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1 Introduction

Motivated by the strong connection in convex analysis between functions and
their Moreau envelopes, Poliquin and Rockafellar [25] introduced and studied
the concept of prox-regular functions in finite dimension. They proved that
this class includes those of lower semicontinuous proper convex functions, lower
C2-functions, primal lower-nice functions and strongly amenable functions. The
last ones are composition of lower semicontinuous proper convex functions with
C2%-functions. A number of equivalent characterizations of prox-regular functions
are obtained in their papers [25] and [27]. Among these characterizations, one
can cite the subdifferential characterization, along the line of the well-known one



in convex analysis which states that a lower-semicontinuous function is convex
iff its subdifferential is monotone (see Poliquin [24] for the finite dimensional
situation and Correa, Jofré and Thibault [7] for the setting of Banach spaces).
In Hilbert context, Bernard and Thibault [3] have given a subdifferential char-
acterization of prox-regular functions. Generalization to the Banach setting is
explored by the same authors in [2] (see also [4]).

The aim of the present work is to study a new concept of weak regularity
related to the notion of prox-regularity by Poliquin and Rockafellar. Our major
motivation to introduce this notion was calmness of systems of the form

zeC, f(x)<0

where C'is a closed set in Asplund space and f is a lower semicontinuous function
(see [15]). Conditions for calmness was based on boundaries of subdifferentials
and normal cones than of the full objects (see also Henrion and Outrata [12]
and Henrion, Jourani and Outrata [11] for the nonconvex finite dimensional case
and Henrion and Jourani [10] for the convex infinite dimensional context).
The importance of the class introduced in this paper is readily appreciated
from the fact that it includes not only the classes cited above, but also the class
of regular functions, p-convex functions [8], submonotone functions and classes
introduced here, as that of weakly submonotone functions (whose subdifferential
is weakly submonotone).

The plan of the present article is as follows: Sections 2 and 3 contain nota-
tions and the requisite background in nonsmooth analysis. Section 4 deals with
the definition of weak regularity and two of its characterizations. The first
one is functional as for the second is given in terms of the Mordukhovich reg-
ularity. Sections 5 and 6 contains, respectively, an extension of the notion of
pseudo-convexity, and a notion of paraconvexity which are sufficient for the
weak regularity. Section 7 treats the relation between a new definition of weak
submonotonicity and the weak regularity. The concept of weak submonotonic-
ity includes the notion of submonotonicity introdued by Spingarn [33] as well
as the notion of local monotonicity by Colombo and Goncharov [9]. A number
of equivalent characterizations of the weak regularity are given in terms of the
weak submonotonicity. In section 8, we extend the definition of amenability by
Poliquin and Rockafellar from finite dimension to the infinite one and we show
that this definition implies once more weak regularity. Finally, we give in the
last section characterization of the weak regularity of epi-Lipschitzian sets in
terms of their local representations.

2 Notations

Throughout the paper X will be an Asplund space and X* its topological dual
equipped with the weak-star topology w*. We will denote by B(z,r) the closed
ball centred at = and of radius r and by d(-,.S) the distance function to a subset
S of X
d(z,S) = inf ||z — u].
u€eSs



We will write ximco and 73z to express * — xo with f(z) — f(xo) and
xr — xo with z € S, respectively and we will denote by GrF the graph of a
multivalued mapping F : X — Y| i. e,

GrF ={(z,y): ye€ F(x)}.
The indicator function of a set C' C X is the function ¢ defined by

0 ifxeC
vo(z) = { 400 otherwise.

If not specified the norm in the product of two Banach spaces is defined by
1(a, )]l = llall + o]l

3 Tools from nonsmooth analysis

This section contains some background material on nonsmooth analysis and
preliminary results which will be used later. We give only concise definitions
and results that will be needed in the paper. For more detailed information on
the subject our references are Mordukhovich [16, 17, 18] and Mordukhovich and
Shao [19]. Note that in finite dimension, the limiting Fréchet subdifferential in
the following definition coincides with the limiting proximal subdifferential as
in [6] and the approximate subdifferential as in [13].

Let f : X — RU{+4o00} be als.c. function and zy € X be such that f(zq) < oo.
The Fréchet subdifferential is the set

fle+h) = flz) = {a", h)

Opf(z) ={z" € E : liminf > 0}.
h—0 Al
The limiting Fréchet subdifferential of f at xq is the set
Of(zo) = {2 € E: 3z, — xo, f(zr) — f(xo) and x}, — 2™ with =} € Op f(xg)}.

or equivalently
Of(xg) = w* — seq — limsup O f ()
s
T>T0

where w* — seq — lim sup denotes the weak-star sequential limit superior.
The singular limiting Fréchet subdifferential of f at x( is the set

0% f(xo) = w* — seq — limsup AJp f ().

A—0t

The Fréchet and the limiting Fréchet normal cones to C' at zg € C' are given by

Nr(C,20) = Ortpc(20) and N(C,xo) = dbc (o).



The Clarke’s normal cone N.(C,zg) to C at zg € C is given, in terms of the
limiting Fréchet normal cone N(C, ), by

N.(C,x0) = coN(C, x0).

A function f is said to be Mordukhovich regular at xq if the Fréchet subdiffer-
ential and the limiting Fréchet subdifferential coincide at xy. In other words

df (o) = O f (o).

In the case where f is locally Lipschitzian at zq, it is easy to show that Mor-
dukhovich regularity implies Clarke’s regularity. This is due to the fact that,
for these functions, the Clarke subdifferential 0. f(zo) ([5]) coincides with the
weak-star closure of the convex hull of the set 0f(zo).

More generally, for any lower semicontinuous function f : X — R U {400} we
have

O f (o) = col0f (xo) + 0™ f(z0)]. (1)

In finite dimension, both concept of regularity are identical for locally Lips-
chitzian functions.

Following Mordukhovich and Shao [20] (see also [21]), a set C is said to be
normally sequentially compact at x if for each sequences () and (z7}) satisfying

Tk < xo, and for all k, 2} € Np(C,z)) we have
ai Y0 < |zt — .

Let C C X, with 2g € C. The contingent cone T(C,xg) to C at z( is the set
given by the following Kuratowski limit :

C—l‘o

T(C,xy) = limsup
t—0+

The negative polar of a closed cone K C X is defined by

KY={2"€ X*: (z*,h) <0,Vh € K}.

4 Weak regularity: Definition and characteriza-
tions

In this section, we define and characterize the classes of weak regular functions
and sets in terms of their limiting Fréchet subdifferential and normal cone. To
do this, we consider the set
t
F={e:R—R;i: ¢0)=0, limm:O}.

t—0 t



Definition 4.1 1) f is said to be weakly reqular (WR) at xqy relative to x* €
Of (xo) if there exist a function ¢ € F and € > 0 such that

f(@) = fwo) + ¢(llz = 2oll) = (v, 2 — x0)

whenever ||z — xg|| < € and ||y* — z*|| < € with y* € 0f(xg).

f is said to be WR at xq if it is WR at xo relative to each x* € df(xg).

2) C is WR at xq relative to z* € N(C,x¢) if its indicator function is WR at
xo relative to x* € N(C,x).

Example 1 Consider the function f : IR — IR defined by
z ifzx>0
ra={ " e

10 otherwise
Then f is WR at 0 relative to 0.

Our definition was inspired by the concept of ”prox-regular” functions intro-
duced by Poliquin and Rockafellar. A function f : IR™ — IR is said to be
prox-regular at z relative to z* € 0f(xo) if there exist 7 > 0 and ¢ > 0 such
that

r
f@) = f@) + glle = 2| = (v, 2 = )
whenever ||z — ol <€, [|2 — x| < € and ||y* — 2*|| < e with y* € df(2’).

As we can see that prox-regularity implies weak regularity (the last example
shows that the opposite implication is not true). It is also obvious that if f is
convex, it is prox-regular at zg. The same is true for lower C? functions and
strongly amenable functions; cf. [25]. As an example of strongly amenable
functions is the maximum of a finite number of C'-functions (see Section 8 for
an infinite dimensional definition of this concept) .

Before characterizing the WR, property, we give the following result concerning
the sum of two WR, functions.

Proposition 4.1 Let f,g: X — IRU{+00} be lower semicontinuous functions.
Suppose that

i) either epif is normally sequentially compact at (xo, f(xo)) or epig is normally
sequentially compact at (xq, g(zo));

i) 9% f(xo) N [=0>g(xo)] = {0};

iit) f and g are WR at xg.

Then the function f + g is WR at xg.

When f and g are indicator functions, we obtain :

Corollary 4.1 Let C and D be closed sets in X and let xg € C' N D. Suppose
that

i) C' or D is normally sequentially compact at xo;

i1) N(C,x0) N [-N(D,z0)] = {0};

iii) C and D are WR at xy.

Then the set C N D is WR at xg.



The definition of the WR property can be characterized as follows :

Theorem 4.1 Let x* € 0f(xo). Then the following assertions are equivalent:
i) f is WR at xq relative to x*;
i1) there exists s > 0 such that

Vo<e<s, 36>0; (y,xz—x) < flx)— flxo)+ellx— ol
whenever ||z — zo|| < 6 and |ly* — x*|| < s with y* € 9f(x).

Proof. i) = ii). Since f is WR at x¢ relative to z*, there exist ¢ € F and
s > 0 such that

f(@) = f(wo) + ¢(llz — 2oll) = (v, 2 — 20)
whenever ||z — x| < s and ||y* —z*| < s with y* € f(z). As ¢ € F, we have
Ve €]0,s[, 30 > 0; (t) <te Vtel0,d].
So that
Vo<e<s, 36>0; (y,z—x0) < flx)— f(zo) +¢llz — ol

whenever ||z — zg|| < ¢ and ||y* — z*|| < s with y* € df (o).

i) = 1). The proof of this implication was inspired by the proof of [[33],
Theorem 3.9] (see also [[33], Proposition 3.8] and [[1], Lemma 4.4]). Assertion
i) allows us to construct a function g : X x X* — IR U {400} defined by

f@)=f(®o) —(y™,z—x0) :
g(z,y") = o=aol o7 oo
0 otherwise

Consider the function g1 : R4 — R U {—o0} defined by

0 ift=0
n(t) = { inf{g(z,y*) : * € B(zo,t), y* € B(z*,s) NIdf(xo)} otherwise.
Assertion %) ensures that
Ve > 0,36 > 0; g1(t) > —eVt € [0,4].
Consider the function g : R4 — IR defined by
g2(t) = max(—g1(t),0).

Then ¢2(0) = 0 and g9 is continuous at 0. Now we may define our function
p: R — R4 by
o(t) = [t]ga2([t])-



We easily see that ¢ € F. Finally, let € B(xg,0), with  # z(, and set
t = ||l — xo||. Then

o@.y") 2 (1) 2 —galt) = -2 = _whlw — o)
T — X

whenever y* € B(z*,s) N df(xg). This asserts that f is WR at x relative to

*

xT.

&

As a consequence, we obtain the following corollary.

Corollary 4.2 Let 2* € N(C,xzg). Then the following assertions are equiva-
lent:

i) C is WR at xg relative to x*;

i1) there exists s > 0 such that

Vo<e<s, 36>0; (y',x—xzo) <ellx—xo
whenever x € C, ||x — xo|| <6 and ||y* — 2*|| < s with y* € N(C,xg).

Next, we state a characterization of the WR property of functions in terms of
the Mordukhovich regularity in finite dimension.

Theorem 4.2 Let X be a finite dimensional space and f : X — IR U {400} be
a lower semicontinuous function. Then the following assertions are equivalent:
i) f is Mordukhovich regular at xg;

ii) f is WR at zy.

Proof. i) = 14): It is obvious.
i) = 1i1): Let 2* € 0f(z¢). We claim that

Ve > 0,36 > 0; f(z) — flxo) > (U, 2 — x0) — g||z — 0| (2)

whenever x € B(xzg, ) and u* € df(xo) N B(z*,1). Suppose that (2) does not
hold. Then there are € > 0, and sequences z,, — o and z; € df(xo) N B(z*,1)
such that

f(mn)*f(mO) < <$;,l‘n7$0>*EHLEnf:L'()”,VnZ L. (3)
Consider the vector d, = 2=1%r and the scalar ¢, = [|an — @o||. Extracting
subsequence if necessary, we may assume that d,, — d, with ||d|] = 1 and

xf — u*, with u* € f(x¢). Then it follows from relation (3) that

lim inf I (@0 + tndn) — f(0)

n— oo tn

<(u*,d) —e. (4)

The Mordukhovich regularity of f at xzo implies that

lim inf F(@o + tndn) — f(z0)

n— oo tn

> (u”, d)



which, together with (4), leads to the contradiction 0 < —e. To conclude the
proof, it suffices now to apply Theorem 4.1.

¢

As a corollory, we obtain the following characterization of WR sets.

Corollary 4.3 Let X be a finite dimensional space and C C X a closed set
containing xo. Then the following assertions are equivalent:

i) C is Mordukhovich regular at xq;

ii) C is WR at zy.

This corollary is restricted to the finite dimensional spaces. Indeed, as the
following example shows, the implication ¢) = i) does not hold in infinite
dimensional spaces.

Example 2 This example was inspired by Counter-ezample 3.1 in [34] and
Ezample 7.1 in [9]. Let X be a separable Hilbert space, with orthonormal basis
written as {eo,el, “entet

Forn=1,2,--

€n €n > 1 €m
Ap=TU{T+ gl[a, +oo[{=2* + eo}}

and

C=1R,eoU[| An]

n=1

Then C is closed and
Np(C,0) = N(C,0) = (IR e0)? and — eq € intN(C,0).

So that C is Mordukhovich reqular at 0 but not WR at 0. Indeed, suppose that
C is WR at 0. By Corollary 4.2, there exists s > 0 such that

YOo<e<s, 306>0; (z%z) <e|z| (5)
whenever © € C, ||z|]| < § and ||z* + eo|| < s with * € N(C,0). As —eg €
intN(C,0), we may assume that B(—ep,s) C N(C,0). Combining the last in-
clusion and relation (5), we obtain

—(eo,z) < (e — 9)||z||, Y= € B(0,6) N C.

In particular for n large enough we obtain
en en
< (e — —
~{e0, ) < (= 5) 12

and hence 0 < € — s and this is a contradiction. So that C is not WR at 0.



5 Weak regularity from near pseudo-convexity

Another interesting particular case of the weak regularity is pseudo-convexity.
A closed set C' is pseudo-convex at some point g € C' if

C —xo C 0T (C, xp).

We mention here that this definition is not the original one. This later was given
without the convex hull.
As we are interested in a local analysis, we may extend this definition as follows:

Definition 5.1 1) A set C is nearly pseudo-convex (for short NPS) at xq if the
following holds

Ve >0, 36 > 0; d(z — g, 0T (C,x0)) < g|lz — x|, Vo € CN B(xg,d).  (6)
2) A function f : X — IR U {400} is said to be nearly pseudo-convex (for short
NPS) at xq is its epigraph (epif) is NPS at (xo, f(z0))-

Proposition 5.1 i) If C is closed and pseudo-convez at g, then

(x*,x —mo) <0, VxeCl, V' e Np(C, ).

it) If f is lower semicontinuous and pseudo-convexr at xg, then for all x* €
Or f(xo) we have

(", —xg) < f(x) — f(mo) VzeX.

Proposition 5.2 ) If the set C is NPC and Mordukhovich regular at xq, then
it 1s weakly reqular at xq.

i) If the function [ is NPC and Mordukhovich regular at xo and upper-Lipschitz
at xo, that is,

K >0, 60 > 0; [f(2) = f(wo)| < Kz — zol| V2 € B(zo, )
then it is weakly reqular at xg.
Proof. i) Since C is NPC at xg and Np(C,z¢) C T°(C, ), we easily obtain
Ve > 0,36 > 0; (2", — x0) < ella™||||lx — x|, Vo € C N B(xg,0),2" € Np(C,x0)

and the Mordukhovich regularity, together with Corollary 4.2, completes the
proof of 7).

ii) Since f is NPC at zg and 9 f(xo) C {z* : (z*,—1) € T°(epif, (w0, f(x0)))}
we have for all € > 0 there exists § > 0 such that

(2% & — o) < f(2) = flwo) + (2| + V)([J& = ol + [f(2) = f(z0)])
whenever x € B(zg,0) and z* € dp f(zo). Set 61 = min(dp,d). Now, since f is
upper-Lipschitz at xg, we have

(a2~ 20) < £(2) ~ Flwo) + (2" + DK + Dllz o]

whenever © € B(zg,61) and z* € Ipf(zp). Once more, the Mordukhovich
regularity and Theorem 4.1 complete the proof of 7).

¢



6 Weak regularity from paraconvexity

Another class of functions which are WR is the class of paraconvex functions
introduced by Rolewicz [31] and studied in [14] and [32]. Let ¢ € F. We recall
that a function f : X — IR is yp-paraconvex if

[z + (1 =t)y) <tf(x) + 1 =) f(y) + (1 = )e(llz —yl)

whenever ¢ €]0,1[ and z,y € X.
For special functions ¢ € F, it is shown in [14] and [32] that

f is p-paraconvex <= J.f is p-monotone.
As we are interested in a local study, we may introduce the following definition.

Definition 6.1 Let ¢ € F. We say that f is @-paraconver at vo € domf if
there exists 0 > 0 such that

flzo +t(x — x0)) < tf(x) + (1 — 1) f(zo) + t(1 — t)ep(|lx — wol])
whenever t €]0,1[ and x € B(xg, ).
Example 3 Consider the function f : IR — IR defined by
f(:r){ —/—z ifz<0

x? otherwise

Then f is w-paraconvez at 0, with p = 0.

Proposition 6.1 Let ¢ € F. If f is p-paraconvexr and Mordukhovich regular
at xg, then it is WR at xg.

Proof. Since f is ¢p-paraconvex at xg, there exists § > 0 such that

i g £ (&0 + 1@ — 20)) — f(z0)
t—0+ t

< f(x) = fwo) + (| — zoll)
whenever x € B(xg,0). We easily show that

2" € Op f(x0) = (2", — x0) < limin flwo + iz _fO)) — f(o)
t—0+

whenever x € B(xg,d). Hence, each 2* € Op f(x() satisfies
(5 — 20} < () — F(zo) + ollz — woll), V€ B(ro,6).
¢

Remark 1 Ezample 1 shows that f is Mordukhovich regular at 0, because
Orf(0) = 0f(0) = [0,+o0[, and hence WR at 0. But f is not p-paraconvexr
at 0.

10



Remark 2 If we examine the proof of this proposition, we may see that the
condition

J(wo +t(x —x0)) — f(0)
t

35 > 0; litm(i)rlf < f(z) = f(zo) + o(lz —0l) (7)
whenever © € B(xg,d), together with the Mordukhovich regularity of f at xo,
implies the WR property of f at xg.

Remark 3 The class of e-convex functions, introduced and studied in Ngas,
Luc and Théra [22, 23], satisfies the WR property.

7 Weak regularity from weak submonotonicity

The notion of submonotonicity (called semi-submonotonicity in [1] ) has been
introduced and characterized by Spingarn in finite dimensional spaces (see also
[1] for infinite dimensional extensions).

A set-valued mapping T : X — X* is called submonotone at xg, if for every
€ > 0, there exists 0 > 0, such that, for all z € B(xg,0) NdomT, all z* € T(z),
and all zf € T'(zo) one has

(" — x5, — x0) > —¢|lz — 0] (8)

For our purpose, we do not need to consider this concept. We consider an other
one, weaker than the previous, which implies the WR property. A set-valued
mapping T : X +— X* is called weakly submonotone at o € domT, if for all
sequence &, — Xg, L 7 xg for alln > 1, and all bounded sequences % € T(z,,),
and all v} € T'(zo) one has

. . In — X0
lim inf (27 — uf, —2 0
lim inf (z;, =, 2 — o]l

) > 0. (9)

It is easy to see that when T is uniformly bounded in some neighbourhood of
xg, then the concepts of submonotonicity and weak submonotonicity of T at xq
are equivalent.

The following example shows that the condition of boundedness is essential to
obtain the equivalence.

Example 4 Consider the set C C IR? defined by
C={(z,y) € R*: >0, Vo <y <2/x}.

Then the set-valued mapping x — N(C, ) is weakly submonotone at 0, but not

submonotone at 0. Consider the sequence u, := (#, %) Then u,, € C and

N(C,up) =1IR41(n,—2) and N(C,0) = IR x IR_.

Moreover 1

=)=

((n,—2) — (n,0), ”27:”> = 201+

which violates the submonotonicity.

11



We have to mention that a different notion, called local monotonicity, had been
previously introduced by Colombo and Goncharov [9] in Hilbert spaces. We shall
adopt the same definition in Banach spaces. A set-valued mapping 7' : X — X*
is called locally monotone at xzy € domT, if for all sequences x,, — x¢ and
Up, — X0 , Ty, 7 Up, and all bounded sequences z}, € T'(z,), and all u}, € T'(uy,)
one has

* Tp — Up

) > 0. (10)

liminf(z* — o, —n—Yn_
lim inf(z;, —uy,, [ — wn|

Local submonotonicity clearly implies weak submonotonicity. The following
example in Spingarn [33] shows that the converse is false.

Example 5 Consider the function f : IR? — IR defined by

|yl ifz <0
flayy) =4 lyl—2* ife=0 |yl >
T ifa >0,y < 2

It is shown in [33] that f is locally Lipschitz and that x — O.f(x) is submonotone

at 0. Consider the sequences z, = (£, %), y, = (£,23), 23 = (2,-1) and

yh = (2,1). Then z}, € Ocf () and y}, € O.f(yn). Moreover

<xn - ynvx;ky, B y;f) _ _27 Vn
[#n — yll

50 x +— O.f(x) is not locally submonotone at 0.

Due to the relation (1), we have the following result.

Proposition 7.1 Let f: X — IR U {400} be a lower semicontinuous function
which is finite at xo. Then the following assertions are equivalent:

i) the set-valued mapping x +— O.f(x) is submonotone at xo;

i1) the set-valued mappings © — Of(x) and x — 0 f(x) are submonotone at
Zo-

Since for a locally Lipschitzian function f at xzq,
0™ f(x) = {0}, for x near xg

and in some neighbourhood of zy the concepts of submonotonicity and weak
submonotonicity are equivalent, we obtain the following corollary as a conse-
quence of the last proposition.

Corollary 7.1 Let f : X — IRU{+o00} be a function which is locally Lipschitz
at xo. Then the following assertions are equivalent:

i) the set-valued mapping x +— O, f(x) is weakly submonotone at xy;

i) the set-valued mapping x — Of(x) is weakly submonotone at x.

12



In the following result, we prove that weak submonotonicity implies WR, prop-
erty.

Theorem 7.1 Let f : X — IR U {+oo} be a lower semicontinuous function
which is locally Lipschitz at xg. Suppose that the operator x — Of(x) is weakly
submonotone at xy. Then

Ve > 0,36 >0; f(x) — flxo) = (27,2 — wo) — eljx — o (11)
whenever x € B(zg,0) and x* € 0f(xo). Moreover f is WR at xo.
Proof. We claim that

Ve > 0,36 >0; f(x) = f(xo) = (27, — wo) — eljx — o (12)

whenever x € B(xg,d) and z* € 0f(x¢). Suppose that (12) does not hold. Then
there are € > 0, and sequences x,, — zo and z}, € Jf(zo) such that

f(zn) — f(mo) < {x), xn — ) — €l|lzn — xo|, VR > 1. (13)

Since f is locally Lipschitz at xy, the Mean Value Theorem produces t,, €]0, 1]
and y} € 0.f(zo + tn(xn — x0)) such that

f(an) = f(o) = (yp, 20 — T0)- (14)
Put y, = 2o + tn(x, — o). Using relations (13) and (14), we get
(YnsYn — o) < (@0, Yn — o) — €llyn — Zol|
and hence
{Yn = 20 Yn — o) < —€llyn — o

and this contradicts the weak submonotonicity assumption. To complete the
proof, it suffices to apply Theorem 4.1.

¢
The following example, inspired by [33], shows that the subdifferential of WR
functions is not necessary weakly submonotone.

Example 6 Forn > 2, we set

_ n(n+1) — (2 an—2
an = 57 and ¢, = ( n—1)[n(n+1)] .

Consider the function f : IR — IR defined by

flz) = Cn(‘x|_r+1)a"+ (nf1)2 ZfT—',—l <lz| < E,VTLZQ
0 ifx=0.

Then f is locally Lipschitz and |z|—2? < f(x) < |x|, for all z. Hence Op f(0) =
[-1,1] = 0f(0) and relation (11) holds at xg = 0. However the set-valued
mapping x — Of(x) is not weakly submonotone at 0.

13



A straightforward sufficient condition for WR property of sets is the following.

Theorem 7.2 Let C' C X be a closed set containing xg. Consider the following
assertions :

i) x — N(C,x) is weakly submonotone at xg;

i1) the following condition holds: for all sequence x, — g, n, € C and x, # xg
for allm > 1, and all bounded sequence x}, € N(C, )

Ty — 0

) <05 (15)

hm su 1»'* —_—
S o~ ol

1) C is WR at xo.
Then i) = ii) = 4i1). Furthermore in finite dimensional spaces ii) <= iii).
Proof. i) = i) : This implication is obvious.
1) = iii) : Let * € N(C, xzp). We claim that
Ve >0, 30 > 0; (y*, 2 — wo) < ellx — xo| (16)

whenever x € B(xo,d)NC and y* € N(C,zo)NB(z*,1). Suppose that (16) does

not hold. Then there are ¢ > 0, and sequences z, %z and xk € N(C,zg) N
B(x*,1) such that

(), n, — x0) > €||lTn, — x0]|, YN > 1. (17)
This shows that
. Tn — To
limsup{z), ———) > ¢
L PRk

and contradicts (15).
Now, suppose that X is of finite dimension. We prove that iii) = ii). Suppose

the contrary. Then there are sequence xngxo and a bounded sequence ), €
N(C,z) such that

Ty — o

lim sup(u;,, ) > 0. (18)

n—+o0 lZn — zol|

Extracting subsequences if necessary, we may assume that v} — «* in norm,
because X is of finite dimension, with u* € N(C, z¢) and

. Tn — X0 . Tn — T
limsup(u*, —————-) = lim (u}, ———).
n—»+oo< " — 500||> W0 [[#n — 2ol
So that there exist € > 0 and ng > 1 such that
(ur, xn — xo) > €|z — x0l|, YN > ng.

Since C' is WR at zq relative to v* and u) — u* in norm, there exists ny > ng
such that .
<U,Z,$n - $0> S g”xn - .130”7 vn Z ny.

14



Combining the last two relations we get a contradiction.

The implication i) = ) does not hold even in finite dimension.

Example 7 ([9]) Consider the decreasing sequences

1 2 1 1
an = —3 = 1 b":ﬁ_ﬁ’ n > 2.
Observe that b,11 < a, for all n. Taking into account that all the segments
[an,by] are disjoint, we define a C? function 1 :]0, +o00[— IRT such that 1 (z) =
L for @ € lan,by] and Vz < ¢(z) < 2/ for all x > 0. Clearly, ¢ can be
continuously extended to IR by setting 1(0) = 0. Consider the set C C IR?
given by
C={(z,y) € IR?: x>0, ¢(z) <y <2V}

Then C is WR at (0,0). However the set-valued mapping is not weakly sub-
monotone at (0,0). Indeed, let ¢, €layn,by[ and z,, = (cn, ). Then (0,-1) €
N(C,zy,) and

Tn =0 ) — —1.

(0= =0 =0

As a consequence, we obtain the following characterization.

Corollary 7.2 Let C C X be a closed set containing xog. Then the following
assertions are equivalent:

i) x — N(C,x) is weakly submonotone at xg;

i1) x — N.(C,x) is weakly submonotone at xg.

Proof. ii) = 4): It is due to the inclusion N(C,z) C N.(C,x), for all z € C..
i) = i1): Suppose that i) holds. Then, Theorem 7.2 implies that C' is WR at
xg, and hence it is Mordukhovich regular at xy and the result follows.

¢

8 Weak regularity from amenability

To give an other example of WR functions, we extend the concept of amenability,
introduced in Poliquin and Rockafellar [26], from finite dimensional spaces to
the (Asplund) Banach spaces.

Definition 8.1 A function f : X — IRU{+o0} is amenable at xo, with f(zo) <
00, if it has the representation f = go F in a neighborhood of xo for a mapping
F : X — Y which is strictly differentiable at xg, an Asplund space Y and a
proper lower semicontinuous convex function g : Y +— IR U {+oo} satisfying at
xo with respect to the convex set D := domg the basic constraint qualification
that

y* € N(D,Flxo)), V'Flag)y” =0=y" =0 (19)

15



and the topological property that
epig is normally sequentially compact at (F(xo), g(F(x0))) (20)

Remark 4 Note that, since g is convex the constraint qualification (19) is
equivalent to the following one

y* € 9%g(F(x0)), V'F(zo)y"=0= y" =0 (21)
Theorem 8.1 FEvery amenable function is weakly reqular.
The proof of this theorem is based on the following lemma.

Lemma 8.1 Let f be an amenable function at xy and has the form f =go F,
where g and F satisfy relations (19) and (20). Then

i)of(ze)= |J  V'Flzo)y’

y*€9g(F(x0))

i1) for each x* € 0f(x¢), there exists r > 0 such that
0f (x0) N B(z*,1) € V" F(x0)[09(F (o)) N B(0, 7).

Proof. i) This assertion follows from classical chain rules for the limiting
Fréchet subdifferential (see for example [18]).

i1) Suppose the contrary. Then for each integer n there exist u* € 9f(zg) N
B(z*,1) and y;; € dg(F(x0)), with |ly%|| > n, such that

w =V F(20)y;. (22)

Extracting a subsequence if necessary, we may assume that the sequence (HZ—"H)
weak-star converges to some y*. Since epig is normally sequentially compact at

(F(z0), g(F(20))) and

Yo —1 .
(7o ) € Nlepig, (F(zo), 9(F(x0)))
gzl sl
it follows that yx # 0 and (y*,0) € N(epig, (F(xo), g(F(x0))). Using relation
(22) and the last inclusion we get

y* € N(D, F(x)), y* # 0and V*F(z9)y* =0

and this contradicts relation (19) and completes the proof of the lemma.

&

Proof of Theorem 8.1. Let f be an amenable function at z¢ and of the form
f = goF, where g and F satisfy relations (19) and (20). Since F is strictly
differentiable at xy, we have

Ve > 0,36 > 0; | F(x) — F(zo) — VF(z)(z — z0)|| < ellz — xo|
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whenever = € B(xg,d). Let z* € df(xg). We will show that f is WR at z
relative to *. By Lemma 8.1, there exists r > 0 such that

9f (o) N B(x*,1) C V" F(20)[0g(F (x0)) N B(0,7)].

Pick u* € 9f(xo) N B(z*,1). Then there exists y* € dg(F(xo)) N B(0,r) such
that u* = V*F(z0)y*. As g is convex, it follows that

9(F(x)) = g(F(x0)) = (y*, F(z) — F(x0)), Ve X.
Thus for all x € B(xo, J)

f(@) = flzo) = (y* F(x) — F(zo) — VF(x0)(x — x0)) + (y*, VF(x0)(x — 0))
—||y|’I||HF(x?| - fz(%) - Vl;(xo)(f —x0)|| + (V*F(x0)y*, ® — o)
—rellx — xo|| + (u*, x — g

IV IV |

and hence
Ve > 0,36 > 0; f(z) — fzo) > —¢llz — 2ol + (v, 2 — 20)

whenever x € B(zg, ) and u* € df(z¢) N B(z*,1). So Theorem 4.1 shows that
fis WR at z.

¢
If we examine the proof of Theorem 8.1, we observe that this theorem may be
stated in a more general situation.

Theorem 8.2 Let f: X — IRU{+o0} be a function of the form f = goF in a
neighborhood of xy for a mapping F : X — Y which is strictly differentiable at
xg € Domf, an Asplund space Y and a proper lower semicontinuous function
g : Y — IR U {400} which is WR at F(xo), satisfying at xo the constraint
qualification (21) and the topological property (20). Then f is WR at xg.

9 Weak-regularity of epi-lipschitz sets

In this section, we give characterizations of weak-regularity of epi-lipschitz sets.
First, we recall ([29], [30]) that a set C C X is epi-lipschitz at xq if there exist
a direction d € X and € > 0 such that

C N B(xg,e) +tB(d,e) C C Vt €]0,¢].

Rockafellar showed that when xg is in the boundary of C, then C' is epi-lipschitz
at xg iff C' can be represented in a neighbourhood of x( as the epigraph of a
Lipschitz continuous function f or equivalently there an isomorphism A taking
values in X such that

C N B(xg,r) = Alepif) N B(xg, ) (23)

where r is a nonnegative real number.
The function f is called a locally Lipschitz representation of C' at x.

Now, we characterize the weak-regularity of epi-lipschitz sets.
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Theorem 9.1 Let C' C X be an epi-lipschitz set at xo belonging to the boundary
of C. Then the following assertions are equivalent :

i) C 1is weakly reqular at xo with respect to each z* € N(C, o) \ {0};

i1) every locally representation f of C at xg is weakly regular at (ug, f(ug)),
where A(uog, f(ug)) = zo;

i) there exists a locally representation [ of C at xo which is weakly reqular at
(uo, f(up)), where A(ug, f(ug)) = 0.

The proof of the theorem is easily obtained from the following lemma.

Lemma 9.1 Let U be a Banach space and f : U — IR be a locally lipschitzian
function at ug. Then the following assertions are equivalent :

i) f is weakly regular at ug;

i1) epif is weakly regular at (ug, f(ug)) with respect to each z* € N (epif, (uo, f(up)))\

{0}.

Proof of the lemma. ii) = 4): It is obvious.

i) = 1i1): Let (ul, —Ao) € N(epif, (uo, f(up)))\{0}. Since f is locally Lipschiz
at ug, then Ao > 0 and hence K—g € 9f(up). Now the weak regularity of f at wug
implies that there exists 0 < s < Ag such that

Vo<e<s, 36>0; (uu—ug) < f(u)— fluog)+ellu—uoll

whenever |lu — ug|| < ¢ and |Ju* — K—EH < s with u* € 9f (ugp).
Choose s’ > 0 such that

s’ s+ f|lud
¢ Jusl

" max "

Let (z,a) € epif N B((uo, f(0)),6) and (u*,=A) € N(epif, (uo, f(uo))) N
B((u§, —Xo),s"). Then “—; € 0f(uop) ﬂB(i—g,s) and hence

) <s.

(U™, u = up) = Ma = f(uo)) < eflu = uoll,

which ensures that epif is weakly regular at (uq, f(ug)) with respect to (ug, —Xo).

&
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