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Abstract: In this paper, we study subdifferentiability and sub
differential monotonicity of 1 - paraconvex functions. We introduce 
a subdifferential and we show that it coincides with Dini and Clarke 
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1. Introduction 

Rolewicz (1979a;b) introduced the concept of 1-paraconvex multivalued map
pings. A multivalued mapping F between two normed vector spaces X and Y 
is 1-paraconvex if there exists a positive constant C such that 

)...F(x) + (1- )...)F(u) C F()...x + (1- )...)u) + C JJ x- uJ J' By 

for all x, u E X and ).., E [0, 1], where By denotes the closed unit ball of Y. To 
this concept, he associated a class of functions called 1-paraconvex functions. 
An extended real-valued function f on X is 1-paraconvex if the multivalued 
mapping F defined by 

F(x) = f(x) + 1R+ 

is 1 - paraconvex, or equivalently, there exists C > 0 such that 

j()...x + (1- )...)u):::; Af(x) + (1 - )...)j(u) + CJJx - u JJ ' 

for all x,u EX and).., E [0,1]. 
The most important properties, given by Rolewicz (1979a;b;1981), are listed 

in Section 2. 
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The aim of this paper is to explore further properties of ')'-paraconvex func
tions, namely the Lipschitz properties and the subdifferentiability. First, we 
show that the well known classical theorem, which asserts that every continu
ous convex function defined on an open convex set 0 C X is locally Lipschitz on 
0, subsists for ')'-paraconvex functions. Second, we introduce a subdifferential 
to these functions and we show that it coincides with the Dini subdifferential 
and the Clarke subdifferential. This allows us to show that every ')'-paraconvex 
function, 1' > 1, is subdifferentially regular. Third, we establish sum rules for 
this subdifferential with and without' constraint qualification conditions: Finally 
we prove that a lower semicontinuous function is ')'-paraconvex whenever its 
subdifferential is ')'-monotone. 

We use the following notation. X is a normed vector space, X* is the 
topological dual of X always considered with the weak-star topology, Bx is 
the closed unit ball of X, and (-, ·) the pairing between X and X*. We write 

x~x0 and x-Lx0 to express, respectively, x -> x 0 with x E S and x -> x 0 with 
f(x) -> f(x 0 ). We denote by epif the epigraph of a real-valued function f. 

2. Some properties of ')'-paraconvex functions 

Rolewicz (1979a) considered 2-paraconvex functions and he showed that this 
class of functions can be characterized as a difference of convex functions. More 
precisely he proved that if X is a Hilbert space then f is 2-paraconvex iff it 
can be represented in the form 

f(x) = g(x)- Cllxll 2 

where g is a convex function and C > 0. Example 1 in Rolewicz (1979b), shows 
that for 1 < 1' < 2 the similar result does not hold even for X = JR. 

Using Theorem 2 in Rolewicz (1979b), we may easily show that for 1' > 1 
we have the following important characterization (see Jourani, 1995). 

PROPOSITION 2.1 Let 1' > 1. Then f is ')'-paraconvex on a nonempty open 
convex set 0 C X iff there exists C > 0 such that 

j(>..x + (1- >..)u) ::; >..j(x) + (1- >..)j(u) + Cmin(>.., 1- >..)llx- v. ll"~ 

for· all x, u E 0 and)... E [0, 1]. 

Note that this result is false for 1' = 1. Let, for example, f(x) = llxl- 11, 
then f is 1-paraconvex with constant 2 but does not satisfy the inequality with 
the minimum on )... and 1 - >.. . 

As in the convex case we may establish the following proposition about the 
Lipschitz properties of ')'-paraconvex functions. 

PROPOSITION 2.2 Let 1' > 1. Then every continuous ')'-paraconvex fv.nction f 
defined on a nonempty open convex set 0 C X is locally Lipschitz on 0. 
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Proof. The same proof is used in the convex case. Let x 0 E 0. Then, by 
assumptions, there exist r > 0 and a> 0 such that x 0 + rBx C 0 and for all 
x E xo +rBx 

lf(x)l:::; a. 

r r 
Let x, u E xo + -

2
Bx. For c > 0, put a= c + llx- ull and z = u + -(u- x) . 

2a 
Then llz- xoll :::; llu- xoll + {a llu- xll :::; r and so 

f(z):::; a. 

2a 
Set A=---. By Proposition 2.1 

r+2a 

f(v.) = f(.Az + (1- .A)x):::; .Af(z) + (1- .A)f(x) + C.AIIz- xll' 
and hence 

f(v.)- f(x) :::; .A(f(z)- f(x)) + C>-1-'llu- xll' 
:::; 2a.A + C>-1-'liu- xll' 

< 4a(c + IJv.- xll) + 2C(c+llu-xll)(r+2c+2llu-xllr'llv.-xjl" 
- r r2"~(c+ l lu-xjj)" 

Since c > 0 is arbitrarily choosen, it follows that 

f(u)- f(x):::; (4a + 2C(3r)' )iiu- xll 
r 2'r: 

and changing the roles of u and x we obtain 

if(u)- f(x)l :::; (
4a + 20

(
3
r)' )llu- xll 

r 21r 
r 

for all x, u E xo + 2Bx. • 
REMARK 2.1 Relying on Lemma 2.5 in Jourani {1995), we may show that every 
1-paraconvex fv.nction, 1 > 1, on a nonempty convex set 0 on which is bounded 
from above is locally Lipschitz on 0. 

3. Subdifferentiability and sub differential regularity of the 
1 - paraconvex functions 

It is well known that the subdifferential of an extended real-valued convex func
tion is the set 

af(xo) = {x* EX*: (x*, h):::; f(xo +h)- f(xo), 'Vh} . 

This set, which has good sum rules, is convex and weak-star closed. In addition 
it is nonempty whenever f is continuous around xo. So can we adapt this sub
differential to 1-praconvex functions? Unfortunately no. To see this, let, for 
example, f(x) = llxl-11, so f is 1-paraconvex and af(O) is an empty set. 
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Our aim is to introduce a subdifferential for this class of functions and to 
show that this subdifferential inherits some properties of 8f. We also show 
that this subdifferential coincides with the Dini subdifferential and. the Clarke 
subdifferential whenever r > 1. 

DEFINITION 3.1 Let r > 0 and C > 0. Let f be an extended real-valued function 
on X which is finite at xo. x* E X* is said to be a (r, C)- subgradient off at 
x 0 if there exists a neighbourhood V of 0 such that 

(x*, h) :S: f(xo +h) - f(xo) + Cllhll '"~, Vh E V. 

The set of (/,C)- subgradients off at xo is denoted by 8f'-r~'C/(xo). 

It is clear that 8f0 0 f(x 0 ) is convex and weak-star closed. One of the other 
important propertietof this subdifferential is that it verifies the Fermat rule 
which states that if xo is a local minimum off then it is a critical point, i. e., 

0 E 8f'-r~'C/(xo). 
For -1-paraconvex function we have 

PROPOSITION 3.1 Let f be ,_ paraconvex. Suppose that r > 1. Then there 
exists C > 0 such that 

where 

a('Y,c)i(xo) = { x* E X* : (x*, h) :S: f(xo +h) - f(xo) + Cllhll'"~, Vh E X} . 

Proof. Let C > 0 as in Proposition 2.1. Let x* E 8f'-r~c)f(xo). Then there 
exists a• neighbourhood V of 0 such that 

(x*, h) :S: f(xo +h) - f(xo) + Cllhll'"~, Vh E V. 

Let h E X and t > 0 sufficiently small such that th E V. Then 

(x*, th) :S: f(xo + th)- f(xo) + Cl lthll '"~ 

and so, by 1-paraconvexity off, it follows that 

Thus, as r > 1, passing to the limit on t we obtain the result. • 
More generally, we may show that the assumptions of this proposition imply 

the following: 

a('Y,C)f(xo) = seq -limsup8f:r~c)f(x) 
f 

x~xo 
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where 

seq -limsupF(x) = {x* EX*: 
f 

X-+XQ 

3 sequences xnLxa and x~-+ x* jx~ E F(xn) \In}. 
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Before pursuing the connection of this subdifferential with the Dini sub
differential and the Clarke subdifferential and the study of the subdifferential 
regularity of 1-paraconvex functions we pause to recall some definitions. Let 
f be an extended real-valued function on X which is finite at x 0 . We set 

d-f(xo,h) = liminfC 1(f(xo +tu) - f(xo)) 
u--+h 
t-o+ 

dTJ(xo,h)=sup limsup inf C 1(f(x+tu)-a) 
c>O epif uEh+cBx 

(x,a) ~ (xo.f(xo)) 
t~o+ 

Er f(xo) = {x* EX*: (x*, h)~ d- f(xo, h) , \lh} 

acJ(xo) = {x* EX* : (x*, h)~ dT f(xo, h), \lh}. 

The functions h -+ d- f(x 0 , h) and h -+ dT f(x 0 , h) are called the (lower) Dini 
directional derivative and the (upper) subderivative of f at xo and the sets 
a- f(x 0 ) and acJ(x0 ) are the Dini subdifferential and the Clarke subdifferential 
of f at x 0 (see Ioffe, 1983;1984;1989, Clarke, 1983, Rockafellar, 1979;1980, for 
more details). 

The geometrical characterizations of these derivatives are (see Ioffe, 1984, 
Clarke, 1983, Rockafellar, 1979;1980) 

d- f(xo, h) = inf{r : (h, r) E K(epif, Xo, f(xo))} 

dT f(x 0 ,h) = inf{r: (h ,r) E Tc(epif,xo,f(xo))} 

and consequently 

a-- f(xo) = {x* EX*: (x*, -1) E K 0 (epif, xa, f(xo))} 

acf(xo) = . {x* EX*: (x*, -1) E Nc(epif, xa, f(xo))} 

where 

H 0 = { x* E X* : (x*, h) ~ 0, \lh E H} 

K ( S, x 0 ) is the contingent cone to S at x 0 E S, i.e., 

K(S, x0 ) = {hE X : 3tn -+ o+, 3hn -+ h such that Xo + tnhn E S, \In} 
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Tc(S, xo) is the Clarke normal cone to Sat x 0 , i. e., 

Tc(S,xo) = {hE X: 

1::/x, ~ xo, 1::/tn ____, o+' 3h, ____, h such that x, + t,h, E S, 1::/n} 

and Nc(S, x 0 ) = (Tc(S, x 0 ))
0 is the Clarke normal cone which can be expressed 

in terms of the subdifferential of the distance function as follows 

It is known that when f is a convex function 

Tc(epif,xo,f(xo)) =cl [ lR+(epi f- (xo,f(xo))]. 

In the f'-paraconvex case we have 

LEMMA 3 .1 Let f 'be a f'-pamconvex fun ction with constant C > 0, /' > 1. 
Then for all (x, r) E epi f, 

(x- xo, r- f(xo) + C[[x - xo[[') E Tc( epi f, xo, f(xo)). 

Proof. Let ((xn,rn)) c epi f converges to (xo,f(xo)) and let tn ____, o+. 
Then since f is f'-paraconvex and /' > 1 there exists C > 0 such that 

f(x, + t,(x- x,))- Ctn[[x- x, [[' :::; 
t,f(x) + (1- t,)f(x,):::; (1- t,)rn + tnr, 

(Proposition 2.1) and hence 

(x, , r,) + t,(x- x,, r- rn + C[[x- x,[[') E epi f 

which yields 

(x- xo, r- f(xo) + C [[x - xo[[ 1 ) E Tc(epi f, xo, f(.'Eo)). 

THEOREM 3.1 If f is f'-pamconvex with constant C > 0, /' > 1, then 

o(l ,c)f(xo) = 8- f(xo) = ocf(xo). 

Proof. For all h E X there exists t, ____, o+ and hn ____, h such that 

Let x* E O(l,c)!(xo) . Then 

(x*, t,h,) :::; f(xo + t,hn)- f(xo) + Ct,t~- 1 [[h,[[ 1 

and hence 

• 
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Whence the first inclusion. The second inclusion is trivial. So let us prove 
the last inclusion 8cf(xo) C 8("Y,c)f(xo). Let x* E 8cf(xo). Then (x*, -1) E 

Nc(epi j, xo, f(xo)), or equivalently 

(x*,h)- r::; 0, V(h,r) E Tc(epi j,xo,f(xo)). 

Using Lemma 3.1 we get for all x EX, (x, - Xo, f(x) - f(.To) + Cllx- Xo 11"'~) E 
Tc(epi j,xo,f(xo)) and so 

(x*, x- xo) ::; f(x) - f(xo) + Cllx- xo ll "'~. 

Thus x* E 8("Y,c)f(xo). • 
This result is not correct when 1 = 1. Let, for example, f(x) = llxl- 11, 

then f is 1-paraconvex, a- f(O) = 0 while 8c1,2)f(O) = 8cf(O) = [-1, 1]. 

Comparing the Dini directional derivative and the subderivative we always 
have 

d- f(xo, h)::; di f(xo, h), Vh EX. 

DEFINITION 3.2 Rockafellar {1980}. When the equality holds we say that f is 
subdifferentially regular at x0 . 

When f is the indicator function of a set S (containing xo), this means that 

K(S, xo) = Tc(S, xa). 

CoROLLARY 3.1 Let f be a 1-pamconvex function, with 1 > 1. Sv.ppose that 
8cf(x0 ) f- 0. Then f is sv.bdifferentially regular at xa. 

Proof. By Theorem 3.1 we have for all x* E 8cf(xo) 

(x*, h) ::; d- f(xo, h), Vh E X 

and hence 

sup{ (x*, h) : x* E 8cf(xo)} ::; d- f(xo, h). 

So, by Theorem 4 in Rockafellar (1980), di f(xo, h)::; d- f(xo, h). • 
4. Connection with Gateaux-differentiability 

Let f be an extended real-valued function on X. It is said to be Gateaux
differentiable at x0 if there exists x* E X* such that 

lim C 1 (f(xo +th)- j(xo)) = (x*,h), for all hE X. 
t_,Q+ 

x* is called the Gateaux-differential of f at x0 , and is denoted f' ( xo). 
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PROPOSITION 4.1 Let f be a Gateaux-differentiable function on a nonempty 
open convex set 0 C X and let "( > 1. Then the following assertions are equiv
alent 

i) f is "(-paraconvex on 0 with constant C > 0, 
ii) (f'(u),x- u)::; f(x)- f(u) + Cllx- ull"~ , Vx,u E 0. 

Proof. The implication i) =} ii) is a consequence of T heorem 3.1, since 
f)- f(u) = {f'(u)}. So let us prove the inverse implication. By ii) we have for 
all t E [0 , 1] and all x,u E 0 

t(f'(x + t(u- x)),x - u) + f(x + t(u- x))::; f(x) + Ct"~ ll x - ull"~ 

(1- t)(f'(x + t(u- x)), u- x) + f(x + t(u- x))::; 
f(u) + C(1 - t)'YIIx- ull"~ 

and so 

t(1- t)(f'(x + t(u- x)),x - u) + (1- t)f(x + t(u- x))::; 

(1- t)f(x) + C(1- t)llx- ull"~ 

t(1- t)(f'(x + t(u- x)), u- x) + tf(x + t(u.- x)) ::; tf(u) + Ctllx- ull"~. 

Thus 

f(x + t(u- x)) ::; (1- t)f(x) + tf(u) + Cllx- ull"~. 

• 
5. Subdifferential calculus under constraint qualification 

conditions 

The aim of this section is to show how the assumptions guaranteeing sum rules 
in the convex case ensure sum rules in the "(-paraconvex case. To begin we 
introduce (Ioffe, 1989) the following sets associated to the functions h and h 

S1 ={(x,r,s)EXx lR.x lR.: JI(x):s;r} 

82 = {(x,r,s) EX X lR. X lR.: f2(x)::; s} 

S={(x,r,s)EXx lR.x lR.: (h+h)(x):s;r+s}. 

We easily show as in Ioffe. (1989) 

LEMMA 5.1 

Nc(Sl,xo,h(xo),h(xo)) {(x* , .A,O) EX* x JR. x JR.: (x*,.\) 

E Nc(epifi,xo,h(xo))} 
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Nc(S2,xo,JI(xo),h(xo)) {(x*,O,.A) EX* x lR x lR: (x*,.A) 

E Nc(epi h,xo,h(xo))} 

Nc(S,xo,JI(xo),h(xo)) {(a:*,.A,.A) EX* x IR x IR: (x*,.A) 

E Nc(epi (h + h),xo, (h + h)(xo))} 

Nc(S,:ro,JI(xo),h(xo)) C Nc(Sl nS2,xo , fi(xo),h(xo)). 

The following result will be our basic tool. 

PROPOSITION 5.1 Let h and h 'be extended real-valued 1-paraconvex functions 
on X, 1 > 1, which are finite at xo. Suppose that there exist {31 > 0 and {32 > 0 
such that 

Then there exists a > 0 such that 

d(x , r , s, S1 n S2) ::::; ad(x, r, s, S2} 

for all (x,r,s) E {31Bxx JRx mnS1. 

Proof. Note that (1) is equivalent to 

(1) 

(2) 

Let (x, r, s) E f31Bxx 1Rx 1R n sl. Choose c E]O, 1[ and take (xc, r£, Sg) E s2 
such that · 

11 (x - Xg, r- r£, s- se) 11 ::::; d(x, r, s, S2) +c. 

Sett= ll(x- Xg,r- r£, s- se) 11. If t = 0 then there is nothing to prove. If t =1- 0 
we have by (2) the existence of (xi, ri, Si) E Sin {32Bxx 1Rx JR' i = 1, 2, such 
that 

and so 

Z := (t+{31)-1({31x+txl,f3lr+trl,,6ls+tsl) = 

(t + {31)-1({31x£ + tx2, f3lr£ + tr2, f3ls£ + ts2). 

Set A= ~. As (x£, rg, Sg), (x2, r2, s2) E s2 and (x, r, s), (xl, rl , sl) E sl we 
!31 + t 

have, by the 1-paraconvexity of h and h the existence of cl > 0 and c2 > 0 
such that 
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and hence 

and 

or equivalently 

w := z + (1- >-) 

(0, C1llx - x1ll"~ + Czllxc: - xzll"~, C1llx - xd"~ + Czllxc: - xz ll "~) 

E S1 n Sz. 

Thus 

ll(x, r, s)- Wll :::; 
11 (x, r, s) - Zll + 2( cl + Cz)(1 - >.)[llx- XIII"~+ llxc: - x2ll"~l 

< (1- >.)[ll(x- x1, r- r1, s- s1)l l + 2(Cl + Cz) [llx- .T1II"~ + 

ll xc:- xzll"~]] 

< ;
1 

[3(/31 + f:lz) + 2(Cl + Cz)(/31 + f:l2P + 2(Cl + Cz)(2/31 + 1)"1] 

< /311[3(/31 + /3z) + (C1 + Cz)(f:ll + f:lzP + (C1 + Cz)(2f:ll + 1)"1] 
(d(x,r,s,S2) +.s). 

As .s is arbitrary and W E S1 n Sz we conclude that 

d(x, r, s, S1 n Sz) :::; /31 1 [3(/31 + f:l2) + 2( C1 + C2) 
(f:l1 + f:lzP + 2(Cl + Cz)(2f:ll + 1)'Y]d(x, r, s,Sz). 

Now we may state the main result of this section. 
• 

THEOREM 5.1 Let h and h be two extended real-valued {-pamconvex func
tions on X, 1 > 1, with constants C1 and C2 respectively. Suppose that X is 
complete. Suppose also that h and h ar·e finite at x 0 and that {1) holds. Then 

Proof. Step 1: We show that there exists a> 0 such that 

8cd(xo, h(xo), fz(xo), S1 n Sz) c 
a[8cd(xo, h(xo), fz(xo), S1) + Ocd(xo, h(xo), fz(xo), Sz)]. 
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By Proposition 1.3 in Thibault (1991) 

d1d(-,5l n52)(xo,h(xo),h(xo);h,a,(3) = 

lim sup C 1d((x, r , s) + t(h, a, (3), 51 n 52) 
(x,r,s) 5~2 (xo,fl(xo),f2(xo) 

t-+O+ 

731 

and hence, by Proposition 5. 1, there exists a > 0 such that for (x, r, s) E 51 n 52 

near (.To,JI(xo),h(xo) and t sufficiently small 

d(x, r, s, 51 n 52) ::; 

a[d((x,r,s) +t(h, a,(3),51 ) +d((x,r,s) +t(h,a, (3),52 )] 

and so 

Thus 

d1d(-,51 n 52)(xo,h(xo),h(xo);h,a,(3)::; 

ad1[d( ·, 51)+ d(-, 52)](xo, h(xo) , h(xo) , h, a, (3). 

8cd(xo,h(xo),h(xo),5ln52) c 
aac[d(-, 51)+ d(-, 52)](xo, h (xa), h(xo))] 

and by subdifferential calculus we conclude that 

8cd(xo,h(xo),h(xo),5l n52) c 
a[acd(xo, h(xo), h(xo) , 51)+ Ocd(xo, h(xo), h(xo), 52)]. 

Step 2 : We show that the set 

is weak-star closed. Using Lemma 3.1 we easily show that (2) implies 

and hence by Theorem 6.3 in Borwein (1986) , we obtain the weak-star closedness 
of 

Nc(5l, xa, h (xo), h(xo)) + Nc(52, xa, h (xo), h(xo) ). 

StepS: Let x* E D(I,(C1+c2 ))(h + h)(xo) then by Theorem 3.1 x* E 8c(h + 
h)(.To), or equivalently (Lemma 5.1), 

(x*, -1, -1) E Nc(5, xa, h(xo), h(xo)). 

So Lemma 5.1 implies that 
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By Steps 1 and 2 

(x*, -1, -1) E Nc(Sl, xo, h(xo), h(xo)) + Nc(S2, Xo, h(xo), h(xo)). 

By Lemma 5.1, x* = u*+v*, with (u*, -1) E Nc(epi JI, xo, h(xo)) and (v*, -1) E 
Nc(epi f2,xo,f2(xo)). Thus u* E 8cfr(xo) and v* E 8cf2(xo) and so, by Theo
rer"n 3.4, u* E 0('y,Cl)fl(xo) and v* E 0('y,C2 )f2(xo). • 

COROLLARY 5.1 Let fr and h be as in Theorem 5.1. Suppose that h is con
tinuous around x 0 . Then 

Proof. Without loss of generality we may assume that x0 = 0 and fi(x 0 ) = 
0, i = 1, 2. Since h is continuous around 0 there exist a > 0 and r E]O, a[ such 
that 

fr(x):::; a, Vx E rBx. 

Let ( x, s) E r B x x 1R: Then 

(x, s) = (x, a)- (0, a-s) E epi h n (r + a)Bxx lR- epi h 

and the proof is complete by applying Theorem 5.1. • 
6. Subdifferential calculus without constraint qualification 

conditions 

In this section we assume that X is a Banach space admitting an equivalent 
norm which is Gateaux-differentiable off zero. 

THEOREM 6.1 Let h and h be two extended real-valued --y-paraconvex func
tions on X, --y > 1, with constants C1 and C2 . Suppose that h and h are lower 
semicontinuous around x 0 . Then 

8('y,(C1 +c2))(h + h)(xo) C limsup [8("!,C1 )fr(xl) + 0('y,C2 )h(x2)]. 
xi !J.x0 , i=1,2 . 

Proof. Let :r;* E 8('y,(C1 +c2 )J(h + h)(xa). Then, by Theorem 3.1, x* E 

a-(!1 + h)(xo) and hence for all nE lN\{0}, x* E 8~(h + h)(xo), where 

o; f(xo) = {x* EX*: (x*,h):::; d-f(xo,h) +sllhll , Vh}. 

So (see Ioffe, 1983) 

x* E limsup[8ifi(xi) + 8J::f2(x2)] 
n n 
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and since h and h are [-paraconvex, 1 > 1, we get (Theorem 3.1) 

x* E limsup[8("t ,Cl) fi(xl) + 8("t,C2 )f2(x2) +'!:_Ex·]. 
~ n 

Xi-+XQ 

Thus there are nets xj f.:. xo, uj f.:. xo, x~,j E 8("t,Cl)fi(xj), u~ .. i E 8('y,C2 )f2(u'J) 
2 

and b~,.i E ;,Ex· such that 

x~,j + u~,J + b~ ,j --t x*. 

As (b~).i is bounded we may assume that b~,j --t b~ E ~Bx · and we obtain 

x~,j + u~,j --t x* - b~ 

and hence 

But b~ --t 0 and then 

x* E limsup[8(-y,Cl) fi(xl) + 8(-y,C2 )f2(x2)]. 
f; 

Xi -+ Xo 

7. Subdifferential monotonicity 

• 
Let 1 > 0. A multivalued mapping A : X: X* is [-monotone if there exists 
C > 0 such that for all x, u EX, :r* E A(x), u* E A(u) 

(x* - v.*, v.- x) ::; Cjjv.- :r ll 1 . 

As a(J,c)! is always ~-monotone , it follows that any subset of the graph 
of the multivalue mapping a(J,c)f is also 1 -monotone. In fact, as in Correa, 
Jofn~ and Thibault. (1994), we show that every presubdifferential a (Thibault 
and Zagrodny, 1995, Thibault, 1994) on X, which is an operator satisfying the 
following properties: 

for any function f : X --t JR. U { oo }, any continuous convex function g 
X --t JR., and any x E X 

i) 8f(x) C X* and 8f(.x) = 0 whenever f(x) = +oo 
ii) if f is lower semicontinuous (lsc) and convex then 8f(x) coincides with 

the subdifferential in the sense of convex analysis off at x 
iii) 0 E 8f(.x) whenever xis a local minimum off 
iv) 8f(x) = 8h(x) whenever f and h coincide around x 
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v) when f is lsc, 

o(f + )..g)(x) c limsupof(u) + og(x) 
f 

U-+X 

where limsup denotes here the weak-star sequential limit superior and uLx 
means u--* x and f(u)--* f(x), 

verifies 

PROPOSITION 7.1 Let X be a Banach space. If f : X -t lR U { oo} is lower
semicontinuous and if of is 1-monotone, 1 > 1, with constant C then 

1) for- all X in the domain off (j(x) < +oo) and y in the domain of of 
(of(y) -=f. 0) we have [x, y] is a subset of the dom'ain off and 

2) of(x) c 0(-y,c)!(x). 

Before giving our main result of this section let us show that the result of 
Me Linden (1982), subsists for this subdifferential. 

PROPOSITION 7.2 Let f be a lower- semicontinuous function on X . Then for- all 

.1:0 , with f(x 0 ) < oo ther-e exists sequence xnLxo such that of(.7:n) -=f. 0. 

Proof. It is a direct consequence of the main value theorem by Thibault 
(1994) for this presubdifferential or Zagrodny (1988) and Me Linden (1982) for 
Clarke subdifferential (see also Thibault and Zagrodny, 1995). • 

The following theorem is an adaptation of the main theorem in Correa, J ofre 
and Thibault (1994) (see also Correa, Jofre and Thibault, 1995, where the result 
is expressed in terms of the presubdifferential) to the case of 1-paraconvex 
functions. For the convenience of the reader we include its proof. 

THEOREM 7.1 Let X be a B anach space and let 1 > 1 and let f : X --* JRU { oo} 
be a lower- semicontinuous function. Suppose that of is 1 - monotone. Then 
ther-e exists C > 0 such that for- all x, yE X and).. E [0, 1] 

f()..x + (1 - )..)y) ::; 

,\f(x) + (1- ,\)f(y) + C(,\(1 - )..)' + (1- )..)xY)IIx- Yll'· 

In particular- f is 1-pamconvex. 

Proof. Let x, y in the domain off and z = )..x + (1- )..)y, with )..·E]O, 1[. 
By proposition 7.2, there exists a sequence (yk) in the domain of of such that 
Yk --* y and f(Yk) --* f(y). From Proposition 7.1 1) Zk is in the domain of f. 

Step 1 : If zk is not a local minimum of f we can choose z~ such that 
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By applying Theorem 4.3 in Zagrodny (1988) (which remains valid for this 
subdifferential see Thibault, 1994) on [zk, z~] we obtain sequences Zk,n ____, Ck E 

]zk ,zU, zk,n E of(zk,n) such that 

lim inf(zk_ n> Zk- Zk n) 2: [f(zk)- f(zUJ ::c;- Zk :: 2: 0. 
n ' ' Zk- Zk 

By Proposition 7.1 2) we have zk,,n E O("!,c)f(zk,n)· Hence 

f(x)- f(zk,n) + Cllx- Zk,nll' 2: (zk_,n, X- Zk,n) 

and 

f(yk) - f(zk,n) + CIIYk - Zk,n 11' 2: (zk,n> Yk - Zk,n) 

which also implies by the lower semicontinuity off that 

>..f(x) + (1- >..)f(Yk) + C[>..llx- ck ll' + (1- >..)IIYk- ckii'J 

2: liminf[f(zk,n) + (zk_,n,Yk- Zk,n)] 
n 

2: f(ck)· 

Letting k go to oo we get 

>..f(x) + (1- >..)f(y) + C(>..(1 - >..)' + (1- >..)XY)IIx- Yll' 2: 
J(>..x + (1- >..)y). 

Step 2 : If Zk is a local minimum of f then 0 E of(zk) and, by ii), 0 E 

O("!,c)f(zk) Hence putting ck = Zk we obtain 

f(ck) :::; f(x) +Click- xll' and f(ck):::; f(Yk) +Click- Ykll' 

which implies in this case that 

f(ck):::; >..f(x) + (1- >..)f(Yk) + C>.. ll ck- xll' + C(1- >..)lick- Ykll' · 

As f(Yk) ____, f(y) and Ck ____, z, it follows from the lower ~emicontinuity off that 

f(z):::; >..J(x) + (1- >..)f(y) + C(>..(1- >..)' + (1- >..)A')IIx- Yll'· 

• As a consequence of this theorem and Theorem 3.1 we obtain the following 
characterization of 1-paraconvex functions for 1 > 1. 

CoROLLARY 7.1 Let X and f be as in Theorem 7.1 and suppose that 1 > 1. 
Then the following assertions are equivalent: 

i) f is {-paraconvex; 
ii) ocf is { -monotone; 
iii) there exists C > 0 suyh that for all x, y EX and A E [0, 1] 

f(>..x + (1- >..)y):::; >..j(x) + (1- >..)j(y) + C>..(1- >..)llx- Yll'· 
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