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Abstract. In this paper we show that th@ — subdifferential of a lower semicontinuous function

is contained in the limit superior of th& — subdifferential of lower semicontinuous uniformly
convergent family to this function. It happens that this result is equivalent to the corresponding
normal cones formulas for family of sets which converges in the sense of the bounded Hausdorff
distance. These results extend to the infinite dimensional case those of Ioffé fefunctions and

of Benoist for Clarke’s normal cone. As an application we characterize the subdifferential of any
function which is bounded from below by a negative quadratic form in terms of its Moreau—Yosida
proximal approximation.
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1. Introduction

In 1984, loffe [8] showed that in finite dimensional space ¢he subdifferential

d¢ f (xg) of a function f atxg is smaler than any Warga’s derivative containers [18]
of f atxg. He established the following result which is essentially due to Kruger—
Mordukhovich [12—-13] who proved it under some what stronger assumptions.

THEOREM 1.1. Let f, f,, »n = 1,2,..., be real-valued functions defined on

some finite dimensional spacé. Supposef,,n = 1,2,..., are C? and the
sequence f,,) converges uniformly t¢g' aroundxg. Then
aGf(XO) C lim Suqvfn(un)}- O
Up—>X0Q

Here, as usuaV f,(u,) denotes the gradient ¢f, atu,.

In 1993, Benoist [4] extended this result to the uniformly convergent sequence
(f») which are strictly differentiable. In fact he established the following more
general result for normal cones to sets in finite dimension. His proof is essentially
geometric.
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THEOREM 1.2. Let(C,) be a sequence of honempty closed subsets of some finite
dimensional spac& and C a nonempty closed subset f such that for any
bounded se® C X

lim hauso(C, C,) =0.

Then for each boundary poing of C

Ng(C,x0) C limsup Nc(C,,u,). O
n—>oo
u,€C,—xo

Here hausy(C, C,) denotes the bounded Hausdorff distance between theCsets
and C,, Ng(C,, u,) is the G-normal cone of loffe [10] and¥-(C,, u,,) is the
Clarke’s normal cone t@’, atu,. Note that the Clarke normal cone contains the
G-normal cone and this containment may be strict.

Our aim in this paper is twofold. First we extend both result to Banach spaces.
Second we show that Theorem 1.1 remains true for any lower semicontinuous uni-
formly convergent sequencg,), by replacingVv f,, (u,,) by d¢ 1, (u,) and Theorem
1.2 is valid if we replace the Clarke normal cone by ¢wmormal cone. We show
that both extension are equivalent. Note that our proof is completely different from
the previous ones and it is essentially analytic and based on Ekeland variational
principle [7].

The obtained results are used to characterize the subdifferential of lower semi-
continuous functions which are bounded from below by a negative quadratic form
in terms of their Moreau—Yosida proximal approximations.

2. Notations and Preliminaries

Throughout the papex will be a Banach space&* its topological dual equipped
with the weak-star topologw*. We will denote byBy the closed unit ball o
and byd (-, S) the distance function to a subsebf X

d(x,8) = inf|x —ul.
ues
We will write x EA Xo andx Y xo to expressc — xo with f(x) — f(xo) and

x — xg With x € §, respectively and we will denote lapi f the epigraph of a real
valued extended function, i.e.,

epif ={(x,r): flx) =r}

If C and D are nonempty subsets af and if Q is a bounded subset &, the
bounded Hausdorff distance betwegrand D is denoted by

hauso(C, D) =infle >0: 0NC C D+eBxandQ N D C C + ¢Bx}.
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If not specified the norm in a product of two Banach spaces is defined by
(@, D)l = llall + lI2]].

We will use the notations in loffe [9, 10].

Let f : X - RU{+o0} be a lower semicontinuous function in a neighborhood
of xop € X with f(xg) < oco. The approximate subdifferential (see loffe [9, 10]),
which is an extension to the context of Banach spaces of the concept introduced by
Mordukhovich [14, 15] for finite dimensional spaces is defined by

0af (o) = (1) limsupd” frir(x)

LeF(X) xlxg
where

3 f(x)={x"e X" : (x",h) <d f(x;h),Vh € X},

d” f(x;hy = liminf r71(f (x+ 1) — f ().
10

Here, forS C X, fs denotes the function defined by

fx) ifxeS

fs(x) = +o00 otherwise

F (X) is the family of all finite dimensional subspacesxfnd

limsupo™ frip(x) ={x" € X*:x" =
5
X=>Xx0

w* — M x?, x5} € 3fuer (). x; 2 xo),

that is the set ofv*-limits of all such nets.
The G-normal cone ta§ atxg € S is denoted by (S, xg), that is,

NG (S, xo) = cl* U 294d (x0, S).
A>0

The G-subdifferentialdg f (xg) of f atxg with f(xg) < oo is given by (see [9, 10])
96 f (x0) = {x* € X* : (x*, —=1) € Ng(epif; xo, f(x0))}.

Following Clarke [6], a vectok € X will be in the Clarke tangent corig (S, xo)
to S atxg if for any sequencéx,) C S converging taxg and anyr, — O there
existsh,, — h such that for all positive integers

X, + t,h, € S.
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The Clarke normal con®&¢ (S, xo) to S atxg is the negative polar df (S, xo),
i.e.,

Ne(S,x0) ={x" € X*: (x*,x) <0, Vx e Tc(S, x0)}.

The following theorem lists some of the important properties oftbsubdiffer-
ential.

THEOREM 2.1 [8-10]. Let f be an extended real-valued function Brwhich is
lower semicontinuous aroung, with f(xg) < oo and letS be a closed subset of
X containingxg.

(i) Nc(C, xo) containsNg (C, xg).

(i) If fis Lipschitz nearo with Lipschitz constart

0 f(x0) = 0af (xo)x = (] Nimsupd; feir(x) N (ks +&)Bx-,
LeF(x) x—xo
e—0t

where

i O f(x) = (x* € X*: (x*,h) <d” f(x; h) + ||, Vh € X}.
iii
94 f (xg) = limsupd, f(x) (upper semicontinuity condition
f

X=>XxQ

(iv) If g is alocally Lipschitz function aroung, then

A (f + g)(x0) C g f (x0) + dcg(x0)-
(V) x* € 0,d(C, xp) iff there exist a familyL;) of finite dimensional subspaces
of X cofinal with # (X), x} — x*, x; £ xo, & — 0T such thatx’ €
a;dxi_;,_[‘i (C, X,’) N (1 + 8,’)Bx* for all .

A thorough discussion of these concepts can be found in [8-10] and [6]. We
mention here that iff is convex, then the&5-subdifferential coincides with the
subdifferential of convex analysis.

3. Equivalence of the Extended Theorems

We begin by an extension of loffe’s theorem [8] to the infinite dimensional spaces
and for lower semicontinuous functions.

THEOREM 3.1. Let f, f;, j € J be lower semicontinuous real valued functions
on X such that the netf;) converges uniformly t¢g' aroundxo. Then

dg f(x0) C  Iim sjup dG f(u). O (3.2)
je

u—xq

Jj )= f (x0)
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The following theorem is a smooth version of the previous one.

THEOREM 3.2. Let f, f; : X — R, j € J be Lipschitz functions oX such that
the net(f;) converges uniformly tg aroundxo. Then

dg f (x0) C lim §Up A fi(u). 0
je

u—xq

Since the Clarke normal cone contains thaewormal cone, the following theo-
rem is an extension of those of Benoist [3-5] to Banach spaces.

THEOREM 3.3. Let (Cj)e; be a net of nonempty closed subsetXand C a
nonempty closed subsetXfsuch that

(i) xois aboundary point o and

(i) there exists: > 0 such that

lim haus,+r.(C, Cj) = 0.
jeJ :

Then
dad(xo, C) C limsup 53,d(u, C;)
velrooso
and consequently
Ng(C, xg) C Iinjjsup Ng(Cj,u). O

MEC]'—>X0

COROLLARY 3.4. Suppose, in addition to the assumptions of Theorem 3.1 that
the functionsf, f;, j € J are convex. Then (3.1) holds as equality.

THEOREM 3.5. Theorems 3.1, 3.2 and 3.3 are equivalent.

Proof. Theorem 3.1 implies Theorem :3Rident.
Theorem 3.3 implies Theorem 3\W/e need the following lemma whose proof
is based on Theorem 3.3.

LEMMA 3.6. Letf, f;, j € J be lower semicontinuous real valued functions on
X such that for some > 0

L'Q) haus xo, fxo))+rBx.w (ePi [, epi fj) = 0.
If (x*, a®) € 9ad(epi f, xo, f(x0)), Witha* # 0, then

x*, a*) e Iimjsup S50ad(epi fj, u, fj(u)).

u-—>xg

fj )= f (x0)
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Consequently, ifx*, —1) € Ng(epi f, xo, f(x0)), then

x* -1 e Iim]_sup Ng(epi fj,u, fj(u)).

u->xq

Jj )= f(x0)

Proof of Lemma 3.6By Theorem 3.3 there are netg;,r;) — (xo, f(x0)),
with (u;,r;) € epi f;, forall j € J, and(x;.‘, af) > (x*, o) such that

(x5, af) € 5dad(epi fj,uj,r),Vj € J.

Thusforallj € J,L € F(X), ¢ > 0 and weak-star neighbourhoddof 0 there
EXiStS(M, S) = (xj!L’g’V, rj!L’g’V) € ((Xj, l"j) + 8BX><R) N epl fj such that

1/5()(;’ a}f) € 8;d(u,s)+LxR(€Pi fj, u,s)+V x eBg.
So there existéu’ ; . v, 571 . v) € 07 du.sy+Lxr(epi fj, u, s) such that
(5 af) =5, .y 5T ev) €5(V x eBg).

Sincea™ # 0 we gets = f;(u). Indeed from Lemma 1 in [8] and Proposition 2.3.4
in [6] there exists:; > 0 such that for allx, r) € (u, s) +rjBxxr

d(x,r, epi ) — (u;’f,L’&V, X —u)— S;"{,L,g,v(” —s)

4+ 2e[|lx —ul| +|r —s|]+3dx,u+ L) >0.

Soif fj(u) < s we obtain for some} €]0, rj[ that for allr € s +r}BR, fitw) <r
and hence

_Sj,L,s,V(r —s)+2r—s5|=>0

and this implies thats;, . ,| < 2¢. But ¢ is arbitrary and(s}, . ,) goes to
«*, then we obtain a contradiction widr* # 0. Sos = f;(u). As (G af) —
S e vsSipev) — 0, itfollows that

x*, a") e Iim/sup 59,d(epi f;,u, fj(u)).
u—>xg

Jj )= f (x0)

Proof of Theorem 3.5 (continuedjince( f;) converges uniformly tgf around
xo there exists > 0 such that

Illg} haus vy, fxo)+rBx.(€Pi fepi fj) = 0.

Let x* € 9gf(x0), then (x*, —1) € Ng(epi f, xo, f(x0)) and there exist, by
Lemma 3.6,u; — xo, fj(u;) — f(xo) and (Fap) — (", =1 such that
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(x7, %) € Ng(epi fj,uj, fj(u;)). By Proposition 3.5 in [10]¢; < 0, and hence
L € 36 fj(u;). Thus

—a*
J

x* e limsup 9 fj(u;).
jedJ
uj—xo

filuj)— f(x0)

Theorem 3.2 implies Theorem 3Set f (x) = d(C, x) and f;(x) = d(C;, x).
It is easy to see thatf;) converges uniformly tof aroundxe. So Theorem 3.2
ensures that

G f (x0) C lim SJUP dG fi(u;).
je
uj—>x0
The proof is complete if we show that

lim sup 94d(Cj,u) C limsup 594d(C;, u).
jeJ jeJ
u—xQ ueCj—xg

So letx* in the left hand side. Then there exist — xo andx; — x* such that
X;'-( € 8Ad(Cj, Xj).
Suppose that; ¢ C; for all j. Then there exist, by Theorem 2.1, a family;)
of finite dimensional subspaces ¥fcofinal with ¥ (X), y; — x*, y; — xo, with
yj & Cj, Ej — 0" such thatyj‘ S 88_/,dy_/+L_/(C, y]) N+ Sj)Bx* for all j (tO
simplify, our nets are also indexed by the same directed s@f gssee the proof
of Lemma 3.6 for details). So by Lemma 1 in [8] and Proposition 2.3.4 in [6] there
existsr; — 0" such that

(yj+riBx)NCj) =0 (3.2)
and for a||y S y] +l"jBx

d(Cj,y) = i,y —yi) +&lly — il
+ 2+ 2¢))d(y,y; +Lj)>d(Cj, yj).

Lety’ € C; such that
Iy = y; <d(Cj,y) +r3.
Thenfor allx € C; andy € y; +r;Bx

rP e =yl = (5 y — yi) +&5lly — vl
+ (24 2¢))d(y, y; + L) = lly; — ¥l
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Setg;(x, y) = llx =yl =y}, y—y;) +&illy —yill + @2+ 2¢)d(y, y; + L;), S0
g;(¥;, y;) = Ily; — y;jl and hence for alt € C; andy € y; +r; Bx

g0V y) S g, y) 413

Thus by Ekeland’s variational principle [7], there exigts, v;) € C; x(y;+r;Bx)
such that

luj = Y5l +llv; — il < r? (3.3)
and for allx € C; andy € y; +r; By
gjuj,vj) <gj(x,y) +rj(llx —u;ll + |y —v;l)-
By Proposition 2.3.4 in [6] we get th&k ;, v;) is a local solution of the function
(u,y) > gj(x, ) +rilllx —u;ll + Iy —v;l) +35d(Cj, x)
because, by (3.3),; is an internal point to; 4 r; Bx. By Theorem 2.1 there exist
u; € 30d(Cj, u;) andv;‘ € X*, with vl =1, (because by (3.2); # v;) such
that
v;’-‘ +x;’-‘ € Lj + (r; + ¢;) Bx.
and
s + vl <7+
Thusv} +x7 — 0 which implies that; — —x* andu} — x* and hence

x* e lim sup 58Ad(Cj,u,-)
jeJ ’
u;jeCj—xg

and the proof is terminated.

4. Proof of Theorem 3.1

Because of Theorem 3.5, it suffices to prove Theorem 3.3.
Let x* € 94d(C, xo). Then, by Theorem 2.1 there exist a fam(ly;) of finite

dimensional subspaces &fcofinal with # (X), x} — x*, x; £ X0, & — 07 such
thatx’ e 0, dx; 1, (C, x;)N(1+¢€;) By foralli. By Lemma 1 in [8] and Proposition
2.3.4in [6] there exists; — O' such that the functiog; (x) = —(x*, x — x;) +
2gi |x—x; || +(2+2¢;)d (x, x; +L;) attains its local minimum at: onCN(x;+r; Bx).
As for all i

I;Ien} haus, 7 (C,Cj) =0
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there exists; € J (we may suppose that the ngt); is increasing with respect to
the preorder oY) such that

cn (Xi —JF%B)() C le +I"?BX

and
Cj[ N (.Xi + %Bx> cC +I"?Bx.
Sincex; = v; + b;, with v; € Cj,. andb; € I’iSBx, then the Sele. N (x; + %Bx) is

nonempty. Thus for alt € C;; N (x; + 3 Bx) there existw; € C anda; € rfBX
such that

X =w; +a;
and hencev; € C N (x; +r; Bx) and
gi(w;) = gi(x;)
or equivalently
gi(x —a;) = gi(vi +bi)
and so
16r% — (x}', x — v;) + 28 [Ix — vill + 21+ &)d (x, vi + L;) = 0.

Seth;(x) = —(X;k, x —v;)+ 28 |lx — vl + 21+ &)d(x,v; + L;). Then

hi(u) < h(x) +16:3, VxeC, N (x,- + r—zin) .

By Ekeland’s variational principle [7] there existse C;, N (x; + % By) such that
lvi — uill < 16¢7
and

hi(u) < hi @) +rillx = ;] ¥x € € 0 (x4 2 B ).

Sincey; is an internal point ta; + % By, Proposition 2.3.4 in [6] ensures thatis
a local minimum of the function

x — hi(x) +rillx —u;l| +5d(x, Cj)
and hence by subdifferential calculus rules

xF €504d(Cjy, u;) + L + (28 + ;) Bx-.
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So
x* e limsup [504d(C},, u;) + Li"].
weCy—xo
Consequently
x* e limsup 50,d(C;,u).

jedJ
uECj—>xo

5. An Application to Moreau—Yosida Proximal Approximations

In this section we study the limit superior of subdifferentials of Moreau—Yosida
proximal approximations.

DEFINITION5.1. Let f be an extended real valued function &n For every
A > 0, the Moreau-Yosida proximal approximation of indegf f is the function
f» : X = Rdefined by

, 1
Vxe X filx) :Inf{f(u)—{—ﬁllx—unzzu € X}.
This approximation enjoys nice properties which are summarized in the follow-

ing proposition which can be found in Attouch [1].

PROPOSITION 5.2.Let f be an extended real valued lower semicontinuous func-
tion on X satisfying

3¢ >0 3x € X suchthatf(x) > —c(lx — %>+ 1), VxeX.

We say in this case that is bounded from below by a negative quadratic form.
Then
(i) forall x € X, f(x) = sup_, fi(x), and (fi(x)) increases tof (x) asi
decreases to zero.
(i) f; is locally lipschitz.

The following lemma is included in Lemma 3.6 of [2]. For the convenience of
the reader, we give a proof following the one of these authors.

LEMMAGS.3. Let f be an extended real valued function &nwhich is lower
semicontinuous. Suppose thatis bounded from below by a negative quadratic
form. Then the real valued functign defined onX x R by

g}»(-xa r) = d(epl f)u X, r)
converges uniformly, as — 0%, to the function

g(x,r) =d(epi f,x,r)
around any point{xo, rg) € epi f.
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Proof. We may supposéxg, ro) = (0, 0). We show that for alk > 0

lim haus(epi f5, epi f) = 0.

A—0t aBx xR

Since f,(x) < f(x) for all x, we get

epi f C epi fi. (5.1)

By assumptions there existandc > 0 such that

fx) > —c(lx —x|>°+1) VxeX. (5.2)
1 _ £2(1=2ce)
Let ¢ €]0, @[ and setn, = v e E R Then for allA €]0, n.[ and

(x,r) € epi f;, NaBxxr there exists: € X such that

f(”)‘i‘%”X—MHZS H@)+A<r+r<a+ai
As

lu = %1% < 2llu — x| 4+ 2lx — %[|? < 2l|u — x[|* + 2« + | X[)?
we get, by (5.2), that

, (1 —2ce)

T g2+ 2c[(a + |1 XID? + 1]

[l — x|

and hence
lu — x||* < 2.
Thus(x,r) € (u,r + €) + eBxxr, With (u, r + €) € epi f, and consequently
epi fLNaBxyr C epi f + eBxxRr.- (5.3)
Then (5.1) and (5.3) show that

IirTc]+ hausqpy.  (epi fi,epi f) =0
r—

which is equivalent tdg,) converges uniformly, as — 0", to g on any bounded
subset ofX € R.

Now we may state the theorem concerning the limit superior of subdifferen-
tials of these functions. This theorem is a direct consequence of Theorem 3.1 and
Lemmas 3.6 and 5.3.
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THEOREM 5.4, Let f be a lower semicontinuous real valued extended function
on X. Suppose thaf is bounded from below by a negative quadratic form. Then
for all xg such thatf (xg) < oo

dG f(x0) C  lim sup G fo.(u). O
r—0t

u—xg

Sr)— f (x0)

In the following theorem, we show that the equality holds for the limiting
Fréchet subdifferentials in the case where the space is Asplund, i.e., Banach space
on which every continuous convex function is Fréchet differentiable at a dense set
of points. On these spaces, the limiting Fréchet subdifferertjafgxo) of f atxg
has good chain rules and important properties of sequential weak-star closedness
(see for example [12-13]). The Fréchesubdifferentiab’ f (x) of some extended
real- valued functiory on X atx

aF f(x) = {x* e x*: liminf L& T = S0 = &7 A) —s}.
h—0 1Al
if f(x) <ooanddf f(x) =@if f(x) = +oo. The limiting Fréchet subdifferen-
tials of f atxg is the set
Or f (x0) = seq-ljm sup;” f (x).

X-=>x0
e—0T

As mentioned in [16], the following result can be deduced from [17]

Irf(xo) = {x* € X* : (x*, =1) € Ry dpd(epi f, xo, f(x0))}.

THEOREM5.5. Let X be Asplund space anfl be a lower semicontinuous real
valued extended function on. Suppose thaf is bounded from below by a nega-
tive quadratic form. Then for alt; such thatf (xg) < oo

O f (x0) = seq — limSUp 9y f;u).
u—xQ
fo.(w)— f(x0)
Proof. For the first inclusion, it suffices to show that(if*, «*) € drd(epi f,
xo0, f(x0)), with a* # 0 then

(x*,a*) € seq — lim sup 30rd(epi fi,u, frw)).
A—0

u—xq

Sr)— f (x0)

By definition, there are sequences, r,) — (xo, f (x0)), with (x,,, r,) € epi f,
&, — 07, y, — 0" and(x*, @) — (x*, a*) such that the function

n’>=n

(x,r)—=>d(x,r,epi f)—(xy, x —xn) —a, (r—ry) +en (Ix —xp | +|r —ry])
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attains a local minimum at,,, r,,) on (x,,, r,) + ¥, Bxxr. Thusr, = f(x,) because
a* # 0. By Lemma 5.3, for each there exists.,, €]0, 1/n[ such that

epi fo, Cepi f + ¥ Bxxr
and
epi f Cepi fo, + ¥ Bxxr.

So as in the proof of Theorem 3.1 we show that there existss,) € epi f;, N
[(-xna f(-xn)) + yn/ZBXxR] such that

%0 — tnll 4 | f () — 5] < 16y,2
and for all(x, ) € epi fo, N [(Xn, £(X0)) + Vu/2Bx «&]
hn(una Sn) S hn(x, l") + yn[”-x - un” + |l" - snl]

whereh, (x,r) = —(x;, x —x,) —a; (r —=ry) +&,(||x —x, ||+ [r —r,]). Thus(u,, s,,)
is an internal point t@x,, f(x,)) + v./2Bxxx and(u,, s,) is a local minimum of
the function

(x,r) = 3d(x,r,epi fo,) + ha(x, r) + yalllx —upll + |r — sull.

We also note that since* # 0, we gets, = f,,(u,). Taking into account that
fo, (uy) — f(x0), the subdifferential calculus implies that

(x*, a*) € seq — lim sup 30rd(epi fi,u, fr)).
A—0

u—xq

Sr)— f (x0)

This completes the proof of the first inclusion.

Let us prove the second one. So let

x* € seq — lim sup ar fL(u).
A—0

u—xq

fi(w)— f(xo)

Then there are sequences— 0%, u,, — xo with f;, (u,) — f(xo) andu* — x*
such that

u, € op fo,(u,), Vn.

Thus there are sequences — xo, With f3, (x,) — f(xo), x} — x*, &, — OF
andr, — 0% such that fom sufficiently large

JonGon + 1) = fo,(x0) = (x;, ) + &, =0, Vh € ryBy. (5.4)
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On the other hand there exists € X such that

1
F@n) + =l = wll? < fon () + 12, (5.5)

As in the proof of Lemma 5.3 we show thgt — xgand hence liminf., . f(v,) =
f(x0). Taking subsequences we may suppose fitat) — f(xg). So combining
(5.4) and (5.5), we get

r3+f(v +h)+i||x _UHZ—f(U)—i”x _UHZ
n n 2)\.,, n n n 2)\‘” n n
— (xf,h) + &,|lh| =0, Vher,By
or equivalently
r’?—"_f(x) - f(v”) - <x::"x - Un> +8n”x _ﬁn” = 0, Vx € Uy +rnBX

By Ekeland variational principle [7] there exisis € v, + r, By such that

lw, — vall < rf (5.6)
and
f(wn) Sf(x) - (-x;lk’x - wn) +8n”x - wn“ (57)
+ rullx — wyll, Vxe€ewv,+r,Bx

and hencew, is an internal point taw, + r,Bx and for all (x,@) € epi f N
[(w,, f(wn)) + rpBxxrl]

Fwy) < o=, x — wy) + &nllx — wyll 4+ rullx — wy .
So there existX > 0 (not depending on) such that the function
(x,0) = o — (x,, x — wy) + &llx —wull + rallx — wull + Kd(epi f,x, @)

attains a local minimum atw,,, f(w,)). Thus
G =D €8l . Kd(epi f.w,. f(w,)).
and hence
(x*, =1) € Ry dpd(epi f, xo0, f(x0))

because of (5.6) and (5.7) for some subsequénge of (w,) we get f(w,/) —
f(x0). Thusx* € dr f (xg) because

Ip f(xo) ={x" € X*: x*,—1) € Ry 0pd(epi f, xo, f (x0))}.
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