

f (vn)+ 1

2λn
‖xn − vn‖2 ≤ fλn(xn)+ r3

n. (5.5)

As in the proof of Lemma 5.3 we show thatvn → x0 and hence lim infn→∞ f (vn) =
f (x0). Taking subsequences we may suppose thatf (vn)→ f (x0). So combining
(5.4) and (5.5), we get

r3
n + f (vn + h)+

1

2λn
‖xn − vn‖2 − f (vn)− 1

2λn
‖xn − vn‖2

− 〈x∗n, h〉 + εn‖h‖ ≥ 0, ∀h ∈ rnBX
or equivalently

r3
n + f (x)− f (vn)− 〈x∗n, x − vn〉 + εn‖x − ϑn‖ ≥ 0, ∀x ∈ vn + rnBX

By Ekeland variational principle [7] there existswn ∈ vn + rnBX such that

‖wn − vn‖ ≤ r2
n (5.6)

and

f (wn) ≤f (x)− 〈x∗n, x −wn〉 + εn‖x −wn‖ (5.7)

+ rn‖x − wn‖, ∀x ∈ vn + rnBX
and hencewn is an internal point tovn + rnBX and for all (x, α) ∈ epi f ∩
[(wn, f (wn))+ rnBX×R]

f (wn) ≤ α − 〈x∗n, x −wn〉 + εn‖x −wn‖ + rn‖x −wn‖.
So there existsK > 0 (not depending onn) such that the function

(x, α)→ α − 〈x∗n, x −wn〉 + εn‖x −wn‖ + rn‖x −wn‖ +Kd(epi f, x, α)
attains a local minimum at(wn, f (wn)). Thus

(x∗n,−1) ∈ ∂F(rn+εn)Kd(epi f,wn, f (wn)).
and hence

(x∗,−1) ∈ R+∂Fd(epi f, x0, f (x0))

because of (5.6) and (5.7) for some subsequence(wn′) of (wn) we getf (wn′) →
f (x0). Thusx∗ ∈ ∂Ff (x0) because

∂Ff (x0) = {x∗ ∈ X∗ : x∗,−1) ∈ R+∂Fd(epi f, x0, f (x0))}.
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