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1. Introduction 

The important role that the lower semicontinuity properties of the intersection 
of some multivalued mappings plays in connection with optimization theory, is 
well known and widely recognized, for example in the study of stability and 
differentiability of parametrized problems where the feasible sets are given as 
intersections of multivalued mappings. 

Several conditions have been proposed for guaranteeing the lower semicon- 
tinuity of the intersection of two multivalued mappings (see [2-$7, 9, 10, 16-21, 
24, 26, 271 for instance). 

In this paper, we discuss two such conditions called tangency conditions for 
multivalued mappings. We show that interiority conditions ensure tangency con- 
ditions for two multivalued mappings and, hence, the lower semicontinuity of 
their intersection. Our results improve some results of Lechicki-Spakowski [17] 
and Penot [24]. Our results are applied to produce epi-upper semicontinuity of 
the sum of convex vector-valued mappings. 

2. Preliminaries 

In this paper, X denotes a topological space and Y denotes a normed vector 
space equipped with the norm I( . 11. We let Y* denote the topological dual space 
of Y endowed with the weak-star topology. (e, .) denotes the pairing between 
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Y and Y* and By and B; denote the closed unit balls of Y and Y*. d(y, S) 
denotes the distance function of S, that is, 

4Y7 s> = f:g IIY - 4. 

For a multivalued mapping F, its graph, Gr F is the set 

GrF = {(z,y): y E F(z)} 

and F(z) = F(z), w  h ere F(z) is the closure of F(z). 

LEMMA 2.1. If F: X =I Y is a multivalued mapping, then 

lin&f F(x) = lim$f F(z). 

A multivalued mapping F: X =t Y is said to be convex-valued near 20 E X if 
F(x) is convex for 2 near 20. 

LEMMA 2.2. Let F, G: X =t Y be two multivalued mappings which are convex- 
valued near x0. Suppose that 

there exist a > 0, s > 0 and a neighbourhood X0 of x0 such that 

SBY c F(x) II aBy - G(x) n aBy for all x E X0. (2.1) 

Then 

lim&f F(x) n G(x) = l$n$f F(z) n c(x). 

Proof. Let y E liminf,,,,, F(x) n c(z). Then, for all E > 0, there exists 
a neighbourhood Xt c X0 of x0 such that, for all x E X1, there exists yz E 
F’(x) n??(x) such that llyz - y]] < ~/2. So there exist zz E F(x) and V, E G(z) 
such that 

11~ - yrll < 42 and 11~ - yrll < 42. 

Set t, = jlz, - u,]]. By (2.1) there are p, E F(X) n d?y and qz E G(X) n dly 
such that S(V, - G> = &(P, - a). Set 

WC = (s + t,)-‘(t,p, + sz,) = (s + t,)-ys% + t,q,). 

Then, by convexity, w, E F(x) n G(z). As limz+zo wz = y, one gets y E 
lim inf 2.+2,, F(X) n G(z). 0 

Condition (2.1) was considered in Penot [24] in order to show that 

l$n$f F(X) n G(X) = lirrgf F(x) n lirr$f G(z). 
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If F and G are constant, i.e., F(z) = C and G(z) = D for all z E X, then 
the result of this lemma can be formulated as follow: If C and D are convex 
and if there exist CY > 0 and s > 0 such that 

sByCCnaBy-Df-lnaBy, 

then CnD =??no. 
In the sequel, the following lemma will be used. 

LEMMA 2.3. Let C be a nonempty convex subset of ajnite-dimensional space 2. 
Suppose that there exists s > 0 such that for some E ~10, s[ 

SBZ c c + EBZ. (2.2) 

Then (s - c) int BZ c C. 
Proof. Suppose the contrary and let z E (s - E) int Bz with z 4 C. Since 2 

is a finite-dimensional space, by a separation theorem, there exists t* E Z* with 
\\z*\\ = 1 such that 

sup(z’,u) < (z*,z). 
UEC 

By (2.2) we have, for all w  E sBz, the existence of b E Bz such that w  -~b E C 
and so 

(z*,w - eb) < (z*,z) 

which implies that 

S--E< (z*,z> <S--E 

and this contradiction completes the proof. 0 

Recall (see, for example, [2+ 16-21, 241) that a multivalued mapping F: X 2 
Y is said to be lower semicontinuous (1.s.c.) at 20 if, for each open subset V in 
Y with F(Q) n V # 8, F-‘(V) is a neighbourhood of ~0 in X. Equivalently, 
F is 1.s.c. at 20 iff 

F(zo) c lim&f F(z) 

or, equivalently, for all yo E F(Q), lim,,,, d(yo, F(z)) = 0. 
F is said to be lower hemicontinuous (1.h.c.) at 20 if, for any E > 0, there 

exists a neighbourhood W of 20 such that, for each z E IV, 

F(s0) c F(z) + EBY. 

Following Penot [24], F is said to be boundedly lower hemicontinuous (b.1.h.c.) 
at 20 if, for each p > 0 and E > 0, there exists a neighbourhood W of 20 such 
that for all 2 E W 

F(zo) n PBY c F(Z) + &By. 
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We refer the reader to the paper of Penot [24] for additional information con- 
cerning the connection between these notions of continuity. 

According to Borwein and ThCra [7], a multivalued mapping F: X 3 Y will 
be said to be strongly lower semicontinuous (s.1.s.c.) at zu if its values locally 
have a nonempty interior at 20 and if for each yo E int F(Q), there exists some 
neighbourhood W of zo such that yo E int F(z) for each z E IV. 

PROPOSITION 2.4 ([7, 241). Let F: X =I Y be a multivalued mapping which 
is Z.S.C. and convex-valued near x0. Suppose that F(xo) has a nonempty interior 
and that Y is Jinite-dimensional. Then F is s.1.s.c. at x0. 

Proof. Let yu E int F(xo). Then there exists s > 0 such that 

YO + SBY c F(xo) n QBY, 

where a 2 lly~ll + s. From Proposition 1.3 in [24], F is b.1.h.c. at xc. So we 
have, for all E > 0, the existence of a neighbourhood X0 of 20 such that, for all 
x E x0, 

F(zo) n aBy c F(x) + &By. 

So, for all 2 E Xc, 

SBY c F(x) - {yo} +&BY 

and taking & = s/2 Lemma 2.3 yields 

int ;By c F(z) - (~0). 0 

To close this section, we give the following lemma. 

LEMMA 2.5. Let S c Y be a closed convex set. Then for all y $ S and 
Y* E ad(y,S) IIY*II = 1, h w ere af (x) denotes the subdifferential of f at x in 
the sense of convex analysis. 

Proof. See the proof of Proposition 1.5 in [14]. Cl 

3. Tangency Conditions under Interiority Conditions 

Let C and D be two subsets of Y and let yc E C n D. In his paper [9] (see also 
[23] and [25]), Dolecki has introduced the following tangency condition: 

There exist a > 0 and a neighbourhood YO of yu 

such that, for all y E YO n C, d(y, C n 0) < ad(y, 0) 

to show that 

T(C n D, ~0) = W, ~0) n WA ~0). 
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Here T(C, yu) denotes the lower tangent cone to C at yo, i.e., T(C, yu) := 
lim inft+O+ t-‘(C - yo). 

Using his condition as a point of departure, we introduce similar concepts for 
multivalued mappings. 

DEFINITION 3.1. Let F, G: X 3 Y be two multivalued mappings. We say that 
F and G satisfy the tangency condition at $0 if, for all yc E F(Q) fl E(Q), 
there exist T > 0, a > 0 and a neighbourhood W of zo such that 

for all x E W and y E yc + rBy with (q y) E Gr G and d(y, F(x)) < r. 
We say that F and G satisfy the uniform tangency condition at xc if T, a and 

W are not depending on yc. 

We immediately have the following fact. 

LEMMA 3.2. Let F, G: X =t Y be two multivalued mappings which satisfy the 
tangency condition at x0. Then 

lim&f F(x) n G(x) = lim$f F(z) n lirr&f G(x). 

Proof. The inclusion 

mm&f F(z) n G(X) c I@$f F(X) n I$i+f G(Z) 

is obvious. Conversely, let yo E liminf,,,,, F(x) nliminf,,,,, G(z). On the one 
hand, yo E F(xc) n ??‘(xo) and, by assumption, we have the existence of T > 0, 
a > 0 and a neighbourhood W of 20 such that 

d(y, F(x) n G(x)) 6 ad(y, W-4) 

for all x E W and y E yo + r-By with (x, y) E Gr G and d(y, F(x)) < T. On the 
other hand, one can find a neighbourhood WI c W of x0 and selections x + yI 
and x + z, of F and G, respectively, such that yu = limz-,z,, yz = limz~zo z,. 
Thus 

d(xz, F(x) n G(x)) 6 ad@,, F(x)) 6 all~z - ~~11 

and, hence, there exists a selection x + wz of F(-) n G(e) such that yc = 
limz+lo 20, which implies that ya E liminf,,,,, F(x) rl G(z). cl 

THEOREM 3.3. Let F and G be two multivalued mappings from X into Y with 
convex values near x0. Suppose that (2.1) holds. Then F and G satisfy the 
tangency condition at x0. 

Zj in addition, F(Q) n ??(xo) ’ b IS ounded, then F and G satisfy the uniform 
tangency condition at x0. 
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Proof. Let T > 0 and Xl C X0 be a neighbourhood of 20. Then, for all 
yo E P(Q) rl I, the set 

A := {(z, y) E Gr G n (XI x (YO + T-BY)): d(y, F(z)) < T-} 

is nonempty. So let (z, y) E A, then, for all E ~10,~ - d(y,F(z))[, there exists 
u E F(z) such that 

IIY - 4 G 4Y7 WI + E* 

If y = u, then there is nothing to prove. So suppose y # u and set t = IIy - ~11. 
By assumption, there exists u E F(z) n aBy and w E G(z) n aBy such that 

s(y - u) = t(w - w) 

or equivalently 

(s + t)-‘(sy + tw) = (s + q-‘(su + tw). 

Set q = (s + t)-‘(su + iv). Then q E F(z) n G(z) and 

IIY - 411 = (s + VIl4Y - 4 + t(Y - 411 

6 IIY - 2111 + s-‘tllY - 41 

< d(Y, F(z)) + E + s-‘t(llyoll + r + a) 

6 4Y, W) + ‘E + s-‘(IIYOII + T + 4(d(Y, F(z)) + E) 

and, hence, for all E E 10, r - d(y, F(z))[ 

4~~ W n G(4) G NY, W) + 4, 

where a = 1 + s-i (Ilyall + T + CK) and, hence, 

4~~ F(z) n G(4) G ad(y, F(4). 0 

As a first consequence of this theorem, we obtain the following corollary which 
plays an important role in subdifferential calculus rules. 

COROLLARY 3.4. Let C and D be two nonempty convex subsets of Y. Then 
the following statements are equivalent: 

(i) there exist s > 0 and (I! > 0 such that 

&ycCnd3y-Dnd3y, 
(ii) for- all yo E c fl n, there exist T > 0 and a > 0 such that 

d(y, (C - Z) n 0) G ad(y + z, C) 

for all y E (yo + rBx) n D and z E rBy. 
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Proof. (ii) + (i): let z E rBy that 

d(yo, (C - z) f~ 0) 6 ad(y0 + z, C). 

Then, since d(yo+z, C) < ]]z]], th ere exists u E (C-a)nD such that /lye-u]] < 
2a]]z]] < 2ar. So z E C - u with u E D n (yo + 2arBy). Set s = r and 
Q = lIy0JJ + r(2a + 1). Then SBY c C n aBy - D n aBy. 

For the inverse implication, it suffices to apply Theorem 3.3 by setting F(z) = 
C - z and G(z) = II. 0 

Note that in the literature, Corollary 3.4 is established in the case where C and 
D are closed and Y is a Banach space. 

Other conditions ensuring (ii) in the nonconvex case are given in, for example, 
[6, 12-15, 231. More generally, we have 

COROLLARY 3.5. Let all the hypotheses of Theorem 3.3 be satisfied. Then, for 
all yo E F(Q) n G(Q), th ere exist a neighbourhood XI of x0, a > 0 and r > 0 
such that 

d(~, (F(x) - 4 n G(x)) G ad(y + z, W4) (3.1) 

for all x E X1, y E yo+rBy and z E rBy with (z:, y) E GrG and d(y, F(z)) < 
T. Conversely, ifF and G are 1.h.c. at x0, then (3.1) implies (2.1). 

Proof Endow X x Y with the product topology and set Ft (z, y) = F(z) - y 
and Gr(z,y) = G(z). W e easily show that (2.1) is fulfilled for Ft and Gt and 
Theorem 3.3 completes the first part of the corollary. For the second part we 
have, by (3.1) and the 1.h.c. of F and G, that for all .z ~10, r/2[ the existence 
of a neighbourhood W c Xr of x0 such that for each x E W and z E r-/2& 
there exist y E G(z) and u E F(x) such that ]]y - yo]] < E, ]]u - yo]] < E and 

4~~ (F(X) - 4 n G(X)) G 41~ + z - 41. 
Thus, for each z E W and .z E r/2&, there exists 2u E (F(z) - z) n G(x) such 
that w  E ya + (1 + 2a)rBy and, hence, 

z E F(X) n dy - G(X) n dlY, 

where Q = 2((]yo]] + (1 + 2a)r). q 

The second consequence of Theorem 3.3 and Lemma 3.2 is the following result. 

COROLLARY 3.6 ([24]). Let F, G: X =t Y be two multivalued mappings with 
convex values near x0. Suppose that (2.1) holds. Then 

lbmgf F(x) n G(z) = lz++o iminf F(z) n liynfG(z). 
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4. Tangency Conditions under Approximate Interiority Conditions 

The approximate interiority condition that we introduce here is the following: 

there exists s > 0 such that for all E > 0 there exist (Y > 0 

and a neighbourhood Xc of 20 such that 

sBy c F(z) n aBy - G(z) n aBY + &By 

for each 2 E X0. 

(4.1) 

It is clear that (2.1) implies (4.1) and this implication can be strict. For example, 
let C be a proper subspace which is dense in Y and take F(z) = C and G(z) = 
(0) for all 2 E X. In general, (4.1) (with local convexity of the values of F 
and G) does not ensure the tangency conditions. To see this, take F(z) = C and 
G(z) = (0) for all 5 E X. 

When Y is a Banach space, using the Baire lemma, we can show that (2.1) 
and (4.1) are equivalent whenever the values of F and G are closed and convex. 
In our case, Y is a normed vector space and so we cannot apply the Baire lemma 
to prove this equivalence. But in this section we show that the completeness of 
Y can be replaced by the completeness of the values of G. 

LEMMA 4.1. Let C and D be two closed and convex subsets of Y with D 
complete and bounded (or D is complete and C is bounded). Then the following 
conditions are equivalent: 

(i) 0 E int (C - D), 
(ii) for all yo E C fl D, there exist r > 0 and a > 0 such that 

d(y, (C - 4 n D) G ad(y + z, C) 

for all y E (yo + rBx) n D and z E TBY, and 
(iii) 0 E int(C - 0). 

Proof. The implication (iii) =+ ( ) i is obvious and by Corollary 3.4 we have the 
equivalence between (ii) and (iii). So we have to show that (i) + (ii). Suppose 
the contrapositive. Then there exists yo E C n D such that for all integer n, there 
exists yn and z, such that 

4~~) (C - 4 n D) > nd(y, + xn, C), 

llyn - ~011 < l/n and Il.~ll < l/n with 
yn E D and d(y, + zn,C) 6 l/n. 

(4.2) 

Consider the function fn(y) = d(y + z,, C) and set E: = fn(yn) and X, = 
min(n$, Ed). As C is closed and convex and, by (4.2), yn + z, 4 C, it follows 
that fn is convex and E: > 0 with cn + O+. Since 
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then, by Ekeland’s variational principle [ 111, there exists y; E II such that 

IlYn - YkII < 4% (4.3) 

and 

.MY~ G MY) + 4ly - ~611~ for all Y E D, 
where s, = &i/X, = max( l/n, Ed) = l/n. Thus, since the function y + 
fn(y) + IIy - yn(l is Lipschitz, it follows that 

4Y;+GL,c) ~d(Y+~n,C)+2d(Y,~)+snllY -YkII 
for all y in some neighbourhood of y;. So 

0 E ad(* + zn, C>(yk) + 284, D)(yk) + %J?; 

and, hence, there exist yi E ad(. + z,, C) (yk), Z: E 2%(., 0) (yk) and b; E I?; 
such that y; + .z: = snbc. From (i) there exists s > 0 such that for all E > 0 for 
all y E sBy we have the existence of 21, E C, w, E D and b, E BY such that 
y = v, - w, + & and hence 

sn(b;, vn - Y - Y:, + &) 

= (Y; + 4, vn - Y - Y:, + &) 

= (Yi+i,Vn - Yk> - (Yi7 Y) + E(Yz, bn) + (zg7 Vn - YL - Y + A). 

Since D is bounded there exists cr > 0 such that 

llwnll 6 a, vn, 

(Yi7 vn - y;) < 0 and (z;, v, - yi - y + &) 6 0, we get 

(YC, Y) 6 %t(a + s + llyoll + 1 + 4 + E 

for all y E sBy and, hence, for all integer n 

~~Vn~~ = IIY + Wn - E&II < S + Cl + E. 

Thus, 

sllY;ll 6 2sn(a + s + llvoll + 1 + E> + E. 

Note that by (4.2) and (4.3), yh + Z, $ C and by Lemma 2.5 1 = Ily~ll. So 

S < 2Sn(Q + S + IlyO/oJJ + 1 + E) + E 

and since s, + O+ we have, for all E > 0, s < 2~ and this contradiction 
completes the proof. q 

The lemma states in particular that 

int (C - 0) = int(C - II). 

The following example shows that the assumption on the boundedness of D 
(or C) cannot be relaxed in the above lemma. 
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EXAMPLE 4.2 ([8]). Let Y = Z* be the Hilbert space of square summable 
sequences and let w  E Y, vk > 0 for all integer k. Set 

C = lb and D = {y E Y: yk > 0 for all k}. 

Then 0 E int (C - 0) and int(C - 0) = 0. 

Using Lemma 4.1, we obtain 

LEMMA 4.3. Let F, G: X =t Y be two closed convex-valued multivalued map- 
pings near x0. Suppose that the values of G are complete. Then (2.1) and (4.1) 
are equivalent. 

Proof. By (4.1) there exists s > 0 such that for all E ~10, s[ there exist CI > 0 
and a neighbourhood Xc of 20 such that 

sBy c F(x) n d3y - G(X) n d?y + &By 

for all z E X0 and by the cancellation law theorem [28], we have 

(s - &)By c F(x) n aBy - G(X) n aBy. 

Using Lemma 4.1, we deduce that 

int F(x) n aBy - G(z) n c&y = int(F(x) rl aBy - G(z) n a&). 

Therefore 

~BY c F(X) n tvBy - G(X) n aBY. 0 

With the help of this lemma and Theorem 3.1, we obtain the following theorem. 

THEOREM 4.4. Let F, G: X 3 Y be two multivalued mappings with closed- 
convex values near x0. Suppose that the values of G are complete. Suppose also 
that (4.1) holds. Then F and G satisfy the tangency condition at x0. 

Zj in addition, F(xo) fl G(xo) is bounded, then F and G satisfy the uniform 
tangency condition at x0. 

COROLLARY 4.5. Let F, G: X =t Y be two multivalued mappings with closed 
convex values near x0. Suppose that the values of G are complete. Suppose also 
that F and G are 1.h.c. at x0 and there exist s > 0 and cy > 0 such that 

sBy c F(xo) n dly - G(xo) n dy. 

Then F(.) fl G(e) is Z.S.C. at 20. 
Proof. This is immediate from Theorem 4.4 and Lemma 2.3. 0 

As a consequence of this corollary, we obtain the following. 
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COROLLARY 4.6. Let F and G be as in Theorem 4.4. Suppose that F and G 
are 1.h.c. at x0 and 

G(Q) n int F(Q) # 8. 

Then F(.) fl G(.) is 1.s.c. at 20. 

The assumptions of Corollary 4.6 are not sufficient to guarantee the 1.h.c. of 
F(.) n G(.) at x0. 

EXAMPLE 4.7 ([17]). Let Y = Loo and define F, G: 10, 1] 3 Y as follows: 

F(z) = {(tk) E Y: tl 2 x and tk < k - IC for k > 2) 

and 

G(x) = {(tk) E Y: tl < 1 -x and tic < k(1 - tl -z), 

tk 6 k + t,/k - z/k for k 2 2). 

Then F and G are closed convex-valued. Moreover, they are 1.h.c. at 0 and 
G(0) n int F(0) # 8. However, F(.) n G(.) is not 1.h.c. at 0. 

In their paper [17], Lechicki and Spakowski have shown that, in addition to the 
assumptions of Corollary 4.6, the following assumptions: 

int[F(zo) n G(Q)] # 8 and F(xo) n G(Q) is bounded (4.4) 

ensure the 1.h.c. of F(.) n G(.) at ~0. 
The purpose of the following corollary is to relax their interiority assump- 

tion (4.4). 

COROLLARY 4.8. Let F, G: X 3 Y be two multivalued mappings with closed 
convex values near x0. Suppose that the values of G are complete and F(xo) fl 
G(xo) is bounded. Suppose also that F and G are 1.h.c. at x0 and there exist 
s > 0 and LY > 0 such that 

sBy c F(Q) n d3y - G(xo) n crBy. 

Then F(e) n G(a) is f.h.c.at 20. 
Proof We can easily show that all the assumptions of Theorem 4.4 are sat- 

isfied. So there exist T > 0, a > 0 and a neighbourhood Wt of zo such that for 
all YO E F(xo) n G(xo) 

4~~ Jl-4 n G(x)) G WY, F(x)) (4.5) 

for all x E WI, y E yo + rBy with (2, y) E Gr G and d(y, F(x)) < r. Let 
E E IO, ~/2[ and let W c WI be a neighbourhood of xc such that for all 2 E W 

F(xo) c F(z) +&y and G(q) c G(z) +&By. 
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So, for all 2 E IV, there exists y E G(z) such that y E yc +&By. For this y, we 
have d(y, F(z)) < 2~ and hence, by (4.3, there exists z E F(z) n G(x) such 
that 

Thus yo E F(s) n G(z) + (2a + l)&By and, hence, for all E > 0 there exists a 
neighbourhood W of 20 such that for all 2 E W 

F(xo) n G(zo) c F(X) n G(X) + (2~ + 1)&y. 0 

We may also state the following corollary. 

COROLLARY 4.9 ([24]). Let F, G: X 3 Y be two multivalued mappings with 
closed convex values near x0. Suppose that the values of G are complete. Suppose 
also that F and G are b.l. h.c. at x0 and there exist s > 0 and CY > 0 such that 

sBy c F(xo) n aBy - G(xo) n d3y. 

Then F(.) rl G(.) is b.1.h.c. at x0. 
Proof. Let ,0 > a!. It suffices to apply Corollary 4.8, by considering the 

following multivalued mappings 

Q(x) = 
F(xo) n PBy if x = x0, 

F(x) otherwise 

and 

if x = x0, 

otherwise. 
0 

5. Application to the Epi-Upper Semicontinuity of a Sum 

Let 2 be a normed vector space ordered by a closed convex cone Z+. We denote 
by Z’ = Z U {+oo} the set obtained by adding to Z a greatest element +oo. 
Given a mapping f: Y -+ Z’, we denote [24] by 

E(f) := {(y,z) E Y x z: z E f(y) + Z+} 

its epigraph; f is said to be convex if E(f) is convex. The extended level set 
[24] of f associated to cx E R+ is 

T(f, a) = f-‘(cuBz - Z+). 

In the following definition, Penot [24] extended a well-known notion of epi- 
upper semicontinuity (see [l] and [26] and their references) to a vectorial frame- 
work. 
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DEFINITION 5.1 ([24]). A family (fz& of mappings from Y into 2’ parametrized 
by X is said to be epi-upper semicontinuous (e.-u.s.c.) at 20 E X if 

E(fd c l@$$ E&). 

Let (fz)zcx and (gz)zcx be two families of convex mappings from Y into 2’ 
and let (h2& be given by h, = fz + gz. 

Using the assumption 

there exist a > 0, s > 0 and a neighbourhood X0 of 20 such that 
SBY c T(fx, CY) n (UBY - T(g,, a) n oBy, for all z E X0 (5.1) 

Penot [24] showed that (hz)2Ex is e.-u.s.c. at 20 E X whenever (fz)2E~ and 
(S&EX are e.-u.s.c. at 20. Here we use his assumption (5.1) to give an analytic 
content in the form of an inequality between the families of mappings (fx)2E~, 
(Aa and (h&,x. 

THEOREM 5.2. Let (fz)zE~ and (gz&x be two families of convex mappings 
from Y into 2’. Suppose that (5.1) holds. Then, for all (~0, ~0) E E(h,,,), there 
exist a > 0, T > 0 and a neighbourhood X0 of x0 such that 

for alz x E x0, y E yo + r&‘, Z E ,ZO - gz,,(yo) + rBZ and V E szo (yo) + r~z 
with (Y, u> E E(g,) and d(y, Z, E(fz)) < T. 

Consider the multivalued mappings F: X s Y x Z x Z and G: X =t Y x Z x Z 
defined by 

F(x) = {(y, 2, ?J) E Y x z x z: z E f,(y) + Z,} 

and 

G(x) = {(y, z, v) E Y x Z x Z: TJ E gz(y) + Z+}. 

For the rest, we endow Y x Z x Z with the sum norm. 
We have the following criterion which shows that F and G satisfy (2.1). 

LEMMA 5.3. If (5.1) holds then there exists ,0 > 0 and a neighbourhood X0 of 
x0 such that 

SBY~.PM c F(X) n PBY~z~z - G(X) n PBY~z~z 

for all 2 E X0. 
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Proof. Here we use the arguments by Penot [24]. Let (y,z,~) E sByxzxz 
and let II: E X0. By (5.1) there exist yz E T(f,,a)naBy, yk E T(g,, a)naBy 
with y = y2 - yk. By definition of level sets, there exist uz, u’, E crBz such that 
u, E fx(yxc> + z+ ad 4 E s&k) + z+. Set 

z, = u, + (z + u; - u,)+, z; = 24; + (z + 21; - u,)- 

and 

21, = u, + (w + u; - 21x)+, w; = u; + (w + u; - UJ, 
where w+ = max(O,w), 20~ = (-w)+ so w  = w+ - w-. Then 

(YA4 = (YXVWJX) - (YX4) 

with 

(Ym FE, %> E F(z) f-l (3a + S)BYxZxZ 

and 

Proof of Theorem 5.2. First note that (ya, ~0) E E(h,,,) iff (yo, .zo - gxo(yo), 

gzo(ya)) E F(zo) n G(Q). Then by Lemma 5.3 and Theorem 3.3, there exist 
a > 0, T > 0 and a neighbourhood X0 of 20 such that 

for all z E XO, y E YO + ~BY, z E zo - gz,,(yo) + rBz and u E gz,,(yo) + TBZ 
with (z, y, z, w) E Gr G and d(y, z, V, F(z)) < T. So the proof is complete if we 
see that d(y, z, 21, F(z)) = d(y, z, E(f%)) and 

4~~ z, 21, Wd n G(4) 
= inf 

fZ(Y’)& 
IIy - y’JI + llz - ~‘11 + llw - w’ll 

ch(Y’)&V 

> inf ((y-y’ll+llz+w-~‘-z~‘ll 
fZ(Y’)d 
sk(Y')<V' 

2 inf 
fi(Y’)+gs(Y’)<z’+v’ 

IIy - y’ll + I(z + w  - z’ - w’ll 

2 inf 
f~(Y’)+9+(Y’K~’ 

IIY - Y’ll + II2 + w - w’ll 

Remark. We can also give an analytic content in the form of inequality between 
the families of mappings (fz&, (gz)>zEx and (kz)zE~ with k, = max(fz,g,) 
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as follows: Let (fz)zEx and (g2& be two families of convex mappings from 
Y into 2’. Suppose that (5.1) holds. Then for all (yo,,zc) E E(h,,,), there exist 
a > 0, T > 0 and a neighbourhood Xc of z. such that 

for all z E X0, y E ~0 + r& and z E zc + rBz with (y, z) E E(g,) and 
4Y, z, Wx)) < 7.. 

COROLLARY 5.4. Let (f3C)Z.~ and (g2)2cx be as in Theorem 5.2. Suppose 
that (5.1) holds. Then (~L~)~Ex is e.-u.s.c. at 20 whenever (f3i)ZEX and (gz)r.X 
are e.-u.s.c. at 20. 

f+-04 Let (YoJo) E Jwx,,). l-hen (Yo, zo - 9xJyo)) E E(f,,,) and (yo, 
&,,(Yo)> E -@(%,,). BY Theorem 5.2, there exist a > 0, T > 0 and a neighbour- 
hood Xc of zo such that 

d(y, z + 21, Wx)) < WY, z, Wd (5.2) 

for all x E XO, Y E YO + ~BY, z E zo - gxo(yo) + ~B.z and v E gz,,(yo) + ~~~ 
with (Y,u> E E(g,) and d(y,z, E(fz)) < T. So, by the e.-u.s.c. of (fz)2EX 
and (gx)xEx we can find a neighbourhood Xt c Xc of x0 and selections z -+ 
(ye, zx> and J: + (2~~~ Q) with limx+zo yx = lim,,,,, us = ye, limz+zo Z, = 
zo - szo (yo) and fim,+,,, 21, = gzO (yo) such that (yz, z,) E E( fz) and (zL~, II,) E 
E(g,). Then, by (5.21, there exists (u;,v;) E E(h,) such that 

11212 - 411 + llwx + zx - u;ll 6 allu, - yxll 

and, hence, limz+z,, u’, = yo and limz-tzo V; = zo. Whence (yo, zo) E 
lim infx--txo JW,,,). q 

Remark. Note that this result may be obtained by using Corollary 3.6. 
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