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Abstract. Let X be a vector space and let ϕ : X → R ∪ {−∞,+∞} be an

extended real-valued function. For every function f : X → R ∪ {−∞,+∞},
let us define the ϕ-envelope of f by

fϕ(x) = sup
y∈X

ϕ(x− y)−p f(y),

where −p denotes the lower subtraction in R ∪ {−∞,+∞}. The main purpose

of this paper is to study in great details the properties of the important gen-

eralized conjugation map f 7→ fϕ. When the function ϕ is closed and convex,

ϕ-envelopes can be expressed as Legendre-Fenchel conjugates. By particular-
izing with ϕ = 1

pλ
‖ · ‖p, for λ > 0 and p ≥ 1, this allows us to derive new

expressions of the Klee envelopes with index λ and power p. Links between

ϕ-envelopes and Legendre-Fenchel conjugates are also explored when −ϕ is
closed and convex. The case of Moreau envelopes is examined as a particular

case.

Besides the ϕ-envelopes of functions, a parallel notion of envelope is introduced
for subsets of X. Given subsets Λ, C ⊂ X, we define the Λ-envelope of C as

CΛ =
⋂
x∈C(x + Λ). Connections between the transform C 7→ CΛ and the

aforestated ϕ-conjugation are investigated.

1. Introduction

Given two topological vector spaces X,Y and a function c : X × Y → R ∪
{−∞,+∞}, extending the Legendre-Fenchel conjugacy, Moreau [20, Chapter 14,
Section 3] defined, for any function g : Y → R ∪ {−∞,+∞} its c-conjugacy as the
function gc : X → R ∪ {−∞,+∞}

gc(x) := sup
y∈Y

(
c(x, y)−p g(y)

)
for all x ∈ X;

see Section 2 for the (extended) lower subtraction −p . We refer to [4, 6, 7, 9, 17,

20, 27, 35] and the references therein, for various duality results in such a context
and for several applications. Given a function ϕ : X → R ∪ {−∞,+∞} we will
focus on the case c(x, y) := ϕ(x− y) and Y = X. Otherwise stated, for a function
f : X → R ∪ {−∞,+∞} we will be interested in the function fϕ, that we call the
ϕ-envelope of f , defined by

fϕ(x) := sup
y∈X

(
ϕ(x− y)−p f(y)

)
for all x ∈ X.

Our first aim in this paper is to study in great details the structure of the transform
f 7→ fϕ and provide various properties of ϕ-envelopes.
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On the other hand, considering the class BX of closed balls of a Banach space X,
Mazur [19] studied some Banach spaces X for which every closed bounded convex
subset is the intersection of some subclass of BX ; we refer to [10] for a rich survey
on the subject. Any such Banach space is actually called in the literature a Banach
space with the Mazur intersection property. In his 1983 paper [34] Vial defined
strongly convex sets of a normed space as convex sets which are intersections of
closed balls with a common radius; sets which are intersections, for a fixed real
r > 0, of closed balls with radius equal to r are called r-strongly convex sets in [34].
This class of convex sets is thoroughly studied by Polovinkin [24] (see also [25] and
the references therein). Denoting by BX the closed unit ball of X centered at zero,
any r-strongly convex set can be represented in the form⋂

x∈S
(x+ rBX) with some subset S ⊂ X.

So, given a subset Λ of the space X, our second aim in the paper is to analyze
properties of the transform which assigns to each subset C of X the set

CΛ :=
⋂
x∈C

(x+ Λ).

We will also provide the connections between the latter transform and the aforestated
transform related to ϕ-envelopes.

In Section 2 we recall the lower and upper additions (resp. subtractions), and we
also recall various concepts and results in Convex Analysis which will be needed in
the paper. Section 3 offers a large list of general properties of ϕ-envelopes. Section 4
establishes the connections between ϕ-envelopes and the aforementioned transform
C 7→ CΛ; many properties of sets which can be represented in this form are also
provided. In Section 5 we examine the question whether ψ = ϕ(·−a)−α (for some
a ∈ X and α ∈ R) whenever ψ is a ϕ-envelope and ϕ is a ψ-envelope. A counter-
example is constructed and various sufficient conditions are given. The analogous
question is also investigated with sets instead of functions. Section 6 considers
additional properties in the case when the function ϕ is either superadditive or
subadditive. In Section 7, assuming that ϕ is convex and lower semicontinuous,
we provide several links between ϕ-envelope of a function and Legendre-Fenchel
conjugates of other functions related to f . Taking ϕ as a power of the norm, we
also provide various results concerning the Klee envelope κλ,pf (with index λ and
power p) of a function f , where

κλ,pf(x) := sup
y∈X

( 1

pλ
‖x− y‖p − f(y)

)
for all x ∈ X.

Finally in Section 8, assuming that −ϕ is convex and lower semicontinuous, we
continue to explore the links between ϕ-envelopes and Legendre-Fenchel conjugates.
By particularizing with ϕ = − 1

pλ‖ · ‖
p, for λ > 0 and p ≥ 1, we obtain several

properties of Moreau envelopes with index λ and power p.

2. Preliminaries

Following Moreau [20], we extend the usual addition on R to R = [−∞,+∞].

We define the upper addition
p

+ and the lower addition +p as the laws extending the
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usual addition via the following conventions

(−∞)
p

+ (+∞) = (+∞)
p

+ (−∞) = +∞
(−∞) +p (+∞) = (+∞) +p (−∞) = −∞.

This leads to introduce the upper subtraction
p− and the lower subtraction −p ,

respectively defined by

s
p− t = s

p
+ (−t) and s−p t = s+p (−t) for all s, t ∈ R.

Let X be a vector space; all vector spaces will be real vector spaces. Given two
extended real-valued functions f , g : X → R, the (Moreau) inf-convolution (also
called infimal convolution) of f and g is defined as follows: for every x ∈ X,

(f 5 g)(x) = inf
y+z=x

[
f(y)

p
+ g(z)

]
= inf

y∈X

[
f(y)

p
+ g(x− y)

]
= inf

z∈X

[
f(x− z)

p
+ g(z)

]
.

In a symmetric way, the (Moreau) sup-convolution (or supremal convolution) of f
and g is defined by

(f 4 g)(x) = sup
y+z=x

[
f(y) +p g(z)

]
= sup

y∈X

[
f(y) +p g(x− y)

]
= sup

z∈X

[
f(x− z) +p g(z)

]
.

For the function f as above, the set domf = {x ∈ X, f(x) < +∞} is called the
effective domain of f . We call f a proper function if f(x) < +∞ for at least one
x ∈ X, and f(x) > −∞ for all x ∈ X, or in other words, if domf is a nonempty
set on which f is finite. The function which is constantly equal to +∞ (resp. −∞)
on X is denoted by ωX (resp. −ωX).

Now assume that X is a locally convex space; all such spaces in the paper will
be Hausdorff. We will denote by X∗ the topological dual of X. Then, following
again [20] we set

Γ(X) := {f : X → R, f is a pointwise supremum of a family of continuous

affine functions with slopes in X∗}
and

Γ(X∗) := {g : X∗ → R, g is a pointwise supremum of a family of continuous

affine functions with slopes in X}.
We denote by Γ0(X) the set of f ∈ Γ(X) which differ from ωX and −ωX . In the
same way, Γ0(X∗) is the set Γ0(X∗) = Γ(X∗) \ {ωX∗ ,−ωX∗}. The classes Γ0(X)
and Γ0(X∗) are respectively characterized by

Γ0(X) = {f : X → R, f is closed, convex and proper}
= {f : X → R, f is w(X,X∗) closed, convex and proper},
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and

Γ0(X∗) = {g : X∗ → R, g is w(X∗, X) closed, convex and proper},

see for example [1, 8, 20]. Above and in all the paper, w(X,X∗) and w(X∗, X)
stand for the weak topology on X and the weak star topology on X∗ respectively.

With the function f : X → R is associated, in the duality pairing from X to X∗,
its Legendre-Fenchel conjugate f∗ : X∗ → R defined by

∀x∗ ∈ X∗, f∗(x∗) = sup
ξ∈X
{〈x∗, ξ〉 − f(ξ)}.

In the same way, throughout the paper (unless ontherwise stated) the Legendre-
Fenchel conjugate of a function g : X∗ → R defined on the dual space X∗ will be
taken in the duality pairing from X∗ to X, that is, g∗ : X → R is defined on X by

∀x ∈ X, g∗(x) = sup
ξ∗∈X∗

{〈ξ∗, x〉 − g(ξ∗)}.

The Legendre-Fenchel transform f 7→ f∗ (see, for example, [20]) is known to be a
one-to-one mapping from Γ0(X) onto Γ0(X∗). For any f ∈ Γ0(X) one has f = f∗∗

and for any g ∈ Γ0(X∗) one has g = g∗∗, see for example [1, 8, 20].
Given a set C ⊂ X, we denote as usual by δC the indicator function of C, i.e. ,

δC(x) = 0 if x ∈ C and δC(x) = +∞ if x /∈ C. The support function σC : X∗ → R
of C is defined by

∀x∗ ∈ X∗, σC(x∗) = sup
ξ∈C
〈x∗, ξ〉 ,

so σC coincides with the Legendre-Fenchel conjugate of δC . For a nonempty cone
K ⊂ X, the support function σK is equal to the indicator function of the polar
cone K◦ of K defined by

K◦ = {x∗ ∈ X∗, 〈x∗, x〉 ≤ 0 for all x ∈ K}.

For a set C ⊂ X, we denote by co(C) (resp. co(C)) the convex hull (resp. closed
convex hull) of C. The w(X∗, X)-closed convex hull of a set D ⊂ X∗ is denoted by
cow∗(D). For a function f : X → R, its convex hull co(f) (resp. lower semicontin-
uous convex hull co(f)) is the greatest convex (resp. lower semicontinuous convex)
function less or equal to f . The w(X∗, X)-lower semicontinuous convex hull of a
function g : X∗ → R is denoted by cow∗(g).

If f ∈ Γ0(X) and if x ∈ domf , the recession function f∞ is defined by

∀u ∈ X, f∞(u) = lim
t→+∞

f(x+ tu)− f(x)

t
= sup

t>0

f(x+ tu)− f(x)

t
.

The function f∞ : X → R ∪ {+∞} does not depend on the point x ∈ domf since
it is also given by

∀u ∈ X, f∞(u) = sup
x∈dom f

(f(x+ u)− f(x)).

The function f∞ satisfies f∞ ∈ Γ0(X), it is positively homogeneous and we have
f∞ = σdom f∗ . Given a closed convex set C ⊂ X and x ∈ C, the recession cone C∞

is defined by

C∞ = {u ∈ X, x+ tu ∈ C for all t ≥ 0}.
The set C∞ does not depend on x ∈ C and is also given by

C∞ = {u ∈ X, u+ C ⊂ C}.
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It follows from the definition that C∞ is a closed convex cone and we have δC∞ = (δC)∞.
For more details on recession analysis, see, for example, [1, 2, 13, 28].

Let us end these preliminaries with the subdifferential of convex analysis. We
recall that the subdifferential ∂f(x) of a convex function f : X → R ∪ {+∞} at
x ∈ domf is the set

∂f(x) = {ξ∗ ∈ X∗, f(y) ≥ f(x) + 〈ξ∗, y − x〉 for every y ∈ X} . (1)

When x /∈ domf , then ∂f(x) = ∅ by convention. The domain and the range of the
operator ∂f : X ⇒ X∗ are respectively given by

dom(∂f) = {x ∈ X, ∂f(x) 6= ∅} and Rge(∂f) = {x∗ ∈ X∗, ∃x ∈ X, x∗ ∈ ∂f(x)}.

If f ∈ Γ0(X), the subdifferentials of f and f∗ are connected through the following
relation

x∗ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(x∗), (2)

for all x ∈ X and x∗ ∈ X∗. For further details, the reader is referred to the classical
textbooks on convex analysis, see for example [13, 28].

3. Definitions. General properties

Let X be a vector space. For functions ϕ : X → R and f : X → R, the
ϕ-envelope of f is defined as follows:

∀x ∈ X, fϕ(x) = sup
y∈X
{ϕ(x− y)−p f(y)} = sup

z∈X
{ϕ(z)−p f(x− z)}.

A function g : X → R is said to be a ϕ-envelope if there exists f : X → R such
that g = fϕ. It is immediate to check that for every function f : X → R,

f−ωX = −ωX , while fωX =

{
ωX if f 6= ωX
−ωX if f = ωX .

It ensues that the unique (−ωX)-envelope is the function −ωX , while the ωX -
envelopes are ±ωX . The function fϕ can be expressed via the inf-convolution and
sup-convolution operators

fϕ = ϕ4 (−f) = − ((−ϕ)5 f) . (3)

The roles played by f and ϕ in the definition of fϕ are opposite in the sense that

(−ϕ)(−f) = (−f)4 (−(−ϕ)) = (−f)4 ϕ = fϕ. (4)

The definition of fϕ is closely connected to the deconvolution operation. For any
g, h : X → R, the deconvolution of g and h is the function g 	 h defined by

(g 	 h)(x) = sup
y−z=x

(g(y)−p h(z)),

for every x ∈ X. Denoting by h− the function defined by h−(x) = h(−x) for every
x ∈ X, we deduce immediately from the above definition that

g 	 h = g4 (−h−) = (h−)
g
. (5)

It ensues that for any f , ϕ : X → R,

fϕ = ϕ	 f−.

The deconvolution operation has been studied in details by many authors, see for
example [3, 12, 14, 36].
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Following the terminology of Moreau [21], we call ϕ-elementary function a func-
tion of the form ϕ(· − y) + λ with y ∈ X and λ ∈ R. By using a generalized
conjugacy argument, one can show that for any ϕ, f : X → R

(fϕ−)ϕ is the upper envelope of the ϕ-elementary functions that minorize f , (6)

see for example [21, Section 4] and [30, Section 11.L]. It can easily be deduced the
following characterization of ϕ-envelopes: for any g : X → R,

g is the upper envelope of a family of ϕ-elementary functions (7)

m
g = (gϕ−)ϕ (8)

m
g is a ϕ-envelope. (9)

The expression of the double envelope (gϕ−)ϕ can be developed as follows

(gϕ−)ϕ = ϕ4 (−gϕ−)

= ϕ4
(
− (ϕ− 4 (−g))

)
= ϕ4 ((−ϕ−)5 g).

By using the deconvolution operation, we obtain

(gϕ−)ϕ = ϕ	 (ϕ4 (−g−))

= ϕ	 (ϕ	 g).

From the equivalence (8) ⇔ (9), we deduce that

g is a ϕ-envelope

m
g = ϕ4 ((−ϕ−)5 g) (10)

m
g = ϕ	 (ϕ	 g).

Now let f , ψ : X → R. Following the terminology of Martinez-Legaz & Penot [18],
the function f is said to be (exactly) ψ-regular if f = (f 	 ψ)5 ψ. By taking the
opposite in each member of the equality (10), we find

−g = (−ϕ)5 (ϕ− 4 (−g))

= (−ϕ)5 ((−g)	 (−ϕ)).

In view of the above equivalences, this implies that

g is a ϕ-envelope ⇐⇒ −g is (−ϕ)-regular in the sense of [18].

We denote by Eϕ(X), or Eϕ if there is no risk of confusion, the set of ϕ-envelopes
and by Fϕ : Eϕ− → Eϕ the map defined by Fϕ(f) = fϕ for every f ∈ Eϕ− . The
equivalence (8) ⇔ (9) says that Fϕ ◦Fϕ− = IdEϕ and Fϕ− ◦Fϕ = IdEϕ− , otherwise
stated we have:

Proposition 3.1. The map Fϕ : Eϕ− → Eϕ is bijective and (Fϕ)−1 = Fϕ− .

As a consequence of the previous proposition, if ϕ is even the map Fϕ : Eϕ → Eϕ
is bijective and (Fϕ)−1 = Fϕ.

Let us now state several general properties of ϕ-envelopes.
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Proposition 3.2. Let X be a vector space and let ϕ : X → R.

(i) For every function f : X → R and every a ∈ X and β ∈ R, we have
(f(· − a)− β)ϕ = fϕ(· − a) + β. If g ∈ Eϕ, then g(· − a) + β ∈ Eϕ for every
a ∈ X and β ∈ R.

(ii) Given a family (fi)i∈I of functions fi : X → R, we have (infi∈I fi)
ϕ =

supi∈I f
ϕ
i . If g = supi∈I gi with gi ∈ Eϕ for every i ∈ I, then g ∈ Eϕ.

(iii) For f1, f2 : X → R, we have (f1 5 f2)ϕ = f
(fϕ2 )
1 . Let g, h : X → R.

If h ∈ Eg and g ∈ Eϕ, then h ∈ Eϕ. Otherwise stated, if g ∈ Eϕ, then
Eg ⊂ Eϕ.

(iv) For f : X → R, we have (fϕ)− = f−
ϕ− . As a consequence, g ∈ Eϕ if and

only if g− ∈ Eϕ− .

Proof. (i) Let a ∈ X and β ∈ R. For every x ∈ X, we have

(f(· − a)− β)ϕ(x) = sup
y∈X
{ϕ(x− y)−p f(y − a) + β}

= sup
y′∈X
{ϕ(x− a− y′)−p f(y′) + β} = fϕ(x− a) + β.

For the second assertion of (i), it suffices to apply the first part with g = fϕ.
(ii) By definition, we have

(inf
i∈I

fi)
ϕ = ϕ4

(
− inf
i∈I

fi
)

= ϕ4 sup
i∈I

(−fi)

= sup
i∈I

(ϕ4 (−fi)) = sup
i∈I

fϕi , see for example [20].

Now assume that g = supi∈I gi with gi ∈ Eϕ for every i ∈ I. Then, for each i ∈ I,
we have gi = fϕi for some fi. It ensues that g = supi∈I f

ϕ
i = (infi∈I fi)

ϕ, hence
g ∈ Eϕ.
(iii) By definition, we have

f
(fϕ2 )
1 = fϕ2 4 (−f1)

= (ϕ4 (−f2))4 (−f1)

= ϕ4 ((−f2)4 (−f1))

= ϕ4 (−(f2 5 f1))

= (f2 5 f1)ϕ = (f1 5 f2)ϕ.

Now assume that h ∈ Eg and g ∈ Eϕ. Then there exist f1, f2 : X → R such that

h = fg1 and g = fϕ2 . It ensues that h = f
(fϕ2 )
1 = (f1 5 f2)ϕ, hence h ∈ Eϕ.

(iv) For every x ∈ X, we have

(fϕ)−(x) = sup
y∈X
{ϕ(−x− y)−p f(y)}

= sup
ξ∈X
{ϕ(−x+ ξ)−p f(−ξ)}

= sup
ξ∈X
{ϕ−(x− ξ)−p f−(ξ)} = f−

ϕ−(x).

If g ∈ Eϕ, there exists f : X → R such that g = fϕ. It ensues that g− = (fϕ)− =
(f−)ϕ− , hence g− ∈ Eϕ− . The proof of the reverse assertion is identical. �
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In the next proposition, we show that the ϕ-envelope of a continuous linear
functional is affine and we characterize the elements of Eϕ that are linear.

Proposition 3.3. Let X be a locally convex space. Let ϕ : X → R and ξ∗ ∈ X∗.
Then we have

(i) 〈ξ∗, ·〉ϕ = −〈ξ∗, ·〉+ (−ϕ)∗(ξ∗).
(ii) If ϕ 6= −ωX , the following equivalence holds

〈ξ∗, ·〉 ∈ Eϕ ⇐⇒ ξ∗ ∈ −dom(−ϕ)∗.

Proof. (i) For every x ∈ X, we have

〈ξ∗, ·〉ϕ(x) = sup
y∈X
{ϕ(y)− 〈ξ∗, x− y〉}

= −〈ξ∗, x〉+ (−ϕ)∗(ξ∗).

(ii) Let g = 〈ξ∗, ·〉. We deduce from (i) that

gϕ− = −〈ξ∗, ·〉+ (−ϕ−)
∗

(ξ∗) = −〈ξ∗, ·〉+ (−ϕ)∗(−ξ∗). (11)

First assume that (−ϕ)∗(−ξ∗) = +∞. Then we have gϕ− = ωX , thus implying that
(gϕ−)ϕ = −ωX . It ensues that (gϕ−)ϕ 6= g, which shows that g /∈ Eϕ according to
the equivalence (7) ⇐⇒ (8). Now assume that (−ϕ)∗(−ξ∗) < +∞. Observe that
(−ϕ)∗(−ξ∗) ∈ R since

(−ϕ)∗(−ξ∗) = −∞ =⇒ sup
x∈X
〈−ξ∗, x〉+ ϕ(x) = −∞ =⇒ ϕ = −ωX ,

which is impossible by assumption. Since (−ϕ)∗(−ξ∗) ∈ R, we deduce from (11),
(i) above and Proposition 3.2 (i) that

(gϕ−)ϕ = 〈ξ∗, ·〉+ (−ϕ)∗(−ξ∗)− (−ϕ)∗(−ξ∗) = 〈ξ∗, ·〉 = g,

and therefore g ∈ Eϕ. �

For every set C ⊂ X, let us set

ΣC = {f : X → R, domf ⊂ C} and Σ∗C = {f∗, f ∈ ΣC}.

We adopt the same notations ΣD and Σ∗D for a subset D ⊂ X∗.

Theorem 3.1. Let X be a locally convex space and let ϕ : X → R be such that
ϕ 6= −ωX . For every subset D of X∗, the following assertions are equivalent

(i) Σ∗D ⊂ Eϕ;
(ii) {f ∈ Γ0(X), domf∗ ⊂ D} ⊂ Eϕ;

(iii) D ⊂ −dom(−ϕ)∗.

Proof. (i)⇒ (ii) Let D ⊂ X∗. Observe that

{f ∈ Γ0(X), domf∗ ⊂ D} = {g∗, domg ⊂ D and g ∈ Γ0(X)}
⊂ {g∗, domg ⊂ D} = Σ∗D.

The implication (i)⇒ (ii) follows immediately.
(ii)⇒ (iii) Assume that

{f ∈ Γ0(X), domf∗ ⊂ D} ⊂ Eϕ. (12)

Let ξ∗ ∈ D. Observe that 〈ξ∗, .〉 ∈ Γ0(X) and that

dom(〈ξ∗, .〉)∗ = domδ{ξ∗} = {ξ∗} ⊂ D,
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hence 〈ξ∗, .〉 ∈ Eϕ in view of (12). We then deduce from Proposition 3.3 (ii)
that ξ∗ ∈ −dom(−ϕ)∗. Since this is true for every ξ∗ ∈ D, we conclude that
D ⊂ −dom(−ϕ)∗.
(iii) ⇒ (i) Now assume that D ⊂ −dom(−ϕ)∗ and let f ∈ Σ∗D. There exists

g : X∗ → R such that f = g∗ and domg ⊂ D. The definition of the Legendre-
Fenchel conjugate yields

f = sup
ξ∗∈X∗

{〈ξ∗, .〉 − g(ξ∗)}

= sup
ξ∗∈dom g

{〈ξ∗, .〉 − g(ξ∗)}. (13)

Recalling that domg ⊂ D ⊂ −dom(−ϕ)∗, we deduce from Proposition 3.3 (ii)
that the linear function 〈ξ∗, .〉 is a ϕ-envelope for every ξ∗ ∈ domg. In view of
Proposition 3.2 (i), the affine function 〈ξ∗, .〉 − g(ξ∗) is also a ϕ-envelope for every
ξ∗ ∈ domg. Coming back to formula (13), we infer from Proposition 3.2 (ii) that f
is a ϕ-envelope as a supremum of ϕ-envelopes. Finally, we have shown that f ∈ Eϕ,
which proves the inclusion Σ∗D ⊂ Eϕ. �

Given a set D ⊂ X∗, the following result explores the links between the class
Σ∗D and the class of functions f ∈ Γ0(X) satisfying domf∗ ⊂ D. When the set D
is w(X∗, X)-closed and convex, these classes can be characterized via the support
function of D.

Proposition 3.4. Let X be a locally convex space and let D be a nonempty subset
of X∗.

(i) We have

{f ∈ Γ0(X), domf∗ ⊂ D} ∪ {ωX ,−ωX} ⊂ Σ∗D, (14)

Σ∗D ⊂ {f ∈ Γ0(X), domf∗ ⊂ cow∗(D)} ∪ {ωX ,−ωX}. (15)

As a consequence, if the set D ⊂ X∗ is w(X∗, X)-closed and convex, the
following equality holds true

Σ∗D = {f ∈ Γ0(X), domf∗ ⊂ D} ∪ {ωX ,−ωX}. (16)

(ii) If the set D ⊂ X∗ is w(X∗, X)-closed and convex, then

{f ∈ Γ0(X), domf∗ ⊂ D} = {f ∈ Γ0(X), f∞ ≤ σD} (17)

= {f ∈ Γ0(X), f(y) ≤ f(x) + σD(y − x), ∀x, y ∈ X} .
(18)

Proof. (i) We have already shown the inclusion {f ∈ Γ0(X), domf∗ ⊂ D} ⊂ Σ∗D,
see the proof of Theorem 3.1. On the other hand, we always have −ωX ∈ Σ∗D. Since
D 6= ∅, we also have ωX ∈ Σ∗D. This proves the inclusion (14). Let us now establish

(15). Assume that f ∈ Σ∗D. There exists g : X∗ → R such that domg ⊂ D
and f = g∗. We distinguish the cases cow∗(g) proper and cow∗(g) improper. If
cow∗(g) = ωX∗ , we have g = ωX∗ , hence f = −ωX . If cow∗(g) takes the value −∞,
we infer that g∗ = (cow∗(g))∗ = ωX , whence f = ωX . Let us now assume that
cow∗(g) ∈ Γ0(X∗). It ensues that f = g∗ = (cow∗(g))∗ ∈ Γ0(X). This implies in
turn that f∗ = cow∗(g), thus

domf∗ = dom(cow∗(g)) ⊂ cow∗(domg) ⊂ cow∗(D),

which ends the proof of (15). When the set D is w(X∗, X)-closed and convex,
equality (16) is an immediate consequence of the inclusions (14)-(15).
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(ii) Assuming that the set D is w(X∗, X)-closed and convex, we have domf∗ ⊂ D
if and only if σdom f∗ ≤ σD. Recalling that σdom f∗ = f∞ (see section 2), we
derive equality (17). Since f∞ = supx∈dom f

(
f(· + x) − f(x)

)
, we deduce in turn

equality (18). �

Remark 3.1. In general, the inclusions (14) and (15) are strict, as will be shown in
Example 7.1.

If X is a Banach space and if the set D ⊂ X∗ is closed, the class of functions
f ∈ Γ0(X) satisfying domf∗ ⊂ D can be expressed via the subdifferential of f .

Proposition 3.5. Let X be a Banach space and let D be a closed subset of X∗.
Then we have

{f ∈ Γ0(X), domf∗ ⊂ D} = {f ∈ Γ0(X), ∂f(x) ⊂ D for all x ∈ X} .

Proof. Let us first state as a lemma the following direct consequence of the Brønsted-
Rockafellar theorem (see [5, Theorem 2]) concerning the conjugate of a function in
Γ0(X).

Lemma 3.1 (See Theorem 2 in [5]). If X is a Banach space and if f ∈ Γ0(X),
then cl (domf∗) = cl (Rge(∂f)).

Assume that the set D ⊂ X∗ is closed. From Lemma 3.1, we have for every
f ∈ Γ0(X)

domf∗ ⊂ D ⇐⇒ Rge(∂f) ⊂ D
⇐⇒ ∂f(x) ⊂ D for all x ∈ X.

The announced equality follows immediately. �

Applying Theorem 3.1 with particular sets D, we obtain the following corollaries.

Corollary 3.1. Let X be a locally convex space and let ϕ : X → R be such that
ϕ 6= −ωX . Then the following equivalence holds

Γ(X) ⊂ Eϕ ⇐⇒ dom(−ϕ)∗ = X∗.

Proof. It suffices to take D = X∗ in the equivalence (i)⇔ (iii) of Theorem 3.1. �

Remark 3.2. Under the assumption dom(−ϕ)∗ = X∗, the function ϕ cannot be
convex (see hereafter). Therefore the set Eϕ is strictly larger than Γ(X), since it
contains the nonconvex function ϕ.
If dom(−ϕ)∗ = X∗, we have (−ϕ)∗(0) < +∞. Recalling that (−ϕ)∗(0) = supϕ,
we deduce that the function ϕ is bounded from above on the whole space X. If
moreover the function ϕ is convex, we infer from a classical result that it is constant,
say ϕ ≡ β for some β ∈ R. It ensues that (−ϕ)∗ = β+δ{0}, hence dom(−ϕ)∗ = {0},
a contradiction. This confirms that functions ϕ with dom(−ϕ)∗ = X∗ cannot be
convex.

Given a set K ⊂ X, recall that a function f : X → R ∪ {+∞} is said to be
K-nonincreasing (resp. K-nondecreasing) if f(y) ≤ f(x) (resp. f(y) ≥ f(x)) for
all x, y ∈ X such that y − x ∈ K.

Corollary 3.2. Let X be a locally convex space. Let K ⊂ X be a closed convex
cone and let ϕ : X → R be such that ϕ 6= −ωX . Then the set Eϕ contains all the
functions of Γ0(X) which are K-nonincreasing if and only if −K◦ ⊂ dom(−ϕ)∗.
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Proof. Take D = K◦ in the equivalence (ii)⇔ (iii) of Theorem 3.1 to obtain that

{f ∈ Γ0(X), domf∗ ⊂ K◦} ⊂ Eϕ ⇐⇒ K◦ ⊂ −dom(−ϕ)∗

⇐⇒ −K◦ ⊂ dom(−ϕ)∗. (19)

On the other hand, observe by (18) that for f ∈ Γ0(X),

domf∗ ⊂ K◦ ⇐⇒ f(y) ≤ f(x) + σK◦(y − x) for all x, y ∈ X
⇐⇒ f(y) ≤ f(x) + δK(y − x) for all x, y ∈ X
⇐⇒ f is K-nonincreasing. (20)

The announced equivalence then follows immediately from (19) and (20). �

In the sequel, when X is a normed space we will denote by BX (resp. BX∗) the
closed unit ball of X (resp. X∗).

Corollary 3.3. Let (X, ‖·‖) be a normed space. Let a real k ≥ 0 and let ϕ : X → R
be such that ϕ 6= −ωX . Then the set Eϕ contains all the functions of Γ0(X) which
are k-Lipschitz continuous on X if and only if kBX∗ ⊂ dom(−ϕ)∗.

Proof. Take D = kBX∗ in the equivalence (ii) ⇔ (iii) of Theorem 3.1 to obtain
that

{f ∈ Γ0(X), domf∗ ⊂ kBX∗} ⊂ Eϕ ⇐⇒ kBX∗ ⊂ −dom(−ϕ)∗

⇐⇒ kBX∗ ⊂ dom(−ϕ)∗. (21)

Then observe by (18) that for f ∈ Γ0(X),

domf∗ ⊂ kBX∗ ⇐⇒ f(y) ≤ f(x) + k ‖y − x‖ for all x, y ∈ X
⇐⇒ f is k-Lipschitz on X, (22)

where the last equivalence is obtained by reversing the roles of x and y. The
announced equivalence then follows immediately from (21) and (22). �

4. Equivalence between functions and sets

Recall that for f : X → R, the epigraph (resp. hypograph) of f is defined by

epif = {(x, λ) ∈ X × R, f(x) ≤ λ} (resp. hypof = {(x, λ) ∈ X × R, f(x) ≥ λ}).

The strict epigraph and strict hypograph of f are obtained by replacing the above
inequalities with strict inequalities

epi sf = {(x, λ) ∈ X×R, f(x) < λ} (resp. hypo sf = {(x, λ) ∈ X×R, f(x) > λ}).

The following lemma gives a geometrical interpretation for the inf-convolution and
sup-convolution operations. Assertion (i) is well known. For completeness and
convenience of the reader we provide a proof of (ii).

Lemma 4.1. Let X be a vector space and let f , g : X → R. Then we have
(i) epi s(f 5 g) = epi sf + epi sg.
(ii) hypo s(f 4 g) = hypo sf + hypo sg.
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Proof. Point (i) is classical, see for example [20, 30]. Point (ii) is deduced easily
from (i) by observing that

(x, λ) ∈ hypo sf 4 g ⇐⇒ (x,−λ) ∈ epi s[−(f 4 g)]

⇐⇒ (x,−λ) ∈ epi s[(−f)5 (−g)]

⇐⇒ (x,−λ) ∈ epi s(−f) + epi s(−g)

⇐⇒ (x, λ) ∈ hypo s(f) + hypo s(g).

�

Since fϕ is defined via a sup-convolution operation, we derive the following
consequence of Lemma 4.1.

Proposition 4.1. Let X be a vector space and let ϕ : X → R.

(i) For every f : X → R, we have

hypo sf
ϕ = hypo s(−f) + hypo sϕ

epifϕ =
⋂

u∈hypo s(−f)

u+ epiϕ.

(ii) For every g : X → R, the following equivalences hold

g ∈ Eϕ ⇐⇒ hypo sg = U + hypo sϕ for some U ⊂ X × R
⇐⇒ epig =

⋂
u∈U

u+ epiϕ for some U ⊂ X × R.

Proof. (i) Let f , ϕ : X → R. Recalling that fϕ = ϕ 4 (−f), we deduce from
Lemma 4.1 (ii) that

hypo sf
ϕ = hypo s(−f) + hypo sϕ

=
⋃

u∈hypo s(−f)

u+ hypo sϕ.

Taking the complement of each member of the above equality, we infer that

epifϕ =
⋂

u∈hypo s(−f)

u+ epiϕ.

(ii) Let g : X → R. If g ∈ Eϕ, there exists f : X → R such that g = fϕ. In view
of (i), we obtain that hypo sg = U + hypo sϕ with U = hypo s(−f). Conversely,
assume that hypo sg = U + hypo sϕ for some U ⊂ X × R. Then we have

hypo sg =
⋃

(x,λ)∈U

(x, λ) + hypo sϕ

=
⋃

(x,λ)∈U

hypo s[ϕ(· − x) + λ]

= hypo s

[
sup

(x,λ)∈U
ϕ(· − x) + λ

]
.

Hence we deduce that g = sup(x,λ)∈U (ϕ(· − x) + λ), which shows that g ∈ Eϕ.

This proves the first equivalence of (ii). For the other equivalence, it suffices to
take the complement of the sets arising in each member of the equality concerning
hypo sg. �
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Given a set Λ ⊂ X, the previous result suggests to consider the class IΛ of
subsets of X defined as follows1

IΛ = {CΛ, C ⊂ X}, where CΛ =
⋂
x∈C

x+ Λ.

By convention2, we take ∅Λ =
⋂
x∈∅ x + Λ = X for every set Λ ⊂ X. This implies

that X ∈ IΛ for every Λ ⊂ X. It is immediate to check that IX = {X}, while
I∅ = {∅, X}. A set D ⊂ X belongs to the class IΛ if it is equal to some intersection
of translated sets from Λ. It ensues immediately that the class IΛ is stable under
translation and intersection.

Example 4.1. Take r > 0 and Λ = rBX . The class Ir BX corresponds to the class
studied by Vial [34] under the terminology of r-strongly convex sets. More generally,
for a closed convex set Λ ⊂ X, the sets of the form CΛ are called Λ-strongly convex.
The Λ-strongly convex sets are thoroughly studied by Polovinkin [24], under an
additional condition on the set Λ (which is assumed to be generating, see [24] for
more details).

The definition of CΛ is directly linked to the star-difference of sets. For every
C1, C2 ⊂ X, the star-difference of C1 with C2 is the set C1

∗− C2 given by

C1
∗− C2 =

⋂
x∈C2

C1 − x.

We deduce immediately from the above definition that CΛ = Λ ∗− (−C) for every
C, Λ ⊂ X. The star-difference of sets was used in [26] in the context of differen-
tial games. See also [12] for the links between the star-difference of sets and the
deconvolution operation, also called epigraphical star-difference.

Given C ⊂ X and Λ ⊂ X, the next proposition gives several expressions for the
set CΛ.

Proposition 4.2. Let X be a vector space. For any sets C ⊂ X and Λ ⊂ X, we
have

(i) CΛ = {x ∈ X, x− C ⊂ Λ} = {x ∈ X, C ⊂ x− Λ};
(ii) X \ CΛ = C + (X \ Λ) or equivalently CX\Λ = X \ (C + Λ).

(iii) (X \ Λ)X\C = CΛ.

Proof. (i) It suffices to observe that

x ∈ CΛ ⇐⇒ ∀u ∈ C, x ∈ u+ Λ

⇐⇒ ∀u ∈ C, x− u ∈ Λ

⇐⇒ x− C ⊂ Λ

⇐⇒ C ⊂ x− Λ.

(ii) From the definition of CΛ, we deduce immediately that

X \ CΛ =
⋃
u∈C

u+ (X \ Λ) = C + (X \ Λ),

1We draw the attention of the reader to the fact that the notation CΛ must not be confused

with that of the set of maps from Λ into C.
2In particular, we obtain ∅∅ = X.
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which is the first equality in (ii). From this equality with X \ Λ in place of Λ, we
obtain that X \ CX\Λ = C + Λ, or equivalently CX\Λ = X \ (C + Λ).
(iii) We infer from the previous assertion that

X \
[
(X \ Λ)X\C

]
= (X \ Λ) + C = X \ CΛ,

whence the equality (X \ Λ)X\C = CΛ. �

The elements D of IΛ can be characterized by the equality (D−Λ)Λ = D. This
is the subject of the next proposition.

Proposition 4.3. Let X be a vector space and let Λ ⊂ X. For any set D ⊂ X, the
set (D−Λ)Λ is the smallest element of IΛ containing the set D. As a consequence,
the following equivalence holds true

D ∈ IΛ ⇐⇒ (D−Λ)Λ = D.

Proof. Let S be the subset of X defined by

S =
⋂

x∈X, x+Λ⊃D
x+ Λ.

We clearly have S ∈ IΛ and S ⊃ D. Now let any S′ ∈ IΛ with S′ ⊃ D. By
definition, there exists some C ⊂ X such that S′ =

⋂
x∈C x + Λ. The inclusion

S′ ⊃ D implies that x+ Λ ⊃ D for every x ∈ C and therefore

S′ =
⋂
x∈C

x+ Λ ⊃
⋂

x∈X, x+Λ⊃D
x+ Λ = S.

This proves that the set S is the smallest element of IΛ containing D. Recall now
from Proposition 4.2 (i) that condition x + Λ ⊃ D is equivalent to x ∈ D−Λ. We
deduce that

S =
⋂

x∈D−Λ

x+ Λ = (D−Λ)Λ.

This finishes the proof of the first assertion. The second assertion is an immediate
consequence of the first one. �

Let us write the expression of the double envelope (D−Λ)Λ by using the star-
difference operation

(D−Λ)Λ = Λ ∗− (−
(
D−Λ)

)
= Λ ∗−

(
(−D)Λ

)
= Λ ∗− (Λ ∗−D). (23)

In view of Proposition 4.2, the complement of the set (D−Λ)Λ can be expressed as

X \ (D−Λ)Λ = D−Λ +X \ Λ

= (−(X \ Λ))X\D +X \ Λ

=
(
(X \D) ∗− (X \ Λ)

)
+X \ Λ. (24)

From equalities (23)-(24) and Proposition 4.3, we deduce that

D ∈ IΛ

m
D = Λ ∗− (Λ ∗−D)
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m

X \D =
(
(X \D) ∗− (X \ Λ)

)
+X \ Λ.

The last equality amounts to saying that the set X \D is exactly (X \ Λ)-regular
in the sense of [18].

With the notations introduced above, for f , g : X → R, the results of Proposi-
tion 4.1 can be restated as

epifϕ = (hypo s(−f))epiϕ

and

g ∈ Eϕ ⇐⇒ epig ∈ Iepiϕ.

This shows that the study of ϕ-envelopes amounts to that of the class Iepiϕ. Con-
versely, given a set Λ ⊂ X, the class IΛ can be fully described via the δΛ-envelopes.

Proposition 4.4. Let X be a vector space and let Λ ⊂ X.

(i) For every function f : X → R, we have3

fδΛ = − inf
X
f + δ(dom f)Λ . (25)

As a consequence, the equality (δC)δΛ = δCΛ holds for any nonempty set
C ⊂ X.

(ii) For every function g : X → R such that g 6= ±ωX , we have

g ∈ EδΛ ⇐⇒ g = β + δCΛ for some β ∈ R and some C 6= ∅.

Proof. (i) For every function f : X → R and every x ∈ X, the definition of fδΛ

gives

fδΛ(x) = sup
y∈X
{δΛ(x− y)−p f(y)} = sup

y∈dom f
{δΛ(x− y)− f(y)}.

First assume that x − domf ⊂ Λ. For every y ∈ domf , we then have x − y ∈ Λ,
whence δΛ(x− y) = 0. It ensues that

fδΛ(x) = sup
y∈dom f

−f(y) = sup
X

(−f) = − inf
X
f.

Now assume that x − domf 6⊂ Λ. In this case, there exists y ∈ domf such that
x − y /∈ Λ. We then have δΛ(x − y) = +∞, whence fδΛ(x) = +∞. Finally, we
obtain for every x ∈ X

fδΛ(x) =

{
− infX f if x− domf ⊂ Λ
+∞ otherwise.

Condition x−domf ⊂ Λ is equivalent to x ∈ (domf)Λ in view of Proposition 4.2 (i).
Formula (25) follows immediately. For the last assertion, it suffices to take f = δC .
(ii) Let g ∈ EδΛ be such that g 6= ±ωX . There exists f : X → R such that
g = fδΛ , hence we deduce from (i) that g = − infX f + δ(dom f)Λ . Since g 6= ±ωX ,
we have infX f ∈ R and domf 6= ∅. It suffices then to take β = − infX f and
C = domf . Conversely, assume that g = β + δCΛ for some β ∈ R and some C 6= ∅.
Assertion (i) then shows that g = fδΛ for the function f defined by f = −β + δC ,
hence g ∈ EδΛ . �

3If infX f = +∞ we have domf = ∅, hence (domf)Λ = X and δ(domf)Λ ≡ 0. Therefore the

addition in the right-hand side of (25) is well-defined.
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Remark 4.1. The previous proposition shows that for every C, Λ ⊂ X with C 6= ∅
(δC)δΛ = (−δC)4 δΛ = δCΛ . (26)

It is interesting to compare this formula with the following one

(δC)−δΛ = (−δC)4 (−δΛ) = −δC+Λ, (27)

that is obtained as a consequence of the equality δC+Λ = δC 5 δΛ.

Corollary 4.1. Let X be a vector space. For every set Λ ⊂ X and every set D ⊂ X
such that D 6= ∅ and D 6= X, the following equivalence holds

δD ∈ EδΛ ⇐⇒ D ∈ IΛ.

In fact, the implication from the left to the right is true as soon as D 6= ∅, while
the reverse one is true if D 6= X.

Proof. First assume that δD ∈ EδΛ and that D 6= ∅. There exists f : X → R such
that δD = fδΛ , hence we deduce from Proposition 4.4 (i) that δD = − infX f +
δ(dom f)Λ . Since D 6= ∅, we have infX f = 0 and D = (domf)Λ ∈ IΛ. Conversely,

assume that D ∈ IΛ and that D 6= X. This implies that D = CΛ for some C 6= ∅,
and hence by Proposition 4.4 (i) again δD = δCΛ = (δC)δΛ ∈ EδΛ . �

Let us now study the class E−δΛ . From the generalized conjugation point of
view, the case ϕ = −δΛ is a special instance of a coupling functional c : X×Y → R
of the type c = −δG, where G is a subset of X×Y . The corresponding conjugation
operator, which arises in quasiconvex analysis, has been considered in many papers,
see for example [17, 31, 35].

Proposition 4.5. Let X be a vector space. Let Λ be a nonempty subset of X and
let f : X → R. Then we have

(i)

f ∈ E−δΛ ⇐⇒ f = sup
y∈Λ

inf
z∈Λ

f(· − y + z). (28)

This means equivalently that for every x ∈ X and every λ < f(x), there
exists y ∈ Λ such that f(x− y + z) ≥ λ for every z ∈ Λ.

(ii) If f ∈ E−δΛ and if Λ + Λ ⊂ Λ, then f is Λ-nondecreasing. Conversely, if
f is Λ-nondecreasing and if 0 ∈ Λ, then f ∈ E−δΛ .

Proof. (i) The equivalence (7) ⇐⇒ (8) yields

f ∈ E−δΛ ⇐⇒ f =
(
f (−δΛ)−

)−δΛ
.

On the other hand, we have

f (−δΛ)− = sup
ξ∈X
−δΛ(−ξ)−p f(· − ξ) = sup

−ξ∈Λ
−f(· − ξ) = − inf

z∈Λ
f(·+ z)

and hence (
f (−δΛ)−

)−δΛ
= sup
y∈Λ
−f (−δΛ)−(· − y) = sup

y∈Λ
inf
z∈Λ

f(· − y + z).

We deduce immediately the equivalence (28).

Since the inequality
(
f (−δΛ)−

)−δΛ ≤ f is always satisfied, we infer that f ∈ E−δΛ if
and only if for every x ∈ X,

sup
y∈Λ

inf
z∈Λ

f(x− y + z) ≥ f(x).
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The last assertion of (i) follows immediately.
(ii) Assume that f ∈ E−δΛ and that Λ + Λ ⊂ Λ. Let ξ ∈ Λ. In view of (28), we
have for every x ∈ X

f(x+ ξ) = sup
y∈Λ

inf
z∈Λ

f(x+ ξ − y + z)

= sup
y∈Λ

inf
z′∈ξ+Λ

f(x− y + z′)

≥ sup
y∈Λ

inf
z′∈Λ

f(x− y + z′) since ξ + Λ ⊂ Λ

= f(x).

Since this is true for every ξ ∈ Λ, we infer that f is Λ-nondecreasing.
Conversely, assume that f is Λ-nondecreasing and that 0 ∈ Λ. For every y, z ∈ Λ,
we have

f(· − y) ≤ f(· − y + z) ≤ f(·+ z).

It ensues immediately that

sup
y∈Λ

f(· − y) ≤ sup
y∈Λ

inf
z∈Λ

f(· − y + z) ≤ inf
z∈Λ

f(·+ z).

Since 0 ∈ Λ, we obtain supy∈Λ f(· − y) = infz∈Λ f(· + z) = f , and hence f =

supy∈Λ infz∈Λ f(· − y + z). In view of (28), we conclude that f ∈ E−δΛ . �

Remark 4.2. When Λ + Λ ⊂ Λ and 0 ∈ Λ, the equivalence

f ∈ E−δΛ ⇐⇒ f is Λ-nondecreasing

can be recovered by using the subadditivity of the function δΛ, see section 6.

Proposition 4.6. Let X be a vector space and let Λ, D ⊂ X.

(i) The following equivalence holds

−δD ∈ E−δΛ ⇐⇒ X \D ∈ IX\Λ.

(ii) If moreover Λ 6= ∅, we have

δD ∈ E−δΛ ⇐⇒ D ∈ IX\Λ.

Proof. (i) First observe that the equivalence trivially holds if Λ = ∅. Now assume
that Λ 6= ∅. Recall that

−δD ∈ E−δΛ ⇐⇒ −δD =
(

(−δD)
(−δΛ)−

)−δΛ
. (29)

Further, note by (4) that

(−δD)
(−δΛ)− = (−δD)

(−δ−Λ)
= (δ−Λ)δD

= δ(−Λ)D from formula (26) and the nonvacuity of Λ.

In view of formula (27), we deduce that(
(−δD)

(−δΛ)−
)−δΛ

=
(
δ(−Λ)D

)−δΛ
= −δ(−Λ)D+Λ.
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Coming back to (29), we infer that

−δD ∈ E−δΛ ⇐⇒ D = (−Λ)D + Λ

⇐⇒ D = (X \D)−(X\Λ) + Λ, see Proposition 4.2 (iii)

⇐⇒ X \D =
(

(X \D)−(X\Λ)
)X\Λ

, in view of Proposition 4.2 (ii)

⇐⇒ X \D ∈ IX\Λ, cf. Proposition 4.3.

(ii) Assume that Λ 6= ∅. By arguing as in (i), we find

(δD)
(−δΛ)− = (δD)

−δ−Λ = −δD−Λ,

and hence by (4) and (26)(
(δD)

(−δΛ)−
)−δΛ

= (−δD−Λ)
−δΛ = (δΛ)

δD−Λ = δΛD−Λ .

Recalling that

δD ∈ E−δΛ ⇐⇒ δD =
(

(δD)
(−δΛ)−

)−δΛ
,

we deduce that

δD ∈ E−δΛ ⇐⇒ D = ΛD−Λ

⇐⇒ D = (X \ (D − Λ))
X\Λ

by Proposition 4.2 (iii)

⇐⇒ D =
(
D−(X\Λ)

)X\Λ
by Proposition 4.2 (ii)

⇐⇒ D ∈ IX\Λ, see Proposition 4.3.

�

Combining Corollary 4.1 and Proposition 4.6, we derive the following corollary
giving various characterizations of IΛ via the classes EδΛ and E−δX\Λ .

Corollary 4.2. For every set Λ ⊂ X and every set D ⊂ X such that D 6= ∅ and
D 6= X, the following equivalences hold

D ∈ IΛ ⇐⇒ δD ∈ EδΛ ⇐⇒ −δX\D ∈ E−δX\Λ ⇐⇒ δD ∈ E−δX\Λ .

Proof. The first equivalence is a consequence of Corollary 4.1, under the assump-
tions D 6= ∅ and D 6= X. The equivalence D ∈ IΛ ⇐⇒ −δX\D ∈ E−δX\Λ follows
from Proposition 4.6 (i) applied with X \ D (resp. X \ Λ) in place of D (resp.
Λ). If Λ 6= X, the equivalence D ∈ IΛ ⇐⇒ δD ∈ E−δX\Λ is a consequence of
Proposition 4.6 (ii) applied with X \ Λ in place of Λ. If Λ = X, the equivalence
becomes D ∈ IX ⇐⇒ δD ∈ E−ωX . Since IX = {X} and E−ωX = {−ωX}, the
equivalence amounts to D = X ⇐⇒ δD = −ωX . The condition D = X is not
realized by assumption, while the condition δD = −ωX is never realized. It ensues
that the equivalence trivially holds true if Λ = X. �

For a function f : X → R and r ∈ R, the notation [f ≥ r] (resp. [f > r]) denotes
the set {x ∈ X, f(x) ≥ r} (resp. {x ∈ X, f(x) > r}). We adopt the corresponding
notations for the sublevel sets. Adapting Proposition 3.3 to the framework of sets,
we obtain the following statement.

Proposition 4.7. Let X be a locally convex space. Let Λ ⊂ X and ξ∗ ∈ X∗. Then
we have

(i)
[
〈ξ∗, ·〉 > 0

]Λ
=
[
〈ξ∗, ·〉 ≤ −σX\Λ(−ξ∗)

]
.
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(ii) If Λ 6= X, the following equivalence holds[
〈ξ∗, ·〉 ≤ 0

]
∈ IΛ ⇐⇒ ξ∗ ∈ −domσX\Λ.

Proof. (i) Set C =
[
〈ξ∗, ·〉 > 0

]
and observe that

x ∈ CΛ ⇐⇒ x− C ⊂ Λ

⇐⇒ X \ Λ ⊂ x−X \ C
⇐⇒ X \ Λ ⊂ {y ∈ X, 〈ξ∗, y〉 ≥ 〈ξ∗, x〉}
⇐⇒ ∀y ∈ X \ Λ, 〈ξ∗, y〉 ≥ 〈ξ∗, x〉
⇐⇒ inf

X\Λ
〈ξ∗, ·〉 ≥ 〈ξ∗, x〉

⇐⇒ −σX\Λ(−ξ∗) ≥ 〈ξ∗, x〉.
Item (i) follows immediately.

(ii) First assume that σX\Λ(−ξ∗) ∈ R. Recall from (i) that the set
[
〈ξ∗, ·〉 ≤

−σX\Λ(−ξ∗)
]

belongs to IΛ. Let ξ ∈ X satisfying4 the equality 〈ξ∗, ξ〉 = −σX\Λ(−ξ∗).
We then have [

〈ξ∗, · − ξ〉 ≤ 0
]

=
[
〈ξ∗, ·〉 ≤ −σX\Λ(−ξ∗)

]
∈ IΛ.

Since the class IΛ is stable under translations, the set
[
〈ξ∗, ·〉 ≤ 0

]
also belongs to

IΛ. Now assume that σX\Λ(−ξ∗) is not finite, or equivalently σX\Λ(−ξ∗) = +∞
since X \ Λ 6= ∅ by assumption. Let us determine the set

([
〈ξ∗, ·〉 ≤ 0

]−Λ)Λ
.

Remark that[
〈ξ∗, ·〉 ≤ 0

]−Λ ⊂
[
〈ξ∗, ·〉 < 0

]−Λ

=
[
〈−ξ∗, ·〉 > 0

]−Λ

=
[
〈−ξ∗, ·〉 ≤ −σ−(X\Λ)(ξ

∗)
]

in view of (i).

Since σ−(X\Λ)(ξ
∗) = σX\Λ(−ξ∗) = +∞, it ensues that

[
〈ξ∗, ·〉 ≤ 0

]−Λ
= ∅, thus

implying that ([
〈ξ∗, ·〉 ≤ 0

]−Λ)Λ
= X 6=

[
〈ξ∗, ·〉 ≤ 0

]
.

From Proposition 4.3, we conclude that
[
〈ξ∗, ·〉 ≤ 0

]
/∈ IΛ, which ends the proof of

the announced equivalence. �

Let us denote by C(X) the class of nonempty closed convex sets of X.

Theorem 4.1. Let X be a locally convex space. Let Λ ⊂ X be such that Λ 6= X.
For every cone Q ⊂ X∗, the following equivalence holds true

{C ∈ C(X), domσC ⊂ Q} ⊂ IΛ ⇐⇒ Q ⊂ −domσX\Λ.

Proof. Let Q ⊂ X∗ be a cone and assume that

{C ∈ C(X), domσC ⊂ Q} ⊂ IΛ. (30)

Let ξ∗ ∈ Q. Setting C = [〈ξ∗, ·〉 ≤ 0] ∈ C(X), we have σC = δR+ξ∗ , and hence

domσC = R+ξ
∗ ⊂ Q. In view of (30), it ensues that C ∈ IΛ. We then deduce from

Proposition 4.7 (ii) that ξ∗ ∈ −domσX\Λ. Since this is true for every ξ∗ ∈ Q, we

4If ξ∗ = 0, we have σX\Λ(−ξ∗) = 0 because X \ Λ 6= ∅ by assumption. In this case, the

equality 〈ξ∗, ξ〉 = −σX\Λ(−ξ∗) is satisfied by every ξ ∈ X.
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conclude that Q ⊂ −domσX\Λ.
Now assume that Q ⊂ −domσX\Λ and let C ∈ C(X) be such that domσC ⊂ Q.
Then δC ∈ Γ0(X) with domδ∗C ⊂ Q, and since

Q ⊂ −domσX\Λ = −domδ∗X\Λ = −dom(−(−δX\Λ))∗,

by Theorem 3.1 we have δC ∈ E−δX\Λ (keep in mind −δX\Λ 6= −ωX since Λ 6= X).

Proposition 4.6 (ii) yields that C ∈ IΛ as desired. Finally, we have shown the
inclusion (30), which ends the proof. �

Applying Theorem 4.1 with Q = X∗, we immediately obtain the following result.

Corollary 4.3. Let X be a locally convex space. Let Λ ⊂ X be such that Λ 6= X.
Then, the following equivalence holds true

C(X) ⊂ IΛ ⇐⇒ domσX\Λ = X∗.

5. A preorder relation on F(X,R) based on ϕ-envelopes

Let X be a vector space and let F(X,R) be the set of extended real-valued
functions on X. We define the relation ∼ on the space F(X,R) as follows: for
every ϕ, ψ : X → R

ψ ∼ ϕ ⇐⇒ there exist ξ ∈ X and α ∈ R such that ψ = ϕ(· − ξ) + α

⇐⇒ ψ is a ϕ-elementary function.

Clearly, the relation ∼ is reflexive, symmetric and transitive, hence defines an
equivalence relation. The objective of this section is to determine suitable5 subsets
G of F(X,R) such that the following implication holds true for every ϕ, ψ ∈ G

ψ ∈ Eϕ and ϕ ∈ Eψ =⇒ ψ ∼ ϕ. (31)

5.1. The coercive case. For any function ϕ : X → R, the deconvolution function
ϕ 	 ϕ defined by (ϕ 	 ϕ)(x) = supy−z=x(ϕ(y) −p ϕ(z)) can be expressed as a ϕ-

envelope via the equality ϕ	ϕ = (ϕ−)ϕ. The next lemma shows that this function
is subadditive. Recall that a function f : X → R is said to be subadditive if for
any x, y ∈ X,

f(x+ y) ≤ f(x)
p

+ f(y).

Lemma 5.1. Let X be a vector space and let f , ϕ : X → R. For any x, x′ ∈ X,
we have

fϕ(x′) ≤ (ϕ	 ϕ)(x′ − x)
p

+ fϕ(x).

Moreover, the function ϕ	 ϕ is subadditive.

Proof. Fix x, x′ ∈ X. It is immediate to check that for every y ∈ X,

ϕ(x′ − y)−p f(y) ≤ [ϕ(x′ − y)−p ϕ(x− y)]
p

+ [ϕ(x− y)−p f(y)].

Taking the supremum over y ∈ X and using [21, Proposition 4.a] we deduce that

fϕ(x′) ≤ sup
y∈X

[ϕ(x′ − y)−p ϕ(x− y)]
p

+ sup
y∈X

[ϕ(x− y)−p f(y)],

= (ϕ	 ϕ)(x′ − x)
p

+ fϕ(x),

5The implication (31) is not true for all ϕ, ψ ∈ F(X,R), see a counterexample in subsection 5.3.
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which yields the desired inequality. Further taking f = ϕ− in the above inequality
and using the identity (ϕ−)ϕ = ϕ	 ϕ, we obtain

(ϕ	 ϕ)(x′) ≤ (ϕ	 ϕ)(x′ − x)
p

+ (ϕ	 ϕ)(x),

hence the function ϕ	 ϕ is subadditive. �

If the space (X, ‖ · ‖) is normed and if the function ϕ satisfies the coercivity
property lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞, the following lemma shows that ϕ	ϕ = +∞
on X \ {0}.

Lemma 5.2. Let (X, ‖ · ‖) be a normed space and let ϕ : X → R be an extended
real-valued function. Assume that ϕ 6= +ωX and lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞.
Then we have ϕ	 ϕ = +∞ on X \ {0}.

Proof. Let us argue by contradiction and assume that there exists u 6= 0 such that
(ϕ	 ϕ)(u) < +∞. Let us fix x ∈ domϕ and observe that for every n ∈ N,6

ϕ(x+ nu)−p ϕ(x) ≤ (ϕ	 ϕ)(nu)

≤ n (ϕ	 ϕ)(u) since ϕ	 ϕ is subadditive.

It ensues that
1

n
ϕ(x+ nu) ≤ 1

n
ϕ(x) + (ϕ	 ϕ)(u),

and taking the upper limit as n→ +∞, we deduce that

lim sup
n→+∞

1

n
ϕ(x+ nu) ≤ (ϕ	 ϕ)(u),

which contradicts the fact that lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞. Finally, we obtain
that ϕ	 ϕ = +∞ on X \ {0}. �

Theorem 5.1. Let X be a vector space and let ϕ, ψ : X → R be such that ψ ∈ Eϕ
and ϕ ∈ Eψ.

(i) If ϕ	 ϕ = +∞ on X \ {0}, then we have ψ ∼ ϕ.
(ii) Assume that (X, ‖ · ‖) is a normed space. If lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞

(resp. lim‖x‖→+∞ ϕ(x)/‖x‖ = −∞), then we have ψ ∼ ϕ.

Proof. If ϕ = ±ωX , it is immediate to check that ψ = ϕ. From now on, let us
assume that ϕ 6= ±ωX . Since ψ ∈ Eϕ and ϕ ∈ Eψ, there exist f , g : X → R such
that −ψ = (−ϕ)5 f and −ϕ = (−ψ)5 g. It ensues that

−ϕ = (−ϕ)5 (f 5 g). (32)

Now observe that

(−ϕ)5 (f 5 g) ≥ −ϕ ⇐⇒ (−ϕ)(x− y)
p

+ (f 5 g)(y) ≥ −ϕ(x) for all x, y ∈ X
⇐⇒ (f 5 g)(y) ≥ ϕ(x− y)−p ϕ(x) for all x, y ∈ X

⇐⇒ (f 5 g)(y) ≥ sup
x∈X

(ϕ(x− y)−p ϕ(x)) for all y ∈ X

⇐⇒ f 5 g ≥ [ϕ	 ϕ]−.

6N denotes the set of positive integers.
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(i) Assume that ϕ	ϕ = +∞ on X \{0}. We then deduce from the above inequality
that

f 5 g = +∞ on X \ {0}. (33)

If f 5 g = ωX , we infer from (32) that ϕ = −ωX , thus implying in turn that
ψ = −ωX . If f 5 g 6= ωX , equality (33) shows that dom(f 5 g) = {0}. Recalling
that dom(f 5 g) = domf + domg, we deduce that domf + domg = {0}. Hence
there exists ξ ∈ X such that domf = {ξ} and domg = {−ξ}. We infer that

−ψ = (−ϕ)5 f = (−ϕ)(· − ξ)
p

+ f(ξ) (34)

and

−ϕ = (−ψ)5 g = (−ψ)(·+ ξ)
p

+ g(−ξ). (35)

If f(ξ) ∈ R, we obtain from (34) that ψ = ϕ(· − ξ)− f(ξ) and therefore ψ ∼ ϕ. If
g(−ξ) ∈ R, equality (35) shows that ϕ = ψ(· + ξ) − g(−ξ), and hence ϕ ∼ ψ. On
the other hand, if f(ξ) = g(−ξ) = −∞, we deduce from (34)-(35) that

−ψ ≤ (−ϕ)(· − ξ) and − ϕ ≤ (−ψ)(·+ ξ),

thus implying that ψ = ϕ(· − ξ) and therefore ψ ∼ ϕ.

(ii) First assume that lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞. We infer from Lemma 5.2 that
ϕ	 ϕ = +∞ on X \ {0} and we conclude with (i).
Now assume that lim‖x‖→+∞ ϕ(x)/‖x‖ = −∞. From Lemma 5.2, we deduce that
(−ϕ)	 (−ϕ) = +∞ on X \ {0}. Recalling that

(−ϕ)	 (−ϕ) = (−ϕ−)−ϕ = ϕϕ− = [(ϕ−)ϕ]− = [ϕ	 ϕ]− ,

we infer that ϕ	 ϕ = +∞ on X \ {0} and we conclude again with (i). �

Let us define the relation � on F(X,R) by

ψ � ϕ ⇐⇒ ψ ∈ Eϕ.

The relation � is clearly reflexive, and also transitive in view of Proposition 3.2 (iii).
It is compatible with the equivalence relation ∼, i.e.

ϕ ∼ ϕ′, ψ ∼ ψ′ and ψ � ϕ =⇒ ψ′ � ϕ′.

It ensues that we can properly define the relation � on the quotient set F(X,R)/ ∼.
The relation � so defined on F(X,R)/ ∼ is clearly reflexive and transitive, hence
it is a preorder. Let us denote by G, G′ and G′′ the following respective sets

G =
{
f : X → R, f 	 f = +∞ on X \ {0}

}
,

G′ =

{
f : X → R, lim

‖x‖→+∞
f(x)/‖x‖ = +∞

}
,

G′′ =

{
f : X → R, lim

‖x‖→+∞
f(x)/‖x‖ = −∞

}
.

Theorem 5.1 expresses that for every ϕ, ψ ∈ G (resp. G′, G′′), we have

ψ � ϕ, ϕ � ψ =⇒ ψ ∼ ϕ.

Hence the induced relation � on the quotient set G/ ∼ (resp. G′/ ∼, G′′/ ∼) is
antisymmetric, thus giving rise to an order relation.
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Let us now specialize the result of Theorem 5.1 in the case of sets. We define
the equivalence relation ∼ on P(X) by

C ∼ D ⇐⇒ there exists ξ ∈ X such that D = C + ξ,

along with the preorder relation � on P(X) by

C � D ⇐⇒ C ∈ ID.

Recall that the star-difference C ∗− C is defined by

C ∗− C =
⋂
x∈C

C − x = (−C)C .

By applying Theorem 5.1 with indicator functions, we obtain the following corollary.

Corollary 5.1. Let X be a vector space and let Γ, ∆ ⊂ X be such that ∆ ∈ IΓ

and Γ ∈ I∆.

(i) If Γ ∗− Γ = {0}, then we have ∆ ∼ Γ.
(ii) Assume that (X, ‖ · ‖) is a normed space. If the set Γ (resp. X \ Γ) is

bounded, then we have ∆ ∼ Γ.

Proof. If Γ ∈ {∅, X} (resp. ∆ ∈ {∅, X}), it is immediate to check that ∆ = Γ.
Let us now assume that Γ /∈ {∅, X} and ∆ /∈ {∅, X}. In view of Corollary 4.1, the
assumptions ∆ ∈ IΓ and Γ ∈ I∆ imply that δ∆ ∈ EδΓ and δΓ ∈ Eδ∆ .
(i) Assume that Γ ∗− Γ = {0}. Then, by (5) and Proposition 4.4 (i) we have

δΓ 	 δΓ = (δ−Γ)δΓ = δ(−Γ)Γ = δΓ∗−Γ = δ{0}.

By applying Theorem 5.1 (i) with ϕ = δΓ and ψ = δ∆, we obtain that δ∆ ∼ δΓ and
hence ∆ ∼ Γ.
(ii) First assume that Γ is bounded. Then the indicator function δΓ is coercive
and we deduce from Lemma 5.2 that δΓ 	 δΓ = +∞ on X \ {0}. This implies that
Γ ∗− Γ = {0} and we conclude with (i). Now assume that X \ Γ is bounded. From
what precedes, we have (X \ Γ) ∗− (X \ Γ) = {0}. Observing that

Γ ∗− Γ = (−Γ)Γ = (X \ Γ)−X\Γ = −[(−X \ Γ)X\Γ] = −[(X \ Γ) ∗− (X \ Γ)],

we infer that Γ ∗− Γ = {0} and we conclude again with (i). �

Let us denote by Q, Q′ and Q′′ the following respective sets

Q = {C ⊂ X, C ∗− C = {0}},

Q′ = {C ⊂ X, C is bounded},

Q′′ = {C ⊂ X, X \ C is bounded}.

The above corollary expresses that for every Γ, ∆ ∈ Q (resp. Q′, Q′′), we have

∆ � Γ, Γ � ∆ =⇒ ∆ ∼ Γ.

Hence the induced relation � on the quotient set Q/ ∼ (resp. Q′/ ∼, Q′′/ ∼) is
antisymmetric, thus giving rise to an order relation.
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5.2. The case ϕ, ψ ∈ −Γ0(X). Let us first state a result that will be a key
ingredient for the next theorem.

Lemma 5.3. Let X be a vector space, let D ⊂ X be a convex set and let us denote
by Aff (D) the affine space generated by D. Assume that a real-valued function
h : D → R is both convex and concave. Then there exists a unique affine function
h̃ : Aff (D)→ R such that h̃|D = h.

For a proof of this result, the reader is referred to [33]. By extending affinely the

function h̃ to the whole space X, we deduce from the above result that there exists
a linear function ` : X → R along with α ∈ R such that h = `|D + α.

In view of stating the next theorem, given a locally convex space X recall that
the Mackey topology τ(X∗, X) on X∗ is defined as the finest locally convex topology
T on X∗ such that the topological dual of (X∗, T ) coincides with X. If (X, ‖ · ‖)
is normed, this topology is exactly the one associated with the dual norm ‖ · ‖X∗
provided that (X, ‖ · ‖) is a reflexive Banach space.

Theorem 5.2. Let X be a locally convex space. Let ϕ, ψ : X → R be functions
such that ψ ∈ Eϕ and ϕ ∈ Eψ. Assume that either
-the space X is finite-dimensional, or

-one of the functions (−ϕ)∗ and (−ψ)∗ is τ(X∗, X)-continuous at some point and

finite at this point.

Then we have (−ϕ)∗∗ ∼ (−ψ)∗∗. If each of the functions −ϕ and −ψ has a con-
tinuous affine minorant, then co(−ϕ) ∼ co(−ψ). In particular, if −ϕ ∈ Γ0(X) and
−ψ ∈ Γ0(X), then we have ϕ ∼ ψ.

Proof. By assumption, we have −ψ = (−ϕ)5 f and −ϕ = (−ψ)5 g, for some f ,
g : X → R. Taking the conjugates, we obtain that

(−ψ)∗ = (−ϕ)∗ +p f∗ and (−ϕ)∗ = (−ψ)∗ +p g∗. (36)

First observe that if one of the functions (−ϕ)∗, (−ψ)∗, f∗ or g∗ is equal to −ωX∗ ,
then equalities (36) imply that (−ϕ)∗ = (−ψ)∗ = −ωX∗ . This implies in turn that
ϕ = ψ = −ωX and the conclusion is satisfied. From now on, let us assume that
the functions (−ϕ)∗, (−ψ)∗, f∗ and g∗ differ from −ωX∗ . From the first equality
of (36), we deduce that dom(−ψ)∗ ⊂ dom(−ϕ)∗, while the second equality of (36)
yields dom(−ϕ)∗ ⊂ dom(−ψ)∗. Finally, the domains of (−ϕ)∗ and (−ψ)∗ coincide
and both functions are finite on their common domain D. If the set D is empty,
then (−ϕ)∗ = (−ψ)∗ = ωX∗ . This implies that (−ϕ)∗∗ = (−ψ)∗∗ = −ωX , hence
the conclusion is trivially satisfied. Without loss of generality, we now assume that
D 6= ∅. By combining both equalities of (36), we obtain

(−ϕ)∗ = (−ϕ)∗ + f∗ + g∗.

It ensues that f∗ + g∗ = 0 on D. Hence the function f∗|D is finite-valued on D
and both convex and concave. By applying the previous lemma with h = f∗|D, we
obtain that there exist a linear function ` : X∗ → R and α ∈ R such that f∗ = `+α
on D. Coming back to the first equality of (36), we deduce that

(−ψ)∗ = (−ϕ)∗ + `+ α.
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Observe that the above equality holds true on the whole space X∗, since the func-
tions (−ϕ)∗ and (−ψ)∗ are equal to +∞ outside D. Taking the conjugate of each
member, we find for every ξ ∈ X

(−ψ)∗∗(ξ) = sup
x∗∈X∗

[〈x∗, ξ〉 − (−ϕ)∗(x∗)− `(x∗)− α]. (37)

Let us now show that the linear function ` is τ(X∗, X)-continuous on X∗.

Lemma 5.1. Under the assumptions of Theorem 5.2, the function ` : X∗ → R is
τ(X∗, X)-continuous on X∗.

Proof of Lemma 5.1. If the space X is finite-dimensional, the assertion is obvious.
Now assume that the function (−ϕ)∗ is τ(X∗, X)-continuous at some x∗ ∈ X∗ and
finite at this point. There exist a τ(X∗, X)-neighborhood W of x∗ and M ∈ R such
that (−ϕ)∗ ≤M on W . We deduce from (37) that for every ξ ∈ X,

(−ψ)∗∗(ξ) ≥ sup
x∗∈W

[〈x∗, ξ〉 − (−ϕ)∗(x∗)− `(x∗)− α]

≥ sup
x∗∈W

[〈x∗, ξ〉 − `(x∗)]−M − α.

Let us argue by contradiction and assume that ` is not τ(X∗, X)-continuous on
X∗. Since the linear function 〈·, ξ〉−` is not τ(X∗, X)-continuous on X∗, the above
supremum equals +∞. It ensues that (−ψ)∗∗ = ωX , and hence −ψ = ωX . Re-
calling that −ϕ = (−ψ)5 g, we deduce that −ϕ = ωX . This implies in turn that
(−ϕ)∗ = −ωX∗ , a contradiction with (−ϕ)∗(x∗) ∈ R. We conclude that the linear
function ` is τ(X∗, X)-continuous on X∗. Since ϕ and ψ play symmetric roles,
the same conclusion holds true if the function (−ψ)∗ is assumed to be τ(X∗, X)-
continuous at some x̃∗ ∈ X∗ and finite at this point. �

From the previous lemma and the definition of the Mackey topology τ(X∗, X),
there exists x ∈ X such that `(x∗) = 〈x∗, x〉 for every x∗ ∈ X∗. In view of (37), we
deduce that

(−ψ)∗∗(ξ) = sup
x∗∈X∗

[〈x∗, ξ − x〉 − (−ϕ)∗(x∗)]− α = (−ϕ)∗∗(ξ − x)− α.

Since this is true for every ξ ∈ X, we conclude that (−ψ)∗∗ ∼ (−ϕ)∗∗. If the
function (−ϕ) (resp. (−ψ)) admits a continuous affine minorant, we have (−ϕ)∗∗ =
co(−ϕ) (resp. (−ψ)∗∗ = co(−ψ)). We infer that co(−ψ) ∼ co(−ϕ). The last
assertion of the statement is a direct consequence of what precedes. �

Remark 5.1. If the normed space (X, ‖ · ‖) is reflexive, the τ(X∗, X)-continuity
assumption on (−ϕ)∗ (resp. (−ψ)∗) amounts to the continuity assumption with
respect to the dual norm ‖ · ‖X∗ .

Theorem 5.2 implies that the relation � defines an order on the following set

{ϕ ∈ −Γ0(X), (−ϕ)∗ is τ(X∗, X)-continuous at some point}/ ∼ .
If the spaceX is finite-dimensional, the relation� is an order on the set (−Γ0(X))/ ∼.

By applying Theorem 5.2 with the opposite of indicator functions, we obtain the
following corollary.

Corollary 5.2. Let X be a locally convex space. Let Γ, ∆ ⊂ X be such that ∆ ∈ IΓ

and Γ ∈ I∆. Assume that either
-the space X is finite-dimensional, or
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-one of the functions σX\Γ and σX\∆ is τ(X∗, X)-continuous at some point.

Then we have co(X \Γ) ∼ co(X \∆). In particular, if the sets X \Γ and X \∆
are closed and convex, then Γ ∼ ∆.

Proof. From Proposition 4.6 (i), condition ∆ ∈ IΓ (resp. Γ ∈ I∆ ) is equivalent
to −δX\∆ ∈ E−δX\Γ (resp. −δX\Γ ∈ E−δX\∆). By applying Theorem 5.2 with
ϕ = −δX\Γ and ψ = −δX\∆, we obtain the existence of ξ ∈ X and α ∈ R such that

co(δX\∆) = [co(δX\Γ)](· − ξ)− α.

We immediately deduce that co(X \∆) = co(X \ Γ) + ξ. The last assertion of the
statement is a direct consequence of what precedes. �

5.3. A counterexample. Let us start with a preliminary result.

Lemma 5.4. Let X be a topological vector space and let G be a dense additive
subgroup of X. Assume that K ⊂ X is an open set such that K + K ⊂ K and
0 ∈ cl (K). Then we have

(i) For all ξ, ξ′ ∈ X,

[G ∩ (K + ξ)] + [G ∩ (K + ξ′)] = G ∩ (K + ξ + ξ′).

(ii) If in addition cl (K) ∩ −cl (K) = {0}, then

G ∩ (K + ξ) = (G ∩K) + ξ′ =⇒ ξ = ξ′.

If G 6= X and ξ ∈ X \ G, there is no ξ′ ∈ X such that G ∩ (K + ξ) =
(G ∩K) + ξ′.

Proof. (i) Let us fix ξ, ξ′ ∈ X and let us prove the inclusion from the left to the
right. Observe that

[G ∩ (K + ξ)] + [G ∩ (K + ξ′)] ⊂ G+G

and

[G ∩ (K + ξ)] + [G ∩ (K + ξ′)] ⊂ (K + ξ) + (K + ξ′).

Since G+G ⊂ G and K +K ⊂ K, we deduce that

[G ∩ (K + ξ)] + [G ∩ (K + ξ′)] ⊂ G ∩ (K + ξ + ξ′).

Now let us establish the reverse inclusion. Let x ∈ G ∩ (K + ξ + ξ′). Observe
that the open set K + ξ + ξ′ − x contains 0. Recalling that 0 ∈ cl (K), we have
(K + ξ + ξ′ − x) ∩−K 6= ∅, hence (K + ξ − x) ∩ (−K − ξ′) 6= ∅. Since the set K is
open, the set (K + ξ − x)∩ (−K − ξ′) is open. By using the density of G in X, we
deduce that

G ∩ (K + ξ − x) ∩ (−K − ξ′) 6= ∅.
Since G = −G, the above property can be rewritten as

[G ∩ (K + ξ − x)] ∩ [−G ∩ (−K − ξ′)] 6= ∅,
which is in turn equivalent to

0 ∈ [G ∩ (K + ξ − x)] + [G ∩ (K + ξ′)].

Recalling that x ∈ G, we have G = G−x, hence G∩(K+ξ−x) = [G∩(K+ξ)]−x.
In view of the latter inclusion, we conclude that

x ∈ [G ∩ (K + ξ)] + [G ∩ (K + ξ′)].
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The inclusion

G ∩ (K + ξ + ξ′) ⊂ [G ∩ (K + ξ)] + [G ∩ (K + ξ′)]

is proved.
(ii) Let us assume that G∩ (K + ξ) = (G∩K) + ξ′ for some ξ, ξ′ ∈ X. We deduce
that G ∩ (K + ξ) ⊂ K + ξ′. By using the openness of the set K + ξ along with the
density of G in X, we easily infer that K + ξ ⊂ cl (K) + ξ′. This implies in turn
that cl (K) + ξ ⊂ cl (K) + ξ′ and since 0 ∈ cl (K), we obtain ξ − ξ′ ∈ cl (K). By a
symmetric argument, we find ξ′− ξ ∈ cl (K), hence ξ− ξ′ ∈ cl (K)∩−cl (K). Since
cl (K) ∩ −cl (K) = {0} by assumption, we conclude that ξ = ξ′.
Now let ξ ∈ X \ G and assume that there exists ξ′ ∈ X such that G ∩ (K + ξ) =
(G ∩ K) + ξ′. From what precedes, we have ξ′ = ξ and hence G ∩ (K + ξ) =
(G+ ξ) ∩ (K + ξ). On the other hand, the assumption ξ ∈ X \G implies that the
sets G and G + ξ are disjoint. We deduce that G ∩ (K + ξ) = ∅, a contradiction
since the nonempty set K is open and the set G is dense in X. �

Let us now build an example of sets Γ, ∆ ⊂ X satisfying ∆ ∈ IΓ and Γ ∈ I∆,
but with ∆ and Γ not equal up to a translation. We are given an open set K ⊂ X
such that K + K ⊂ K and cl (K) ∩ −cl (K) = {0}, along with a dense additive
subgroup G ⊂ X such that G 6= X. Define the sets C, U , V ⊂ X respectively by

C = G ∩K; U = G ∩ (K + ξ); V = G ∩ (K − ξ),

where ξ ∈ X \G. In view of Lemma 5.4 (i), the set D = C + U satisfies

D = G ∩ (K + ξ) and D + V = G ∩K = C.

Lemma 5.4 (ii) shows that the set D is not translated from C. Defining the com-
plementary sets Γ = X \ C and ∆ = X \D, we have

∆ = X \ (C + U) = UX\C = UΓ ∈ IΓ (38)

and

Γ = X \ (D + V ) = V X\D = V ∆ ∈ I∆. (39)

From what precedes, the set ∆ is not translated from Γ. The above counterexample
for sets obviously furnishes a counteraxample for functions. Indeed, we deduce from
(38)-(39) that the indicator functions δΓ and δ∆ satisfy δ∆ ∈ EδΓ and δΓ ∈ Eδ∆ ,
but the functions δΓ and δ∆ are not equal up to a translation.

By particularizing the above sets G, K ⊂ X, one obtains various counterexam-
ples. If X = R, one can take G = Q, K =]0,+∞[ and ξ ∈ R \ Q. On the other
hand, if X is infinite dimensional, one can assume that G is a dense subspace of X
and that K is an open convex cone such that cl (K) is pointed. This furnishes a
counterexample with convex sets C, D ⊂ X.

6. Cases of either superadditivity or subadditivity of ϕ

Let us first recall that a function ϕ : X → R is said to be superadditive (resp.
subadditive) if for all x, y ∈ X,

ϕ(x+ y) ≥ ϕ(x) +p ϕ(y) (resp. ϕ(x+ y) ≤ ϕ(x)
p

+ ϕ(y)).

Let us start with a preliminary result.
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Lemma 6.1. Let X be a vector space. Let h, k : X → R and assume that k(0) = 0.
Then we have

h = h4 k ⇐⇒ h(x) ≥ h(y) +p k(x− y) for all x, y ∈ X

⇐⇒ h(y) ≤ h(x)
p

+ (−k−)(y − x) for all x, y ∈ X
⇐⇒ h = h5 (−k−).

As a consequence, the function k is superadditive if and only if k = k4 k, which is
in turn equivalent to k = k5 (−k−).

Proof. If h = h4 k, then the definition of h4 k entails that h(x) ≥ h(y) +p k(x− y)

for all x, y ∈ X. Conversely, if this inequality holds true for every x, y ∈ X, we
have

h(x) ≥ sup
y∈X

h(y) +p k(x− y) ≥ h(x) + k(0) = h(x),

for every x ∈ X. This implies that h(x) = (h4 k)(x) for every x ∈ X and the first
equivalence is proved.
For the second equivalence, observe that for all x, y ∈ X

h(x) ≥ h(y) +p k(x− y) ⇐⇒ h(y) ≤ h(x)
p

+ (−k)(x− y) = h(x)
p

+ (−k−)(y− x).

The proof of the third equivalence follows the same lines as the first one. For the
last assertion, observe that k is superadditive if and only if k(x) ≥ k(y) +p k(x− y)

for all x, y ∈ X. It suffices then to use what precedes with h = k. �

Through the above lemma, the following theorem provides, in particular, various
characterizations of the class Eϕ when ϕ is superadditive.

Theorem 6.1. Let X be a vector space. Let ϕ : X → R be a superadditive function
satisfying ϕ(0) = 0.

(a) For a function g : X → R, the following assertions are equivalent
(i) g ∈ Eϕ;

(ii) g = g4 ϕ;
(iii) g(x) ≥ g(y) +p ϕ(x− y) for all x, y ∈ X;

(iv) g(y) ≤ g(x)
p

+ (−ϕ−)(y − x) for all x, y ∈ X;
(v) g = g5 (−ϕ−);

(vi) −g ∈ Eϕ− .
(b) For every function f : X → R, f 5 (−ϕ−) is the greatest ϕ-envelope that

is majorized by f , while f 4 ϕ is the lowest ϕ-envelope that is minorized
by f .

(c) The following inclusion holds true E−ϕ ⊂ Eϕ− .

Proof. (a) Let us assume that g ∈ Eϕ. Then there exists f : X → R such that
g = fϕ = (−f)4ϕ. Using the superadditivity of ϕ and the last assertion of Lemma
6.1, we have

g4 ϕ = ((−f)4 ϕ)4 ϕ = (−f)4 (ϕ4 ϕ) = (−f)4 ϕ = g.

This shows that (i) =⇒ (ii). Conversely, if g = g4 ϕ then g = (−g)ϕ and clearly
g ∈ Eϕ. The equivalences (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) follow directly from
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Lemma 6.1. For the equivalence (v) ⇐⇒ (vi), observe that

g = g5 (−ϕ−) ⇐⇒ −g = (−g)4 ϕ−,

and invoke the equivalence (i) ⇐⇒ (ii).
(b) Let f : X → R. Observe that

(f 5 (−ϕ−))5 (−ϕ−) = f 5 ((−ϕ−)5 (−ϕ−))

= f 5 (−(ϕ− 4 ϕ−))

= f 5 (−ϕ−) by Lemma 6.1 since ϕ− is superadditive.

In view of the implication (v) =⇒ (ii) in (a), we deduce that

f 5 (−ϕ−) = (f 5 (−ϕ−))4 ϕ = ((−f)4 ϕ−)
ϕ

= (fϕ−)
ϕ
.

Hence f 5 (−ϕ−) coincides with (fϕ−)
ϕ

, which is by property (6) the greatest
element of Eϕ that is majorized by f . Replacing f (resp. ϕ) with −f (resp. ϕ−)
and taking the opposite, we deduce that f 4 ϕ is the lowest element of −Eϕ− that
is minorized by f . It suffices then to recall that Eϕ− = −Eϕ, see the equivalence
(i)⇐⇒ (vi) in (a).
(c) Since ϕ ∈ Eϕ, we have −ϕ ∈ −Eϕ = Eϕ− . In view of Proposition 3.2 (iii), we
infer that E−ϕ ⊂ Eϕ− . �

Example 6.1. Assume that (X, ‖ · ‖) is a normed space. For k ≥ 0 and α ∈]0, 1],
take ϕ = −k‖ · ‖α. Observe that for all x, y ∈ X

‖x+ y‖α ≤ (‖x‖+ ‖y‖)α ≤ ‖x‖α + ‖y‖α. (40)

It ensues that the function ‖ · ‖α is subadditive, hence ϕ is superadditive. From
Theorem 6.1 (a), we deduce that

f ∈ E−k ‖·‖
α

⇐⇒ f(x) ≥ f(y)− k ‖x− y‖α for all x, y ∈ X. (41)

By reversing the roles of x and y, we immediately obtain

f ∈ E−k ‖·‖
α

⇐⇒ f(x) ≤ f(y) + k ‖x− y‖α for all x, y ∈ X. (42)

If f(y) = +∞ (resp. f(y) = −∞) for some y ∈ X, we deduce from (41) (resp. (42))
that f = ωX (resp. f = −ωX). On the other hand, if the function f is finite-valued,
we infer from (41)-(42) that |f(x)−f(y)| ≤ k ‖x−y‖α for all x, y ∈ X. This implies
that

E−k ‖·‖
α

= {f : X → R, |f(x)− f(y)| ≤ k ‖x− y‖α for all x, y ∈ X} ∪ {ωX ,−ωX}
= {f : X → R, f is α-Hölderian with constant k} ∪ {ωX ,−ωX}.

From Theorem 6.1 (b), we deduce that f 5 k‖ · ‖α (resp. f 4 (−k‖ · ‖α)) is the
greatest (resp. lowest) ϕ-envelope that is majorized (resp. minorized) by f . Since
the map ‖ · ‖α is even, Theorem 6.1 (c) shows that Ek‖·‖α ⊂ E−k‖·‖α .
Now assume that α = 1. From what precedes, we obtain that

E−k ‖·‖ = {f : X → R, f is k-Lipschitz continuous} ∪ {ωX ,−ωX}.

The Pasch-Hausdorff regularization of f , defined by lk(f) = f5k‖·‖, is the greatest
function of E−k ‖·‖ that is majorized by f . On the other hand, f 4 (−k ‖ · ‖) is
the lowest function of E−k ‖·‖ that is minorized by f . The inclusion Ek ‖·‖ ⊂ E−k ‖·‖
shows that the k‖ · ‖-envelopes are either k-Lipschitz continuous or equal to ±ωX .
The convexity of ‖ · ‖ implies that k‖ · ‖-envelopes are also convex, therefore the
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inclusion Ek ‖·‖ ⊂ E−k ‖·‖ is strict. This ensures that the inclusion in (c) of the
above theorem generally fails to be an equality.

As regards the function ϕ = −k‖ · ‖α it is also worth mentioning that, for
η(x, y) := ‖x − y‖α with α > 0 (even with more general coupling functions) and
taking

Φ := {r − σ η(·, y) : r ∈ R, σ > 0, y ∈ X},

a lower semicontinuous function on the normed space X is shown in [7, Theorem
4.2] to be Φ-convex (i.e., a pointwise supremum of functions in Φ), whenever it
is bounded from below by a function in Φ. The latter property with α = 2 was
previously proved in [29, Theorem 2]. The function (x, y) 7→ −k‖x−y‖α is also used
as a particular important example of coupling functions arising in the framework
of generalized conjugacy in many papers, see for example [23, p. 204].

Remark 6.1. Given a nonincreasing convex function θ : R+ → R such that θ(0) = 0,
one can easily check that the function θ(‖ · ‖) is superadditive. Hence the previous
example can be generalized by taking ϕ = θ(‖ · ‖).

Example 6.2. Let X be a vector space. Let Λ ⊂ X be a set containing the origin
and such that Λ + Λ ⊂ Λ. The function δΛ is clearly subadditive. This implies that
the function ϕ = −δΛ is superadditive. By Theorem 6.1 (a) it follows that

f ∈ E−δΛ ⇐⇒ f(x) ≥ f(y) +p (−δΛ)(x− y) for all x, y ∈ X

⇐⇒ f(x) ≥ f(y) if x− y ∈ Λ

⇐⇒ f is Λ-nondecreasing.

This and Theorem 6.1 (b) entail that f 5 δ−Λ (resp. f 4 (−δΛ)) is the greatest
(resp. lowest) Λ-nondecreasing function that is majorized (resp. minorized) by f .
Further, Theorem 6.1 (c) says that EδΛ ⊂ E(−δΛ)− = E−δ−Λ , hence the functions
of EδΛ are Λ-nonincreasing. In fact, this can be recovered directly by using the
characterization of EδΛ given by Proposition 4.4 (ii).

7. Case ϕ ∈ Γ(X)

7.1. Expressions of ϕ-envelopes as Legendre-Fenchel conjugates. Let us
start with the following elementary lemma.

Lemma 7.1. Let X be a locally convex space. For every function f : X → R, we
have (f∗)− = (f−)∗.

Proof. It suffices to use the definition of the Legendre-Fenchel conjugate. For every
ξ∗ ∈ X∗, we have

(f∗)−(ξ∗) = (f∗)(−ξ∗) = sup
x∈X
{〈−ξ∗, x〉 − f(x)}

= sup
y∈X
{〈ξ∗, y〉 − f(−y)}

= sup
y∈X
{〈ξ∗, y〉 − f−(y)} = (f−)∗(ξ∗).

�
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Theorem 7.1. Let X be a locally convex space. Let us assume that ϕ ∈ Γ(X) and
let ψ : X∗ → R be such that ψ∗ = ϕ. Then we have for every function f : X → R

fϕ = (ψ
p− (f−)∗)∗. (43)

Moreover the following equivalences hold

g ∈ Eϕ ⇐⇒ g = (ψ
p− h)∗ for some h ∈ Γ(X∗)

⇐⇒ g = (ψ
p− (ψ

p− g∗)∗∗)∗.
Proof. For every x ∈ X,

fϕ(x) = sup
y∈X
{ϕ(x− y)−p f(y)}

= sup
y∈X

{
sup
ξ∗∈X∗

{〈ξ∗, x− y〉 − ψ(ξ∗)} −p f(y)

}
since ϕ = ψ∗

= sup
y∈X

sup
ξ∗∈X∗

{〈ξ∗, x− y〉 − ψ(ξ∗)−p f(y)}

= sup
ξ∗∈X∗

sup
y∈X
{〈ξ∗, x− y〉 − ψ(ξ∗)−p f(y)}

= sup
ξ∗∈X∗

{
sup
y∈X
{〈ξ∗,−y〉 − f(y)} −p ψ(ξ∗) + 〈ξ∗, x〉

}
= sup

ξ∗∈X∗
{f∗(−ξ∗)−p ψ(ξ∗) + 〈ξ∗, x〉}

=
(
ψ

p− (f∗)−

)∗
(x)

=
(
ψ

p− (f−)∗
)∗

(x) in view of Lemma 7.1.

For the first equivalence, recall that g ∈ Eϕ if and only if there exists f : X → R
such that g = fϕ. Then use the equality fϕ =

(
ψ

p− (f−)∗
)∗

and the fact that the

range of the Legendre-Fenchel transform is equal to Γ(X∗), see, e.g., [20].
For the second equivalence, observe that

g ∈ Eϕ ⇐⇒ g = (gϕ−)
ϕ

⇐⇒ g =
[(
ψ−

p− (g−)∗
)∗]ϕ

from formula (43)

⇐⇒ g =
[(

(ψ
p− g∗)∗)

−

]ϕ
by Lemma 7.1

⇐⇒ g =
(
ψ

p− (ψ
p− g∗)∗∗)∗ from formula (43) again.

�

Remark 7.1. Since ϕ ∈ Γ(X) by assumption, we have ϕ∗∗ = ϕ, hence we can take
ψ = ϕ∗ in the statement of Theorem 7.1.

Remark 7.2. Formula (43) can be recovered partially by using a formula on the
conjugate of the difference of functions. Recall that for ψ : X → R ∪ {+∞} and
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h ∈ Γ0(X),

∀x∗ ∈ X∗, (ψ
p− h)∗(x∗) = sup

y∗∈domh∗
{ψ∗(x∗ + y∗)− h∗(y∗)}

= (ψ∗ 	 h∗)(x∗). (44)

This formula is due to Hiriart-Urruty [11]. It was established first by Pshenich-
nyi [26], assuming that both ψ and h are finite-valued convex functions. Now let
ϕ ∈ Γ0(X) and f ∈ Γ0(X). By reversing the roles of X and X∗ and by using
equality (44) with h = (f−)∗ and ψ : X∗ → R ∪ {+∞} such that ψ∗ = ϕ, we find

(ψ
p− (f−)∗)∗ = ϕ	 (f−)∗∗

= ϕ	 f− = fϕ.

Hence we recover formula (43) in the case where both functions ϕ and f are in
Γ0(X).

The next corollary says in particular that the ϕ-envelope of a function coincides
with the ϕ-envelope of its lower semicontinuous convex hull whenever ϕ ∈ Γ(X).

Corollary 7.1. Let X be a locally convex space and ϕ ∈ Γ(X). Then we have for
every function f : X → R and every function g : X → R satisfying cof ≤ g ≤ f ,

fϕ = (cof)ϕ = gϕ.

Proof. For the first equality, it suffices to use Theorem 7.1 and the fact that the
functions f and cof have the same Legendre-Fenchel conjugate. On the other hand,
since cof ≤ g ≤ f , we see that fϕ ≤ gϕ ≤ (cof)ϕ. Recalling that fϕ = (cof)ϕ, the
second equality immediately follows. �

For every set D ⊂ X∗, we define as in section 3 the classes ΣD and Σ∗D by

ΣD = {f : X∗ → R, domf ⊂ D} and Σ∗D = {f∗, f ∈ ΣD}.

In the same vein, let us define the classes Σ̂D and Σ̂∗D by

Σ̂D = {f : X∗ → R, domf = D} and Σ̂∗D = {f∗, f ∈ Σ̂D}.

The following proposition allows us to characterize the classes Σ̂∗D and Σ∗D.

Proposition 7.1. Let X be a locally convex space and let D ⊂ X∗ be such that
D = {a∗i , i ∈ I} for some set I. Then for every function f : X → R, we have

f ∈ Σ̂∗D (resp. Σ∗D) if and only if there exists a family (αi)i∈I ⊂ R ∪ {+∞} (resp.

R) such that f = supi∈I〈a∗i , ·〉+ αi.

Proof. Assume that f ∈ Σ̂∗D (resp. Σ∗D). By definition, there exists g : X∗ → R
such that f = g∗ and domg = D (resp. domg ⊂ D). Hence we have

f = sup
x∗∈D

〈x∗, ·〉 − g(x∗) = sup
i∈I
〈a∗i , ·〉 − g(a∗i ).

By setting αi = −g(a∗i ) for every i ∈ I, we obtain f = supi∈I〈a∗i , ·〉 + αi with

αi ∈ R ∪ {+∞} (resp. R).
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Conversely, assume that there exists (αi)i∈I ⊂ R ∪ {+∞} (resp. R) such that
f = supi∈I〈a∗i , ·〉+ αi. Then we have

f = sup
x∗∈D

[
sup

{i∈I, a∗i=x∗}
〈a∗i , ·〉+ αi

]
= sup

x∗∈D

[
〈x∗, ·〉+ sup

{i∈I, a∗i=x∗}
αi

]
.

Defining the function h : X∗ → R by

h(x∗) =

{
sup

{i∈I, a∗i=x∗}
αi if x∗ ∈ D

−∞ if x∗ /∈ D,

we obtain

f = sup
x∗∈D

〈x∗, ·〉+ h(x∗)

= sup
x∗∈X∗

〈x∗, ·〉+ h(x∗).

We conclude that f = (−h)∗ with dom(−h) = D (resp. dom(−h) ⊂ D), hence

f ∈ Σ̂∗D (resp. f ∈ Σ∗D). �

Example 7.1. Take D = {a∗1, · · · , a∗n} ⊂ X∗ for some n ≥ 1. The previous proposi-
tion shows that, for every function f : X → R,

f ∈ Σ∗D ⇐⇒ f =
n

sup
i=1
〈a∗i , ·〉+ αi for some α1, · · · , αn ∈ R. (45)

On the other hand, if f ∈ Γ0(X), the following equivalence holds true

domf∗ ⊂ D ⇐⇒ domf∗ ⊂ {a∗i } for some i ∈ {1, · · · , n}

because the set domf∗ is convex. Since f∗ is proper, this is in turn equivalent to
f∗ = δ{a∗i } − αi for some αi ∈ R. Taking the conjugate, we find f = 〈a∗i , ·〉 + αi.

It ensues that the set {f ∈ Γ0(X), domf∗ ⊂ D} coincides with the set of affine
continuous functions with slopes in D = {a∗1, · · · , a∗n}. This yields an example for
which the inclusion (14) is strict. By applying again Proposition 7.1, we obtain
that

f ∈ Σ∗co (D) ⇐⇒ f = sup
x∗∈co (D)

〈x∗, ·〉+ αx∗ , (46)

with αx∗ ∈ R for every x∗ ∈ co(D). The comparison of (45) and (46) clearly shows
that the inclusion Σ∗D ⊂ Σ∗co (D) is strict as soon as the set D = {a∗1, · · · , a∗n} is not

a singleton. This easily implies that the inclusion (15) is strict for such a set D.

The next result gives several upper bounds (in the sense of inclusion) for the

set Eϕ, respectively when ϕ ∈ Γ(X), ϕ ∈ Σ̂∗D and ϕ ∈ Σ∗D.

Corollary 7.2. Let X be a locally convex space and let ϕ ∈ Γ(X).

(i) The following inclusions hold true

Eϕ ⊂
⋂

{ψ, ϕ=ψ∗}

(
Σ̂∗domψ ∪ {−ωX}

)
⊂

⋂
{ψ, ϕ=ψ∗}

Σ∗domψ. (47)
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(ii) For every subset D ⊂ X∗, we have

ϕ ∈ Σ̂∗D ⇐⇒ Eϕ ⊂ Σ̂∗D ∪ {−ωX} if ϕ 6= −ωX
ϕ ∈ Σ∗D ⇐⇒ Eϕ ⊂ Σ∗D.

(iii) Assume that there exist families (a∗i )i∈I ⊂ X∗ and (αi)i∈I ⊂ R ∪ {+∞}
(resp. R) such that

ϕ = sup
i∈I
〈a∗i , ·〉+ αi.

Then for every g ∈ Eϕ \ {−ωX} (resp. g ∈ Eϕ), there exists (βi)i∈I ⊂
R ∪ {+∞} (resp. R) such that

g = sup
i∈I
〈a∗i , ·〉+ βi.

In particular, if the set I is finite, every ϕ-envelope is polyhedral.

Proof. (i) Let ψ : X∗ → R be such that ϕ = ψ∗. Assuming that g ∈ Eϕ,

Theorem 7.1 shows that g = (ψ
p− h)∗ for some h ∈ Γ(X∗). If h = −ωX∗ , we have

ψ
p−h = ωX∗ and therefore g = −ωX . If h 6= −ωX∗ , we see that dom(ψ

p−h) = domψ,

hence g ∈ Σ̂∗domψ. We deduce the inclusion Eϕ ⊂ Σ̂∗domψ∪{−ωX}. Since this is true

for every function ψ : X∗ → R such that ϕ = ψ∗, the first inclusion of (47) follows.

For the second inclusion, it suffices to notice that Σ̂∗domψ ∪ {−ωX} ⊂ Σ∗domψ.

(ii) Let us fix D ⊂ X∗ and assume that ϕ ∈ Σ̂∗D. Then there exists ψ : X∗ → R
such that ϕ = ψ∗ and domψ = D. We deduce from the first inclusion of (47) that

Eϕ ⊂ Σ̂∗domψ ∪ {−ωX} = Σ̂∗D ∪ {−ωX}.

Conversely, if Eϕ ⊂ Σ̂∗D∪{−ωX} and if ϕ 6= −ωX , then we obtain ϕ ∈ Σ̂∗D according
to the inclusion ϕ ∈ Eϕ. The proof of the second equivalence is analogous and left
to the reader.
(iii) Let (a∗i )i∈I ⊂ X∗ and (αi)i∈I ⊂ R ∪ {+∞} (resp. R) be such that ϕ =

supi∈I〈a∗i , ·〉+ αi. Let us set D = {a∗i , i ∈ I}. Proposition 7.1 shows that ϕ ∈ Σ̂∗D
(resp. Σ∗D). If g ∈ Eϕ \ {−ωX} (resp. g ∈ Eϕ), we deduce from (ii) that g ∈ Σ̂∗D
(resp. Σ∗D). By applying Proposition 7.1 again, we derive the existence of (βi)i∈I ⊂
R ∪ {+∞} (resp. R) such that g = supi∈I〈a∗i , ·〉 + βi. Finally, if the set I is finite
and if g is a ϕ-envelope, then either g = ±ωX or the function g is the supremum
of a finite collection of continuous affine functions. We then conclude that g is
polyhedral. �

By applying the second equivalence of Corollary 7.2 (ii) with D = X∗, we obtain
that ϕ ∈ Γ(X) if and only if Eϕ ⊂ Γ(X). Corollary 7.3 below shows that in this
case the set Eϕ is strictly included in Γ(X). Notice that for ϕ ∈ Γ0(X) satisfying a
suitable condition (named generating condition), the functions of the class Eϕ have
been studied in [24] under the terminology of ϕ-strongly convex functions.

Following Theorem 7.1 and Remark 7.1, we have g ∈ Eϕ if and only if g =

(ϕ∗
p− h)∗ for some h ∈ Γ(X∗). Let us now have a look at the class of the functions

equal to (ϕ∗
p− h)∗ for some h : X∗ → R ∪ {+∞} not necessarily in Γ(X∗).

Proposition 7.2. Let X be a locally convex space. Assume that ϕ ∈ Γ0(X) and
g ∈ Γ0(X).
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(i) If g = (ϕ∗
p− h)∗ for some h : X∗ → R ∪ {+∞} , then we have g∞ = ϕ∞,

which is equivalent to clw∗(domg∗) = clw∗(domϕ∗).

(ii) If domg∗ = domϕ∗, then g = (ϕ∗
p− h)∗ for h : X∗ → R ∪ {+∞} given by

h = ϕ∗
p− g∗.

Proof. (i) Assume that g = (ϕ∗
p− h)∗ for some h : X∗ → R∪ {+∞}. By definition

of the Legendre-Fenchel transform, we obtain

g = sup
ξ∗∈X∗

{〈ξ∗, ·〉+ h(ξ∗)−p ϕ∗(ξ∗)}
= sup

ξ∗∈domϕ∗
{〈ξ∗, ·〉+ h(ξ∗)− ϕ∗(ξ∗)}. (48)

Observe that the function h cannot take the value +∞ on domϕ∗ (otherwise we
would have g = ωX). Therefore the values −ϕ∗(ξ∗) and h(ξ∗) are finite for every
ξ∗ ∈ domϕ∗. By taking the recession function of each member of (48), we obtain

g∞ = sup
ξ∗∈domϕ∗

[〈ξ∗, ·〉+ h(ξ∗)− ϕ∗(ξ∗)]∞.

The recession function of the affine map 〈ξ∗, ·〉+h(ξ∗)−ϕ∗(ξ∗) is equal to 〈ξ∗, ·〉, thus
implying that g∞ = supξ∗∈domϕ∗〈ξ∗, ·〉 = σdomϕ∗ . Recalling that σdomϕ∗ = ϕ∞, we
deduce that g∞ = ϕ∞, which is in turn equivalent to the equality clw∗(domg∗) =
clw∗(domϕ∗), see [20].

(ii) Assume that domg∗ = domϕ∗. It is easy to check that for every x∗ ∈ X∗,

(
ϕ∗

p− (ϕ∗
p− g∗))(x∗) =

{
g∗(x∗) if x∗ ∈ domg∗

+∞ if x∗ /∈ domg∗.

It ensues that ϕ∗
p− (ϕ∗

p− g∗) = g∗. Since g ∈ Γ0(X) by assumption, we have

g = g∗∗, hence g = (ϕ∗
p− (ϕ∗

p− g∗))∗. The function h = ϕ∗
p− g∗ takes its values in

R ∪ {+∞} because domg∗ = domϕ∗. �

Combining Theorem 7.1 and Proposition 7.2, we derive a necessary (resp. suffi-
cient) condition for a function g ∈ Γ0(X) to be a ϕ-envelope.

Corollary 7.3. Let X be a locally convex space. Assume that ϕ ∈ Γ0(X) and
g ∈ Γ0(X).

(i) If g ∈ Eϕ then g∞ = ϕ∞.

(ii) If domg∗ = domϕ∗ and ϕ∗
p− g∗ ∈ Γ0(X∗), then g ∈ Eϕ.

Proof. (i) If g ∈ Eϕ, we deduce from Theorem 7.1 that g = (ϕ∗
p− h)∗ for some

h ∈ Γ(X∗). Since g ∈ Γ0(X) by assumption, we have h 6= −ωX∗ , hence the function
h does not take the value −∞. Proposition 7.2 (i) then implies that g∞ = ϕ∞.

(ii) If domg∗ = domϕ∗, Proposition 7.2 (ii) shows that g = (ϕ∗
p− h)∗ with h =

ϕ∗
p− g∗. Since h ∈ Γ0(X∗) by assumption, we conclude by Theorem 7.1 that

g ∈ Eϕ. �
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7.2. Klee envelopes. Let (X, ‖ · ‖) be a normed space and let f : X → R be an
extended real-valued function. For any reals λ > 0 and p ≥ 1, we define the Klee
envelope of f with index λ and power p as

κλ,pf(x) = sup
y∈X

(
1

pλ
‖x− y‖p − f(y)

)
.

In other words, we have κλ,pf = fϕ with the function ϕ : X → R defined by
ϕ(x) = 1

pλ‖x‖
p. Applying Theorem 7.1 with ϕ = 1

pλ‖ · ‖
p and denoting by ‖ · ‖X∗

the dual norm on X∗ we obtain the following result.

Corollary 7.4. Let (X, ‖ · ‖) be a normed space. For any λ > 0, p > 1 and for
every function f : X → R, we have

κλ,pf =

(
λq−1

q
‖ · ‖qX∗ − (f−)∗

)∗
, (49)

where q > 1 is the conjugate exponent of p. Moreover the following assertions are
equivalent

(i) g is a Klee envelope with index λ and power p;

(ii) g =
(
λq−1

q ‖ · ‖
q
X∗ − h

)∗
for some h ∈ Γ(X∗);

(iii) g =
(
λq−1

q ‖ · ‖
q
X∗ −

(
λq−1

q ‖ · ‖
q
X∗ − g∗

)∗∗)∗
.

These assertions are satisfied whenever the following stronger condition is fulfilled

(iv) g ∈ Γ(X) and λq−1

q ‖ · ‖
q
X∗ − g∗ ∈ Γ(X∗).

Proof. It suffices to apply Theorem 7.1 with ϕ = 1
pλ‖ · ‖

p and ψ = ϕ∗ = λq−1

q ‖ · ‖
q
X∗ .

Let us now establish the implication (iv) =⇒ (ii). Assume that g ∈ Γ(X) and that
λq−1

q ‖ · ‖
q
X∗ − g∗ ∈ Γ(X∗). The function g∗ can be written as g∗ = λq−1

q ‖ · ‖
q
X∗ −h

for some h ∈ Γ(X∗). Since g ∈ Γ(X) by assumption, we have g = g∗∗. Hence we

deduce that g =
(
λq−1

q ‖ · ‖
q
X∗ − h

)∗
and assertion (ii) is proved. �

Corollary 7.5. Let (X, ‖·‖) be a normed space. For every p > 1 and every C ⊂ X,
the farthest distance function ∆C = supy∈C ‖ · −y‖ satisfies

1

p
∆p
C =

(
1

q
‖ · ‖qX∗ − σ−C

)∗
.

Proof. Observe that

κ1,p δC = sup
y∈X

{
1

p
‖ · −y‖p − δC(y)

}
= sup
y∈C

1

p
‖ · −y‖p =

1

p
∆p
C .

It suffices then to apply formula (49) of Corollary 7.4 with f = δC and λ = 1. �

Additional properties of the Klee envelopes can be obtained in the case when
(X, ‖ · ‖) is a Hilbert space and p = 2.

Theorem 7.2. Assume that X is a Hilbert space endowed with the scalar product
〈·, ·〉 and the corresponding norm ‖ · ‖.
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(a) For every λ > 0 and every function f : X → R, we have

κλ,2f =

(
λ

2
‖ · ‖2 − (f−)∗

)∗
(50)

=

(
f − 1

2λ
‖ · ‖2

)∗ (
− ·
λ

)
+

1

2λ
‖ · ‖2; (51)

κλ,2 (κλ,2 f) =

(
f − 1

2λ
‖ · ‖2

)∗∗
+

1

2λ
‖ · ‖2. (52)

(b) For λ > 0 and f : X → R the following assertions are equivalent
(i) f is a Klee envelope with index λ and power 2;

(ii) f =
(
λ
2 ‖ · ‖

2 − h
)∗

for some h ∈ Γ(X);

(iii) f =
(
λ
2 ‖ · ‖

2 −
(
λ
2 ‖ · ‖

2 − f∗
)∗∗)∗

;

(iv) f − 1
2λ‖ · ‖

2 ∈ Γ(X);

(v) f ∈ Γ(X) and λ
2 ‖ · ‖

2 − f∗ ∈ Γ(X).

Proof. (a) For the equality (50), it suffices to apply Corollary 7.4 with p = 2. For
the equality (51), observe that for every x ∈ X,

κλ,2f(x) = sup
y∈X

{
1

2λ
‖x− y‖2 − f(y)

}
= sup

y∈X

{
1

2λ
‖x‖2 +

1

2λ
‖y‖2 − 1

λ
〈x, y〉 − f(y)

}
=

(
f − 1

2λ
‖ · ‖2

)∗
(−x/λ) +

1

2λ
‖x‖2.

By iterating we deduce that

κλ,2 (κλ,2 f) =

(
κλ,2 f −

1

2λ
‖ · ‖2

)∗ (
− ·
λ

)
+

1

2λ
‖ · ‖2

=

[(
f − 1

2λ
‖ · ‖2

)∗ (
− ·
λ

)]∗ (
− ·
λ

)
+

1

2λ
‖ · ‖2

=

(
f − 1

2λ
‖ · ‖2

)∗∗
+

1

2λ
‖ · ‖2,

which proves the equality (52).
(b) We now show that assertions (i) to (v) are equivalent. The equivalences

(i)⇐⇒ (ii)⇐⇒ (iii) are consequences of Corollary 7.4 applied with p = 2. Let us
show the equivalence (i) ⇐⇒ (iv). Observe that f is a Klee envelope with index
λ and power 2 if and only if f ∈ Eϕ with ϕ = 1

2λ‖ · ‖
2. From the equivalence

(7) ⇔ (8) and the fact that ϕ− = ϕ, this is in turn equivalent to f = (fϕ)ϕ. Since
(fϕ)ϕ = κλ,2 (κλ,2 f) and using the equality (52), we infer that

f is a Klee envelope with index λ and power 2

m

f − 1

2λ
‖ · ‖2 =

(
f − 1

2λ
‖ · ‖2

)∗∗
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m

f − 1

2λ
‖ · ‖2 ∈ Γ(X).

Hence the equivalence (i)⇐⇒ (iv) is proved. Let us now show that (iv) =⇒ (v). If
f − 1

2λ‖ · ‖
2 = ±ωX , then assertion (v) is trivially satisfied. Hence we can assume

that f = 1
2λ‖ · ‖

2 +h with h ∈ Γ0(X). This clearly implies that f ∈ Γ0(X). Taking

the conjugate, we obtain that f∗ = λ
2 ‖ · ‖

2 5 h∗ since the classical qualification
condition is satisfied. It ensues that for every x ∈ X,

f∗(x) = inf
y∈X

{
λ

2
‖x− y‖2 + h∗(y)

}
=

λ

2
‖x‖2 + inf

y∈X

{
−λ〈x, y〉+

λ

2
‖y‖2 + h∗(y)

}
.

Therefore,

λ

2
‖x‖2 − f∗(x) = sup

y∈X

{
λ〈x, y〉 − λ

2
‖y‖2 − h∗(y)

}
=

(
h∗ +

λ

2
‖ · ‖2

)∗
(λx).

This clearly implies that λ
2 ‖ · ‖

2 − f∗ ∈ Γ0(X) and (v) is proved. Let us finally
observe that the implication (v) =⇒ (ii) has been established in Corollary 7.4.
As a conclusion, we have shown the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv)
along with the implications (iv) =⇒ (v) =⇒ (ii), which clearly establishes that all
assertions (i) to (v) are equivalent. �

The equalities (51) and (52) have been previously established by Wang [37]
respectively in Proposition 4.5 and at the end of the proof of Proposition 4.13. As
noticed in [37, Proposition 4.13] those equalities directly yield, for f proper and
lower semicontinuous, that κλ,2(κλ,2f) = f if and only if f − 1

2λ‖ · ‖
2 is convex.

Taking f as the indicator function of a set C gives the following corollary.

Corollary 7.6. Assume that X is a Hilbert space. For every C ⊂ X, the farthest
distance function ∆C satisfies

1

2
∆2
C =

(
1

2
‖ · ‖2 − σ−C

)∗
=

(
δ−C −

1

2
‖ · ‖2

)∗
+

1

2
‖ · ‖2.

Proof. It suffices to apply formulas (50)-(51) of Theorem 7.2 with f = δC and
λ = 1. �

7.3. Case of a positively homogeneous function ϕ. In this subsection, we as-
sume that X is a locally convex space and that the function ϕ ∈ Γ0(X) is positively
homogeneous, i.e. ϕ = σD for a nonempty set D ⊂ X∗. By applying Theorem 7.1
with ψ = δD, we immediately obtain the following result.

Corollary 7.7. Let X be a locally convex space. Take ϕ = σD for a nonempty set
D ⊂ X∗. Then we have for every function f : X → R,

fϕ = (δD
p− (f−)∗)∗ = sup

ξ∗∈D
{〈ξ∗, ·〉+ f∗(−ξ∗)}.
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Moreover,

g ∈ Eϕ ⇐⇒ g = (δD
p− h)∗ = sup

ξ∗∈D
{〈ξ∗, ·〉+ h(ξ∗)} for some h ∈ Γ(X∗)

⇐⇒ g = (δD
p− (δD

p− g∗)∗∗)∗.
Let us now particularize to the case of a normed space (X, ‖·‖) and take ϕ = ‖·‖.

Corollary 7.8. Let (X, ‖.‖) be a normed space. For every function f : X → R, we
have

κ1,1 f = (δBX∗
p− (f−)∗)∗ = sup

ξ∗∈BX∗
{〈ξ∗, ·〉+ f∗(−ξ∗)}

= (δSX∗
p− (f−)∗)∗ = sup

ξ∗∈SX∗
{〈ξ∗, ·〉+ f∗(−ξ∗)}.

Moreover,

g is a Klee envelope with index 1 and power 1

m

g = (δBX∗
p− h)∗ = sup

ξ∗∈BX∗
{〈ξ∗, ·〉+ h(ξ∗)} for some h ∈ Γ(X∗)

m

g = (δBX∗
p− (δBX∗

p− g∗)∗∗)∗
m

g = (δSX∗
p− h)∗ = sup

ξ∗∈SX∗
{〈ξ∗, ·〉+ h(ξ∗)} for some h ∈ Γ(X∗)

m

g = (δSX∗
p− (δSX∗

p− g∗)∗∗)∗.
Proof. For the equalities κ1,1 f =

(
δBX∗

p− (f−)∗
)∗

and κ1,1 f =
(
δSX∗

p− (f−)∗
)∗

,

use Corollary 7.7 respectively with D = BX∗ and D = SX∗ . The characterizations
of Klee envelopes with index 1 and power 1 follow immediately. �

Assuming that f = δC , we have

κ1,1 δC = sup
x∈X
{‖ · −x‖ − δC(x)} = sup

x∈C
‖ · −x‖ = ∆C ,

where ∆C is the farthest distance function. Taking into account the previous corol-
lary, we then obtain

∆C =
(
δBX∗

p− σ−C)∗ =
(
δSX∗

p− σ−C)∗ .
It is interesting to compare this expression with the one of the signed distance sgd
defined by sgd(·, C) := d(·, C)− d(·, X \ C), for which it is known that sgd(·, C) =
(δSX∗ + σC)

∗
, see [22].

Consider now the case of a finite set D = {a∗1, . . . , a∗n} ⊂ X∗ for n ≥ 1. By
applying Corollary 7.7, we obtain the following result.
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Corollary 7.9. Let X be a locally convex space. Take ϕ = σ{a∗1 ,...,a∗n} with a∗1, . . . , a
∗
n ∈

X∗ and n ≥ 1. Then we have for every function f : X → R

fϕ =
n

sup
i=1
〈a∗i , ·〉+ f∗(−a∗i ).

Moreover,

g ∈ Eϕ ⇐⇒ g =
n

sup
i=1
〈a∗i , ·〉+ h(a∗i ) for some h ∈ Γ(X∗).

8. Case ϕ ∈ −Γ(X)

8.1. Links between ϕ-envelopes and Legendre-Fenchel conjugates.

Proposition 8.1. Let X be a locally convex space and let ϕ, g : X → R be extended
real-valued functions.

(i) If g ∈ Eϕ, then there exists h ∈ Γ(X∗) such that (−g)∗ = (−ϕ)∗ +p h. If in

addition g ∈ −Γ(X), then −g = ((−ϕ)∗ +p h)∗.

(ii) Assume that X is normed. If ϕ ∈ −Γ(X) and if there exists h ∈ Γ(X∗)
satisfying the equality −g = ((−ϕ)∗ +p h)∗ along with the condition 0 ∈
int (domh− dom(−ϕ)∗), then g ∈ Eϕ.

Proof. (i) Since g ∈ Eϕ, there exists f : X → R such that g = fϕ, hence −g =
(−ϕ)5f by (3). Taking the conjugate of each member, we find (−g)∗ = (−ϕ)∗+p f∗.
Hence the expected equality holds with h = f∗ ∈ Γ(X∗). If in addition g ∈ −Γ(X),
we have −g = (−g)∗∗, hence we deduce from what precedes that −g = ((−ϕ)∗+p h)∗.

(ii) Assume that −g = ((−ϕ)∗+p h)∗ for some h ∈ Γ(X∗). If h = −ωX∗ or if (−ϕ)∗ =

−ωX∗ , then −g = (−ωX∗)∗ = ωX and the inclusion g ∈ Eϕ trivially holds. Now
assume that h 6= −ωX∗ and (−ϕ)∗ 6= −ωX∗ . Since 0 ∈ int (domh−dom(−ϕ)∗), the
functions (−ϕ)∗ and h are proper and according to the fact that X∗ is a Banach
space, we have

−g = (−ϕ)∗∗ 5 h∗

= (−ϕ)5 h∗ because ϕ ∈ −Γ(X).

We conclude that g = ϕ4 (−h∗) = (h∗)ϕ ∈ Eϕ. �

Corollary 8.1. Let X be a normed space and let ϕ ∈ −Γ0(X) be such that
dom(−ϕ)∗ = X∗. For every g ∈ −Γ(X), the following equivalences hold true

g ∈ Eϕ ⇐⇒ (−g)∗ − (−ϕ)∗ ∈ Γ(X∗)

⇐⇒ −g = ((−ϕ)∗ + h)∗ for some h ∈ Γ(X∗).

Proof. Fix g ∈ −Γ(X). Since dom(−ϕ)∗ = X∗ and −ϕ ∈ Γ0(X), the function
(−ϕ)∗ is finite-valued on X∗, so the implication

g ∈ Eϕ =⇒ h := (−g)∗ − (−ϕ)∗ ∈ Γ(X∗)

follows from Proposition 8.1 (i). Recalling that g ∈ −Γ(X), the right-hand inclusion
implies in turn that −g = ((−ϕ)∗ + h)∗.
Now assume that −g = ((−ϕ)∗ + h)∗ for some h ∈ Γ(X∗). If domh 6= ∅, the
qualification assumption 0 ∈ int (domh − dom(−ϕ)∗) is automatically satisfied.
We then deduce from Proposition 8.1 (ii) that g ∈ Eϕ. On the other hand, if
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domh = ∅, then we have h = ωX∗ and hence −g = (ωX∗)
∗ = −ωX . Then the

inclusion g ∈ Eϕ trivially holds. �

8.2. Moreau envelopes. Let (X, ‖ · ‖) be a normed space and let f : X → R
be an extended real-valued function. For λ > 0 and p ≥ 1, we define the Moreau
envelope of f with index λ and power p as

eλ,pf = inf
y∈X

(
1

pλ
‖ · −y‖p + f(y)

)
=

1

pλ
‖ · ‖p 5 f.

Observe that −eλ,pf =
(
− 1
pλ‖ · ‖

p
)
4 (−f) = fϕ, with the function ϕ : X → R

defined by ϕ = − 1
pλ‖ · ‖

p. It ensues that g is a Moreau envelope with index λ and

power p if and only if −g ∈ Eϕ, for ϕ = − 1
pλ‖ · ‖

p. By applying the results of the

previous subsection with ϕ = − 1
pλ‖ · ‖

p, we obtain the following statement.

Corollary 8.2. Assume that (X, ‖ · ‖) is a normed space. Let λ > 0, p > 1 and let
q be the conjugate exponent of p.

(i) If g is a Moreau envelope with index λ and power p, then the function

g∗ − λq−1

q ‖ · ‖
q
X∗ ∈ Γ(X∗).

(ii) If moreover g ∈ Γ(X), the following equivalences hold true

g is a Moreau envelope with index λ and power p

m

g∗ − λq−1

q
‖ · ‖qX∗ ∈ Γ(X∗)

m

g =

(
λq−1

q
‖ · ‖qX∗ + h

)∗
for some h ∈ Γ(X∗).

Proof. (i) It suffices to apply Proposition 8.1 (i) with ϕ = − 1
pλ‖ · ‖

p and to recall

that
(

1
pλ‖ · ‖

p
)∗

= λq−1

q ‖ · ‖
q
X∗ .

(ii) The equivalences follow from Corollary 8.1 applied with ϕ = − 1
pλ‖ · ‖

p. �

When X is a Hilbert space, we obtain a more precise characterization of Moreau
envelopes with power 2, as shown by the following proposition.

Proposition 8.2. Assume that X is a Hilbert space endowed with the scalar product
〈·, ·〉 and the corresponding norm ‖ · ‖.

(a) For every λ > 0 and every function f : X → R, we have

eλ,2f = −
(
f +

1

2λ
‖ · ‖2

)∗ ( ·
λ

)
+

1

2λ
‖ · ‖2. (53)

The λ-proximal hull of f defined by hλf = −eλ,2(−eλ,2f) is given by

−eλ,2(−eλ,2f) =

(
f +

1

2λ
‖ · ‖2

)∗∗
− 1

2λ
‖ · ‖2. (54)

(b) A function f : X → R is a Moreau envelope with index λ and power 2 if
and only if f − 1

2λ‖ · ‖
2 ∈ −Γ(X).
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Proof. (a) For every x ∈ X, we have

eλ,2f(x) = inf
y∈X

{
1

2λ
‖x− y‖2 + f(y)

}
= inf

y∈X

{
1

2λ
‖x‖2 +

1

2λ
‖y‖2 − 1

λ
〈x, y〉+ f(y)

}
= −

(
f +

1

2λ
‖ · ‖2

)∗
(x/λ) +

1

2λ
‖x‖2,

which proves the equality (53). By iterating we deduce that

−eλ,2 (−eλ,2 f) =

(
−eλ,2 f +

1

2λ
‖ · ‖2

)∗ ( ·
λ

)
− 1

2λ
‖ · ‖2

=

[(
f +

1

2λ
‖ · ‖2

)∗ ( ·
λ

)]∗ ( ·
λ

)
− 1

2λ
‖ · ‖2

=

(
f +

1

2λ
‖ · ‖2

)∗∗
− 1

2λ
‖ · ‖2,

which proves the equality (54).
(b) Observe that f is a Moreau envelope with index λ and power 2 if and only

if −f ∈ Eϕ with ϕ = − 1
2λ‖ · ‖

2. From the equivalence (7) ⇔ (8) and the fact
that ϕ− = ϕ, this is in turn equivalent to −f = ((−f)ϕ)ϕ. Since ((−f)ϕ)ϕ =
−eλ,2 (−eλ,2 (−f)) and using the equality (54), we infer that

f is a Moreau envelope with index λ and power 2

m

−f +
1

2λ
‖ · ‖2 =

(
−f +

1

2λ
‖ · ‖2

)∗∗
m

−f +
1

2λ
‖ · ‖2 ∈ Γ(X).

m

f − 1

2λ
‖ · ‖2 ∈ −Γ(X).

�

The coupling functional (x, y) 7→ − 1
2λ‖x − y‖

2 was considered in [7, Section 5]
in the framework of generalized conjugacy. Equalities (53)-(54) were established
by Penot and Volle [23, p. 206] and Martinez-Legaz [17, p. 182-184]. These
equalities were also observed in [30, Example 11.26(c)] and [37, Lemma 3.3]. The
characterization (b) above has been noticed in the aforementioned references, and
it amounts to the previous characterization in [7, p. 288] of Qc-convex functions
with c := 1/(2λ).
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