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VERIFIABLE CONDITIONS FOR OPENNESS AND REGULARITY 
OF MULTIVALUED MAPPINGS IN BANACH SPACES 

A. JOURANI AND L. THIBAULT 

ABSTRACT. This paper establishes verifiable conditions in terms of approximate 
subdifferentials implying openness and metric regularity of multivalued map- 
pings in Banach spaces. The results are then applied to derive Lagrange multi- 
pliers for general nonsmooth vector optimization problems. 

1. INTRODUCTION 

It has been observed by Graves [13] and Ljusternik [27] that a C1 mapping 
f from a Banach space X into a Banach space Y with a surjective derivative 
at xo satisfies the distance estimate 

dist(x, f1l(y)) < adist(y, f(x)) 

for all x in a neighbourhood of xo and all y in a neighbourhood of yo. This 
distance estimate is actually called the metric regularity of f at xo. Another 
important condition ensuring the metric regularity of multivalued mappings 
with closed and convex graphs has been discovered by Robinson [34] and Urs- 
escu [42]. Robinson [35] has also studied the case of the multivalued mapping 
F(x) = -f(x) + P where f is a Cl mapping and P is a closed convex cone 
in Y. 

Since these works, many papers have been devoted to the metric regularity 
of multivalued mappings or nonsmooth mappings. The important papers by 
Mordukhovich [30-31] have completely solved the problem for X and Y fi- 
nite dimensional. Indeed in [30-31], general verifiable necessary and sufficient 
conditions are given for any multivalued mapping between finite-dimensional 
Banach spaces. Such general verifiable results are not known so far in the 
infinite-dimensional setting. In this case most of criteria ensuring the metric 
regularity at a given point xo require the verification of the formulated condi- 
tions at all points in a neighbourhood of xo and, moreover, they are generally 
stated in a complicated way. Note that some criteria (in the nonsmooth and 
infinite case) are established by Aubin [1], Aubin and Frankowska [2], Borwein 
[3], Borwein and Zhuang [6], Dolecki [8-10], Frankowska [12], loffe [14-15, 
18], Jourani [19-21], Jourani and Thibault [22-24], Kruger [26], Rockafellar 
[37], Penot [33], and references therein. 
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The aim of this paper is to extend to some large classes of multivalued map- 
pings between infinite-dimensional Banach spaces the easily verifiable sufficient 
criteria of loffe [15] and Mordukhovich [30-31]. More precisely we prove, for 
the multivalued mappings F: X t Y in these classes and Yo E F(xo), that 
the condition 

KerD*F(xo, Yo) = {0} 
ensures the metric regularity of F at (xo, yo) (where D*F(xo, yo) is the 
coderivative of F at (xo, yo) (see ?2) and KerD*F(xo, yo) = {y* E Y* 
0 E D*F(xo, yo)(Y*)}). 

2. PRELIMINARIES 

Throughout the paper X, Y, and Z will be Banach spaces and X*, Y*, and 
Z* their topological duals equipped with the weak-star topology w* . ( *, * ) is 
the canonical pairing between two dual spaces, and Bx, Bx, ... are the closed 
unit balls of X, X*. d( , S) is the usual distance function to the set S 

d(x, S) = inf llx - ull. 
UES 

We write x f xo and x s xo to express x - xo with f(x) -- f(xo) and x - 

xo with x E S, respectively. We denote by GrF the graph of a multivalued 
mapping F 

GrF = {(x, y): y E F(x)}. 
"dom" and "int" are the abbreviations for domain and interior. If not specified, 
the norm in a product of two Banach spaces is defined in a natural way by 
II(a, b)JI = Ilall + llbll. 

We will use the notation of loffe [16-17]. 
Let f: X --1 R u {+oo} be a lower semicontinuous function in a neighbour- 

hood of xo E X with f(xo) < oo. The approximate subdifferential (see loffe 
[16-17]), which is an extension to the context of Banach spaces of the concept- 
introduced by Mordukhovich [25] for finite-dimensional spaces, is defined by 

aAf(XO)= n limsupa fX+L(X) 

LE9(X) xA 0xo 

where 

a-f(x) = {x* E X*: (x*, h) < d-f(x, h), Vh E X}, 

d-f(x, h) = liminfrt-(f(x + tu) - f(x)). 
tlO 

Here, for S c X, fs denotes the function defined by 
{ f(x) if x ES, 

fs(x) = +o0 otherwise; 

i(X) is the family of all finite-dimensional subspaces of X; and 

limsup afX+L(X) = {X E X: = w*-limx7, xi E afXi+L(xi), xi x o- , 
f x- +xo 

that is, the set of w*-limits of all such nets. 
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The coderivative of a multivalued mapping F: X t Y at a point (xo, yo) 
of its graph GrF is the multivalued mapping D*F(xo, yo): Y* = X* defined 
by 

D*F(xo, yo)(Y*) = {x* (x*, -y*) E R+OAd(xo, yo; GrF)}. 
In the sequel we will need the following class of mappings between Banach 

spaces. 

Definition 2.1 [23]. A mapping g: X -- Y is said to be strongly compactly 
Lipschitzian (s.c.L.) at a point xo if there exist a multivalued mapping R 
-X = Comp(Y), where Comp(Y) denotes the set of all norm compact subsets 
of Y, and a function r: X x X -1 R+ satisfying: 

(i) limx>xo,h.or(x, h) = 0; 
(ii) there exists a > 0 such that 

t-U(g(x + th) - g(x)) E R(h) + llhllr(x, th)By 

for all x E xo + aBx, h E aBx, and t E]O, a[; 
(iii) R(O) = {O} and R is upper semicontinuous. 

It can be shown (see [38]) that every strongly compactly Lipschitzian mapping 
is locally Lipschitz. If Y is finite dimensional, the concepts coincide. 

The following chain rule, involving the A-approximate subdifferential, has 
been recently stated for s.c.L. mappings by Jourani and Thibault [25]. Note 
that this chain rule has been stated before by loffe [17] for maps with compact 
prederivatives. 

Theorem 2.2 [25]. Let g : X -_ Y be s.c.L. at xo, and let f: Y ) R be locally 
Lipschitz at g(xo). Then f o g is locally Lipschitz at xo and 

aA(f o g)(xO) c U aA(Y o g)(xo). 
y* E9Af(g(Xo)) 

To close this section, let us give the following result, whose proof is given in 
Jourani [21]. 

Lemma 2.3. Let C be a subset of X containing xo, and let F: X t Y be a 
pseudo-Lipschitz multivalued mapping at (xo, yo) E GrF (that is, there exists 
r > 0 and kF > 0 such that for all x, x' E (xo + rBx) F(x) n (yo + rBy) c 
F(x') + kFllx - x'jjBy). Then 

9Ad(Xo, yo, GrFc) c aA(d(. , F(.)) + (kF + 1)d(., C))(xo, Yo) 
c (kF + 1)(OA(d(yo, F(xo)) + OAd(Xo, C)) x ) 

where kF is a Lipschitz constant of F at (xo, yo) and 

f F(x) ifxEC, 
+0 otherwise. 

3. PARTIALLY COMPACTLY EPI-LIPSCHITZ MULTIVALUED MAPPINGS: 

EXAMPLES AND PROPERTIES 

We start this section by recalling the following definition which is due to 
Borwein and Strojwas [5]. 
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Definition 3.1. Let S c Y be a set, with Yo E S. S is said to be compactly 
epi-Lipschitz at yo if there exist y > 0 and a 11 11-compact set H c Y such 
that 

Sn(yo+yBy)+tyBy cS-tH, forall te]O, y[. 

Rockafellar [36] introduced the notion of "epi-Lipschitz" set. Later Borwein 
[4] considered an intermediate notion of reasonable boundary behavior called 
"epi-Lipschitz-like". He has shown that every epi-Lipschitz set is epi-Lipschitz- 
like and that every epi-Lipschitz-like set is compactly epi-Lipschitz. Note that 
in finite dimension every subset is compactly epi-Lipschitz at all its points. 

Using Definition 3.1 as a point of departure, we introduce similar concepts 
for multivalued mappings. 

Definition 3.2. We will say that a multivalued mapping F: X t Y is partially 
compactly epi-Lipschitz at (xo, yo) E GrF if there exist y > 0 and two 11 11- 
compact sets H c X and K c Y such that for all x E xo + yBx, y E (yo + 
yBy) n F(x), t E]O, y[, and b E yBy there exists (h, k) E H x K satisfying 

y+t(b+k) eF(x+th). 
This is equivalent to saying that 

(xo+yBx) x (yo+yBy)fnGrF+t({O} x yBy) c GrF-t(HxK), 

for all t e]O, y[. 

When H = {O} we say that F is uniformly compactly epi-Lipschitz at (xo, yo). 
With the above notation, this means that for all x E xo + yBx and t E]O, yE 

F(x) n (yo + yBy) + tyBy c F(x) - tK. 

Remarks. (1) It is obvious that F is partially compact epi-Lipschitz at a point 
(xo, yo) whenever GrF is compactly epi-Lipschitz at this point. 

(2) The converse does not hold. Indeed, let C be a nonempty subset of 
X which is not compactly epi-Lipschitz at xo E C. Assume that Y is finite 
dimensional, and put F(x) = {O} if x E C and F(x) = 0 otherwise. One 
easily sees that GrF = C x {0} is not compactly epi-Lipschitzian at (xo, 0) 
but F is partially compactly epi-Lipschitz at (xo, 0). 

The following proposition gives us a classical example of such a class of 
multivalued mappings. 

Proposition 3.3. Let g: X -- Y be a mapping which is Lipschitz at xo, and let 
D c Y be compactly epi-Lipschitz at g(xo) E D. Then the multivalued mapping 

F(x) = -g(x) + D 

is uniformly compactly epi-Lipschitz at (xo, 0) and so it is partially compactly 
epi-Lipschitz at (xo, 0). 
Proof. Since D is compactly epi-Lipschitz at g(xo), there exist y > 0 and a 
1111-compact set K c Y such that 

Dfn(g(xo)+'yBY)+tyBy cD-tK, forall te]O, y[. 

As g is Lipschitz at xo, there are two real numbers kg > 1 and r > 0 such 
that 

jjg(x) - g(xo)jj < kgjjx - xoll, for all x E x0 + rBx. 
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We may suppose that 2kgy < r. So, let x E xo + (y/(2kg))Bx, t E]O, y/2[, y E 
F(x) n (y/2)By, and b E tyBy. Then, by the choice of y, y + g(x) E D n 
(g(xo) + yBy) and so y + g(x) + b E D - tK. o 

In mathematical programming problems one often considers constraints of 
the form 

gi(x)<O, i=1,.., m, gj(x)=O, i=m+1,...,n, andxEC, 
where gi: X --1 R is a function and C is a subset of X. This can be written 
as g(x) E D and x E C where g = (gi, ..., gn) and D = Rm x {O} (Rm 
being the negative orthant of Rm), or 0 E G(x) with 

G(x)= { g(x)+D if xE C, 
+0 otherwise. 

Since D is compactly epi-Lipschitz at g(xo) E D, Proposition 3.3 implies that 
the multivalued mapping -g(x) + D is uniformly compactly epi-Lipschitz at 
(xo, 0). We easily show that G is also uniformly compactly epi-Lipschitz at 
(xo, 0). More generally we have 

Proposition 3.4. Let F: X = Y be a multivalued mapping which is uniformly 
compactly epi-Lipschitz at (xo, yo) E GrF, and let C be a subset of X con- 
taining xo. Then the multivalued mapping 

Fc(x) { F(x) if x E C, 
+0 otherwise 

is uniformly compactly epi-Lipschitz at (xo, yo). 

In the following proposition we establish the following important property of 
partially compactly epi-Lipschitz multivalued mappings. 

Proposition 3.5. Let F: X = Y be a multivalued mapping which is partially 
compactly epi-Lipschitz at (xo, yo) E GrF. Then, for H and K given by Def- 
inition 3.2, there are neighbourhoods V and W of xo and yo respectively 
and a real number y > 0 such that for each e E]O, 1] there exist vectors 
h,..., hm E H and ki, ..., km E K satisfying 

e I-X'I + 11Y*11 3e + y max I(x*, hi)I + y max 1(y*, ki) 
i=.I m i=.m 

for all x E V, y E W, and (x*, y*) E aAd(x, y; GrF). 
Proof. Let r E]O, 1] be such that for all t E]O, r[ 

(1) (xo + 4rBx) x (yo + 4rBy) n GrF + t({O} x rBy) c GrF - t(H x K). 

Choose open neighbourhoods V and W of xo and yo, respectively, such that 
V c xo + rBx and W c yo + rBy and such that for all (x, y) E V x W, 
d(x, y; GrF) < r. Let e]O, 1]. Choose hi,..., hm E H and ki, ..,km E 
K such that 

m m 
H C U (hi + er2Bx) and K c U (ki + r2By). 

i=1 i=1 

For all x E V, y E W, u E erBx, and t E]O, r[ with x+ tu E V there exists 
(p(x, y, u, t), q(x, y, u, t)) E GrF such that 
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and hence p(x,Y, u, t) E xo + 4rBx and q(x, y, u, t) E Yo + 4rBy. Let 
(x*,y*) E OAd(x,y;GrF). Fix u E erBx,L E ST(X) with {u,hi,..., 
hm} c L, b E rBy, and M E S(Y) with {b, k, ...,km} c M. By the 
definition of approximate subdifferential we have 

x* = w*-limxj7 and y* = W*-limyj* 
with (xj> YJ) E aOd(xj,yj)+LxM( *, ; GrF)(xj, yj) and (x;, yj) -- (x, y) . 

Choose t 1 O, j0o, and no E N such that for all j > jo and n > nO we 
have Yj E W, xj E V, and xj + t,u E V. For j > jo and n > nO take by 
(1) ha(n,j) E {hi, , hm}, kfl(n,j) E {ki, , km}, bn,j E Bx, and b' E By 
satisfying 

(p(xi Yj, , U E tn) , q(xj, yj, u, tn)) 

+ tn(ha(n,j) + er2bn, 1, b + kfl(n,j) + er2bl,j) E GrF. 

Extracting subnets if necessary we may suppose that ha(n,j) = h, and kfl(n j) = 
k, for all j > jo and n > no, where 1, s E {1, ..., m}. So for Pn,:= 
p(xj, y;, U, tn) and qn, :=q(x;, y1, u, tn) we have by (2) and (3) 

t- '(d(xj + tn(u + hl), y1 + tn(b + ks); GrF) - d(xj, yj; GrF)) 
n t;'(d(pn,j + tnhi, qqnj, + tn(b + ks); GrF) - d(xj, yj; GrF)) 

+ tn1(||Xj + tnU -PnjII + IlYj - qn,ill) 
< 2er2 + t7 '(d(xj + tnu, yj; GrF) - d(xj, yj; GrF)) + tn 
? 2er2+er+tn 

< 3er+ttn 

Setting g d(,,GrF) we get 

d-g(xj,yj)+LxM(Xi yj; u + hl, b + ks) < 3er, 
and hence 

(xj, U) + (yj, b) < 3er + max I (Xj, hi) I + max I (yj k) I 
i=1.M M=1 

It follows that 

(x*,u)+(y*,b)<3er+ max I(x*,i)l+ max 1(y*,ki)l, i=1 ,.., m i=,..m 

and hence we may conclude that 

eIIx*II + IIy*II < 3e + r- max I(x*, hi)I + r- max I(y*, ki)I. o 
i=1l...,m i=. 

As a consequence of this proposition we have 

Corollary 3.6. Let F: X = Y be a multivalued mapping which is uniformly 
compactly epi-Lipschitz at (xo, yo) E GrF. Then, for K given by Definition 
3.2, there are neighbourhoods V and W of xo and yo, respectively, and a real 
number y > 0 such that for each e E]O, 1[ there exist vectors k1, .. ., km E K 
satisfying 

ejIIjx*I + II 11? 3e + y max 1(y*, ki)I i=y ( ) ,y,m 
for all x E V,y Y W, and (x*, y*) E aAd(x, y; GrF). 
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In particular if D c Y is compactly epi-Lipschitz at yo E D one gets, by 
setting F(x) = D, for all x E X, that 

llY*II1<3e+ Y max 1(Y*, ki)l ma 

for all y E V and y* E aAd(y, D). 

Remarks. (1) From the second part of this corollary we may say, in particular, 
that in aAd(y, D), weak-star and strong convergences to zero are equivalent, 
that is, 

yj* 
W 0 iff Ilyj*I O. 

(2) Loewen [28] has shown that in weakly locally compact cones (of reflexive 
Banach spaces), weak-star and strong convergences of sequences to zero are 
equivalent. 

4. METRIC REGULARITY 

The following notion of metric regularity is now recognized to be a very 
important tool in nonsmooth analysis and in optimization theory. 

Definition 4.1 [34-35]. One says that a multivalued mapping F: X = Y is 
metrically regular at (xo, yo) E GrF if there exist two real numbers a > 0 and 
r > 0 such that 

d(x, F-'(y)) < ad(y, F(x)) 
for all x E xo + rBx and y E y0 + rBy with d(y, F(x)) < r, where F-I(y)= 
{x E X: y E F(x)}. Here we adopt the convention d(x, z) = +oo. 

Before giving our main result of this section, we recall the following important 
lemma whose proof is given in Jourani [19]. Let us note that its proof is along 
the lines of those given by Borwein and Zhuang [6], Borwein [3], and loffe [14]. 

Lemma 4.2. Let F: X t Y be a multivalued mapping of closed graph, and let 
(xo, yo) E GrF . If F is not metrically regular at (xo, yo), then there are s, 1 0 
(sn < 1),Xn x o Zn -* yo, and Yn -* Yo such that for all positive integer n 

(xn, Zn) E GrF, Yn ? F(xn), 
and 

ll1 n-Yn 11 < IIY -Yn 11 + sn(+llxXnl11 + IIY-Znl||) 
for all (x,y)eGrF. 

Theorem 4.3. Let F: X t Y be a multivalued mapping whose graph is closed. 
Suppose that F is partially compactly epi-Lipschitz at (xo, yo) E Gr F. Suppose 
also that for all nonzero y* E Y* 

(RC) KerD*F(xo, yo) = { 0} 

Then F is metrically regular at (xo, yo). 
Proof. Suppose the contrary. Then, by Lemma 4.2, there are sn l 0 (sn < 1), 
Xn X0, ZnoZ yo, and Yn -*Yo such that for all n 

(xn, Zn) E GrF, Yn F(,Xn), 
and 

lIzn-YnI 1 <IIY-YnII +sn(llx-XnII + IIY-ZnlII) 
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for all (x, y) E GrF. Proposition 2.4.3 in Clarke [7] implies that (xn, z) is 
a local minimum of the function 

fn(x , Y) = IIY - Ynl + 2d(x, y; GrF) + sn(IIx - xnl + IIY - znIl) 

SO (0, 0) E aAfn(Xn, Zn) and hence, by subdifferential calculus rules (see loffe 
[16-17]), 

(O 0) E {O} x S(Yn s Zn) + 2OAd(Xn, Zn; GrF) + sn(BI x By), 

where S(Yn, Zn) = {Y* E Y* y IIY*II = 1 and (y*, Zn -Yn) = IlIzn -Yn.ll} SO 
there are Yn E S(Yn, Zn) and (Xn, Zn) E 2OAd(xn, Zn; GrF) such that 

(4) JjYn* + Zn*11 Sn 

and 
IIX* || < Sn . 

As the sequences (xn), (yn), and (zn) are bounded, extracting subnets if nec- 

essary, we may assume that x* w 0, Zn - y*, and Yn w y*. By the upper 
semicontinuity property of the approximate subdifferential we get 

(0, -y*) E 2OAd(xo, yo; GrF). 
The theorem will therefore be proved if we show that y* :A 0 because we 

will arrive at a contradiction with (RC). Now, using Proposition 3.5 we get the 
existence of y > 0 such that for all e E]O, 1] there exist h1, ... , h, E X and 
ki, ..., kmEY (hl, ..., hm ki,.., km not depending on n) satisfying 

eIIx,*II+jjznjj<6e+y max I(x*,hi)l+y max I(zn,ki)l) j=l, .m i=l, .m 

and hence 

in + 11y1 i- 1y* + 4n1 < ft + y max I(x*, hi)l + y max I(zn, ki)j. 8114 11 n n ni=l,I...,m n i=l,..., 

Using (4) we have at the limit 

1 < 6e+y max 1(Y*, ki)j, 
i=1 I . .m 

which ensures that y* :A 0 and the proof is complete. 0 

As a consequence of Theorem 4.3 we immediately have the following result 
concerning the openness of multivalued mappings. 

Corollary 4.4. Let F be as in Theorem 4.3. Then, under the assumptions of this 
theorem, the multivalued mapping F is open at a linear rate at (xo, yo); that 
is, there are neighbourhoods V and W of xO and yo, respectively, and two real 
numbers s > 0 and b > 0 such that 

y+tBy c F(x+ tbBx) 

for all (x, y) E V x W n GrF and t E]O, s[. 
Proof. By Theorem 4.3 there exist a > 0 and r > 0 such that 

d(x, F-1(y')) < ad(y', F(x)) 

for all x E xo + rBx and y' E yo + rBy with d(y', F(x)) < r. So let x E 
xo + rBx, y E (yo + (rl2)By) n F(x), t E]O, r/2[, and y' E y + tBy. Then 
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y' E yo + rBy with d(y', F(x)) < r and so, by (5), there exists x' E F (y') 
such that 

llx - x'll1 < 2ally - y'll1 < 2at 
and hence y' E F(x') c F(x + 2atBx) . 0 

Corollary 4.5. Let F: X t Y be a multivalued mapping whose graph is closed, 
and let C be a closed subset of X containing xo. Suppose that F is uniformly 
compactly epi-Lipschitz and pseudo-Lipschitz at (xo, yo) E GrF. Suppose also 
that for all nonzero y* E Y* 

O ? D*F(xo, yo)(y*) + R+OAd(xo, C). 

Then the multivalued mapping FC: X 2 Y as defined above is metrically 
regular at (xo, yo) . 
Proof. It suffices to show that the regularity condition (RC) of Theorem 4.3 
holds for FC. Indeed, let (0, Y*) E aAd(xo, yo; GrFC). By Lemma 2.3, 
there exists k > 0 such that 

aAd(xo, yo; GrF) c k[OAd(xo, yo; GrF) + OAd(xo, C) x {O}]. 
Therefore 

O E D*F(xo, yo)(y*) + R+OAd(xo, C), 
which implies by assumptions that y* = 0. So Proposition 3.4 and Theorem 
4.3 complete the proof. 0 

5. APPLICATION TO VECTOR OPTIMIZATION PROBLEMS 

In this section, we consider Lagrange multipliers for vector optimization 
problems of the form 

minimize f(x) 
(P) subject to x E C, 

O E F(x) , 

where f: X -- Z is a mapping, Z is a Banach space, F: X t Y is a 
multivalued mapping, and C is a subset of X. 

Let P be a closed convex cone of Z with nonempty interior and such that 
P n (-P) = {O}. 

Recall that a point xo E C n F1 (0) is a weak Pareto local minimum for 
the problem (P) if there exists a neighbourhood V of xo such that for all 
X E V n C n F-1(0) with x h xo 

f (xo) - f (x) int P . 
In the sequel we assume that f is strongly compactly Lipschitzian at xo E 

CfnF-(O) and C is closed. 
We start this section by recalling the following lemma whose proof is given 

in Thibault [40]. 

Lemma 5.1. Assume that xo is a weak Pareto local minimum for the problem 
(P). Then for each element ,b in f(xo) -int P there exists a continuous seminorm 
p on Z which is monotonically increasing on P and such that 

1 = p(f(xo) - b) < p(f(x) - b) 

for all x E C n F -I (0) in some neighbourhood of xo. 
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Before stating our main result of this section, let us establish the following 
lemma which is in the line of Proposition 2.7 in Thibault [411. 

Lemma 5.2. Let F: X t Y be a multivalued mapping which is pseudo-Lipschitz 
at (xo, Yo) E GrF. Then there exists k > 0 such that 

Ad(yo, F(.))(xo) c U {x* E X* (x*, y*) E kAd(xo, yo; GrF)} 
y* EBy 

C U {x* E X* (x*, y*) E kAd(yo; F(xo))}. 
y* EBy 

Proof. Following Rockafellar [37], F is pseudo-Lipschitz at (xo, yo) iff the 
function (x, y) -- d(y, F(x)) is locally Lipschitz at (xO, yo). Let kF be a 
Lipschitz constant of this function at (xo, yo) . Thus (see loffe [17]) 

Ad(YO, F( * ))(xo) = fl limsup[aQ7 dx+L(Yo, F( ))(x) n (kF +e)B7], 
LE (X) Xexo 

where for a function f: X -* R u {+oo}, with f(x) < oc, the set aQ-f(x) is 
given by Q,-f(x) = {x* E X*: (x*, h) < d-f(x, h) + ellhll, Vh E X}. So for 
x* E aAd(yo, F( ))(xo) and L E ST(X) there exist nets xi - xo, xi* x*, 
and ei l 0 (ei < 1) such that 

x7 E a dXi+L(yO, F(*))(xi) n (kF + 1)BI. 

Using Lemma 1 in loffe [15] and Proposition 2.4.3 in Clarke [7] we get for. all 
e E]O, 1[ that the function 

(6) x -* d(yo, F(x))-(x7*, x-xi) + (e + ei)IIx-x II + (2kF + 2)d(x, xi + L) 

attains a local minimum at xi. Choose Yi E F(xi) such that 

(7) IIYo-Yill < d(yo, F(xi)) + e2. 

Using (6) and (7) we obtain 

le2+ IIyo - YII - (xi*, x - xi) + (e + e1)IIx - xiIl + (2kF+ 2)d(x, xi + L) > IIYo - Yi 11 

for all (x, y) E GrF n (xi + riBx) x (Yi + riBy) for some real number ri > 0. 
Set fi(x, y) = IIyo - y 1 - (x7 , x - xi) + (e + i)llx - xiI1 + (2kF+ 2)d(x, xi + L) 
and E = GrF n (xi + riBx) x (yi + riBy). Then 

fi(xi, Yi) < inf fi(x, y) +2. 
(X ,Y)EE 

Applying the Ekeland variational principle [1 1] to f1 on E we have the exis- 
tence of (xe,i, ye, Y) in E satisfying 

(8) lIxe, i -xi 11 + IIYe, i - Yi 1I < 6 

and 

fi(xe,x', Ye,i) <fi'(x, Y) +g(llx,ei -X||l+lly,i -yll), for all (x, y) EE. 

Then, by Proposition 2.4.3 in Clarke [7], (xe,i, y,, Y) is a local minimum of the 
function 

(x, y) -* fi(x, y) + e(tIxe,i - xIj + Ilye, i - yjj) + 3(kF + 1)d(x, y; E). 
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So, by subdifferential calculus rules (see loffe [16-17]) 

(X*, 0) E {0} x By + 3(kF + I)aAd(xE,i, y.,j; 
GrE) 

+ (2e + e1)B* x By + 2(kF + I)aAd(XC,i, Xi + L) x {0} 

because aAd(xe,i, y,,i; GrF) = aAd(xe,i, yE,i; E). By (7) and (8) we have 
XE, i - xo and YE, i -- yo . So the upper semicontinuity of the approximate sub- 
differential and the weak-star compactness of the sets aAd(Xe, i yg, i; Gr F), 
Bx, B*, and aAd(xe, i, xi + L) imply 

(x*, 0) E {0} x B* + 3(kF + I)aAd(xo, yo; GrF) + L' x {0} 

for all L E S(X), where L' = {x* E X* (x*, x) =0, Vx E L}. Thus 

(x*, 0) E n [{0} x B* + 3(kF + I)aAd(xo, yo; GrF) + L1 x {0}] 
LEY9(X) 

= {0} x B* + kaAd(xo, yo; GrF) 

where k = 3(kF + 1). o 

Now we are in a position to state our main result of this section concerning 
Lagrange multipliers of Kuhn-Tucker type for (P). 

Theorem 5.3. Suppose F is pseudo-Lipschitz at (xo, 0) and the multivalued 
mapping 

_ = F(x) ifxEC, 
F +0 otherwise 

is metrically regular at (xo, 0). If xo E C n F-1 (0) is a weak Pareto local 
minimum for (P), there exist k > 0, y* E Y*, and z* E Z*\{0} such that 

(z*, z)>0 forallzEP 

and 
0 E aA(Z o f)(xo) + D*F(xo, 0)(y*) + kaAd(xo , C). 

Proof. First note that CnF-I(0) = (FC)>I(0) . By Proposition 2.4.3 in Clarke 
[7] and Lemma 5.1, xo is a local minimum of the function 

x -*p(f(x) - b) + yd(x, (FC)-I(0)) 

for some b E f(x) - int P and y > 0. Using the metric regularity of FC we 
get that the function 

h(x) = p(f(x) - b) + ay(d(O, F(x)) + d(x, C)) 

attains a local minimum at xo for some a > 0. Then 0 E aAh(xO) and hence, 
by Theorem 2.2 and the subdifferential formula of a sum in loffe [16-17], there 
exists z* E aAP(f(Xo) - b) such that 

0 E aA(Z* o )(xo) + ayaAd(O, F(.))(xo) + ayaAd(xo, C). 

Thus, by Lemma 5.2, there exists y* E Y* satisfying 

0 E OA(Z* 0 f)(xo) + {x* E X: (x*, -y*) E kaAd(xo, 0; GrF)} + kaAd(xo, C) 

for some k > ay. 
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The theorem will therefore be proved if we show that z* # 0 and (z*, z) > 
0, for all z E P. Indeed, since p is convex, we have for all z E Z 

(9) (z*, z - f(xo) + b) < p(z) - p(f(xo) - b). 

On the one hand we have 

(z*, f(xo) - b) > p(f(xo) - b) = 1 

and so z* $4 0. On the other hand, fix z E P. As f(xo) - b E intP there 
exists t > 0 satisfying f(xo) - b - tz E intP. So f(xo) - b - tz E P and 
f(xo) - b E f(xo) - b - tz + P and hence by increasing monotonicity of p over 
P and by (9) we get 

(z*, -tz) < p(f(xo) - b - tz) - p(f(xo) - b) < 0. 

Therefore (z*, z) > 0 and the proof is complete. 0 

By Theorem 5.3 and Corollary 4.5 we have 

Corollary 5.4. Suppose F is pseudo-Lipschitz and uniformly compactly epi- 
Lipschitz at (xo, 0) and xo E C n F-1(0) is a weak Pareto local minimum 
for (P). Suppose also that for all nonzero y* E Y* 

0 0 D*F(xo, 0)(y*) + R+aAd(xo, C). 

Then the conclusion of Theorem 5.3 holds. 

As a consequence we have the following result which concerns the Lagrange 
multipliers of Fritz-John type for (P). 

Theorem 5.5. Suppose F is pseudo-Lipschitz and uniformly compactly epi- 
Lipschitz at (xo, 0) and xo E C n F-1 (0) is a weak Pareto local minimum 
for (P). Then there are k > 0, y* E Y*, and z* E Z* such that 

(z*, y*) A (O, O), (z*, z) > 0, for all z E P 

and 
0 E aA(Z o f)(xo) + D*F(xo, 0)(y*) + kaAd(xo, C). 

Proof. Let FC be as in Theorem 5.3. If FC is metrically regular at (xo, 0), 
then Theorem 5.3 gives us the desired result. If it is not the case, the assumption 
of Corollary 4.5 is not satisfied and so there exists a nonzero y* E Y* such that 

0 E D*F(xo, 0)(y*) + R+aAd(xo, C). 

Thus it suffices to take z* = 0 and the proof is complete. 0 

As a particular case of problem (P) we consider the following Pareto mathe- 
matical programming problem 

minimize f(x) 
(P') subject to x E C, 

g(x) E D 

where g: X -* Y is a strongly compactly Lipschitzian mapping at x0 and D 
is a closed subset of Y which is compactly epi-Lipschitz at g(xo) E D. 
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Corollary 5.6. Suppose xo E C n F- (0) is a weak Pareto local minimum for 
(P'). Then there are k > 0, y* E kaAd(g(xo), D), and z* E Z* such that 

(z*, y*) $4 (O, O), (z*, z) > O for all z E P 
and 

0 E aA(Z o f)(xo) + aA(y* o g)(xo) + kaAd(xo, C). 
Proof. It suffices to observe, via Theorem 2.2, that for F(x) = -g(x) + D 

OAd(O, F(xo)) c U [PAW* o g)(xo) x {Y*11 
Y* EOAd(g(xo), D) 

and Theorem 5.5 completes the proof. o 

Remark. Note that our corollary speaks to the following situations: 
* D is epi-Lipschitz in the sense of Rockafellar [37] and so in particular 

when D is a closed convex cone with nonempty interior, or 
* D = D1 x {O} with D1 compactly epi-Lipschitz and {O} c RD. 

After we completed this work, we received the paper [32] by Mordukhovich 
and Shao which treats characterizations of the metric regularity of multivalued 
mappings between Banach spaces. admitting equivalent Frechet differentiable 
norms. 
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