ENVELOPES FOR SETS AND FUNCTIONS: REGULARIZATION AND GENERALIZED CONJUGACY

A. CABOT, A. JOURANI, AND L. THIBAULT

ABSTRACT. Let X be a vector space and let $\varphi : X \to \mathbb{R} \cup \{-\infty, +\infty\}$ be an extended real-valued function. For every function $f : X \to \mathbb{R} \cup \{-\infty, +\infty\}$, let us define the φ -envelope of f by

$$f^{\varphi}(x) = \sup_{y \in X} \varphi(x - y) - f(y),$$

where - denotes the lower subtraction in $\mathbb{R} \cup \{-\infty, +\infty\}$. The main purpose of this paper is to study in great details the properties of the important generalized conjugation map $f \mapsto f^{\varphi}$. When the function φ is closed and convex, φ -envelopes can be expressed as Legendre-Fenchel conjugates. By particularizing with $\varphi = \frac{1}{p_{\lambda}} \|\cdot\|^p$, for $\lambda > 0$ and $p \ge 1$, this allows us to derive new expressions of the Klee envelopes with index λ and power p. Links between φ -envelopes and Legendre-Fenchel conjugates are also explored when $-\varphi$ is closed and convex. The case of Moreau envelopes is examined as a particular case.

Besides the φ -envelopes of functions, a parallel notion of envelope is introduced for subsets of X. Given subsets Λ , $C \subset X$, we define the Λ -envelope of C as $C^{\Lambda} = \bigcap_{x \in C} (x + \Lambda)$. Connections between the transform $C \mapsto C^{\Lambda}$ and the aforestated φ -conjugation are investigated.

1. INTRODUCTION

Given two topological vector spaces X, Y and a function $c : X \times Y \to \mathbb{R} \cup \{-\infty, +\infty\}$, extending the Legendre-Fenchel conjugacy, Moreau [20, Chapter 14, Section 3] defined, for any function $g : Y \to \mathbb{R} \cup \{-\infty, +\infty\}$ its *c*-conjugacy as the function $g^c : X \to \mathbb{R} \cup \{-\infty, +\infty\}$

$$g^{c}(x) := \sup_{y \in Y} \left(c(x, y) - g(y) \right) \text{ for all } x \in X;$$

see Section 2 for the (extended) lower subtraction -. We refer to [4, 6, 7, 9, 17,

20, 27, 35] and the references therein, for various duality results in such a context and for several applications. Given a function $\varphi : X \to \mathbb{R} \cup \{-\infty, +\infty\}$ we will focus on the case $c(x, y) := \varphi(x - y)$ and Y = X. Otherwise stated, for a function $f : X \to \mathbb{R} \cup \{-\infty, +\infty\}$ we will be interested in the function f^{φ} , that we call the φ -envelope of f, defined by

$$f^{\varphi}(x) := \sup_{y \in X} \left(\varphi(x - y) - f(y) \right) \quad \text{for all } x \in X.$$

Our first aim in this paper is to study in great details the structure of the transform $f \mapsto f^{\varphi}$ and provide various properties of φ -envelopes.

¹⁹⁹¹ Mathematics Subject Classification. 52A41, 49J53, 41A65.

Key words and phrases. φ -envelope, infimal convolution, supremal convolution, deconvolution, strongly convex set, recession function, subdifferential, Legendre-Fenchel conjugate, Klee envelope.

On the other hand, considering the class \mathcal{B}_X of closed balls of a Banach space X, Mazur [19] studied some Banach spaces X for which every closed bounded convex subset is the intersection of some subclass of \mathcal{B}_X ; we refer to [10] for a rich survey on the subject. Any such Banach space is actually called in the literature a Banach space with the Mazur intersection property. In his 1983 paper [34] Vial defined strongly convex sets of a normed space as convex sets which are intersections of closed balls with a common radius; sets which are intersections, for a fixed real r > 0, of closed balls with radius equal to r are called r-strongly convex sets in [34]. This class of convex sets is thoroughly studied by Polovinkin [24] (see also [25] and the references therein). Denoting by \mathbb{B}_X the closed unit ball of X centered at zero, any r-strongly convex set can be represented in the form

$$\bigcap_{x \in S} (x + r \mathbb{B}_X) \quad \text{with some subset } S \subset X.$$

So, given a subset Λ of the space X, our second aim in the paper is to analyze properties of the transform which assigns to each subset C of X the set

$$C^{\Lambda} := \bigcap_{x \in C} (x + \Lambda)$$

We will also provide the connections between the latter transform and the aforestated transform related to φ -envelopes.

In Section 2 we recall the lower and upper additions (resp. subtractions), and we also recall various concepts and results in Convex Analysis which will be needed in the paper. Section 3 offers a large list of general properties of φ -envelopes. Section 4 establishes the connections between φ -envelopes and the aforementioned transform $C \mapsto C^{\Lambda}$; many properties of sets which can be represented in this form are also provided. In Section 5 we examine the question whether $\psi = \varphi(\cdot - a) - \alpha$ (for some $a \in X$ and $\alpha \in \mathbb{R}$) whenever ψ is a φ -envelope and φ is a ψ -envelope. A counter-example is constructed and various sufficient conditions are given. The analogous question is also investigated with sets instead of functions. Section 6 considers additional properties in the case when the function φ is either superadditive or subadditive. In Section 7, assuming that φ is convex and lower semicontinuous, we provide several links between φ -envelope of a function and Legendre-Fenchel conjugates of other functions related to f. Taking φ as a power of the norm, we also provide various results concerning the Klee envelope $\kappa_{\lambda,p}f$ (with index λ and power p) of a function f, where

$$\kappa_{\lambda,p}f(x) := \sup_{y \in X} \left(\frac{1}{p\lambda} \|x - y\|^p - f(y) \right) \quad \text{for all } x \in X.$$

Finally in Section 8, assuming that $-\varphi$ is convex and lower semicontinuous, we continue to explore the links between φ -envelopes and Legendre-Fenchel conjugates. By particularizing with $\varphi = -\frac{1}{p\lambda} \|\cdot\|^p$, for $\lambda > 0$ and $p \ge 1$, we obtain several properties of Moreau envelopes with index λ and power p.

2. Preliminaries

Following Moreau [20], we extend the usual addition on \mathbb{R} to $\overline{\mathbb{R}} = [-\infty, +\infty]$. We define the upper addition $\dot{+}$ and the lower addition + as the laws extending the usual addition via the following conventions

$$(-\infty) \dotplus (+\infty) = (+\infty) \dotplus (-\infty) = +\infty$$

$$(-\infty) + (+\infty) = (+\infty) + (-\infty) = -\infty.$$

This leads to introduce the upper subtraction - and the lower subtraction -, respectively defined by

$$s - t = s + (-t)$$
 and $s - t = s + (-t)$ for all $s, t \in \mathbb{R}$.

Let X be a vector space; all vector spaces will be real vector spaces. Given two extended real-valued functions $f, g: X \to \overline{\mathbb{R}}$, the (Moreau) *inf-convolution* (also called *infimal convolution*) of f and g is defined as follows: for every $x \in X$,

$$(f \bigtriangledown g)(x) = \inf_{\substack{y+z=x\\ y \in X}} \left[f(y) \dotplus g(z) \right]$$
$$= \inf_{\substack{z \in X}} \left[f(y) \dotplus g(x-y) \right]$$
$$= \inf_{z \in X} \left[f(x-z) \dotplus g(z) \right].$$

In a symmetric way, the (Moreau) sup-convolution (or supremal convolution) of f and g is defined by

$$(f \bigtriangleup g)(x) = \sup_{y+z=x} \left[f(y) + g(z) \right]$$
$$= \sup_{y \in X} \left[f(y) + g(x-y) \right]$$
$$= \sup_{z \in X} \left[f(x-z) + g(z) \right]$$

For the function f as above, the set dom $f = \{x \in X, f(x) < +\infty\}$ is called the *effective domain* of f. We call f a proper function if $f(x) < +\infty$ for at least one $x \in X$, and $f(x) > -\infty$ for all $x \in X$, or in other words, if dom f is a nonempty set on which f is finite. The function which is constantly equal to $+\infty$ (resp. $-\infty$) on X is denoted by ω_X (resp. $-\omega_X$).

Now assume that X is a locally convex space; all such spaces in the paper will be Hausdorff. We will denote by X^* the topological dual of X. Then, following again [20] we set

$$\Gamma(X) := \{f : X \to \mathbb{R}, f \text{ is a pointwise supremum of a family of continuous} affine functions with slopes in X^*\}$$

and

$$\Gamma(X^*) := \{g : X^* \to \overline{\mathbb{R}}, g \text{ is a pointwise supremum of a family of continuous} affine functions with slopes in X\}.$$

We denote by $\Gamma_0(X)$ the set of $f \in \Gamma(X)$ which differ from ω_X and $-\omega_X$. In the same way, $\Gamma_0(X^*)$ is the set $\Gamma_0(X^*) = \Gamma(X^*) \setminus \{\omega_{X^*}, -\omega_{X^*}\}$. The classes $\Gamma_0(X)$ and $\Gamma_0(X^*)$ are respectively characterized by

$$\Gamma_0(X) = \{f : X \to \overline{\mathbb{R}}, f \text{ is closed, convex and proper}\} \\ = \{f : X \to \overline{\mathbb{R}}, f \text{ is } w(X, X^*) \text{ closed, convex and proper}\},\$$

and

4

 $\Gamma_0(X^*) = \{g : X^* \to \overline{\mathbb{R}}, g \text{ is } w(X^*, X) \text{ closed, convex and proper}\},\$

see for example [1, 8, 20]. Above and in all the paper, $w(X, X^*)$ and $w(X^*, X)$ stand for the weak topology on X and the weak star topology on X^* respectively.

With the function $f: X \to \overline{\mathbb{R}}$ is associated, in the duality pairing from X to X^* , its Legendre-Fenchel conjugate $f^*: X^* \to \overline{\mathbb{R}}$ defined by

$$\forall x^* \in X^*, \quad f^*(x^*) = \sup_{\xi \in X} \{ \langle x^*, \xi \rangle - f(\xi) \}.$$

In the same way, throughout the paper (unless ontherwise stated) the Legendre-Fenchel conjugate of a function $g: X^* \to \overline{\mathbb{R}}$ defined on the dual space X^* will be taken in the duality pairing from X^* to X, that is, $g^*: X \to \overline{\mathbb{R}}$ is defined on X by

$$\forall x \in X, \quad g^*(x) = \sup_{\xi^* \in X^*} \{ \langle \xi^*, x \rangle - g(\xi^*) \}.$$

The Legendre-Fenchel transform $f \mapsto f^*$ (see, for example, [20]) is known to be a one-to-one mapping from $\Gamma_0(X)$ onto $\Gamma_0(X^*)$. For any $f \in \Gamma_0(X)$ one has $f = f^{**}$ and for any $g \in \Gamma_0(X^*)$ one has $g = g^{**}$, see for example [1, 8, 20].

Given a set $C \subset X$, we denote as usual by δ_C the *indicator function* of C, *i.e.*, $\delta_C(x) = 0$ if $x \in C$ and $\delta_C(x) = +\infty$ if $x \notin C$. The support function $\sigma_C : X^* \to \overline{\mathbb{R}}$ of C is defined by

$$\forall x^* \in X^*, \quad \sigma_C(x^*) = \sup_{\xi \in C} \langle x^*, \xi \rangle,$$

so σ_C coincides with the Legendre-Fenchel conjugate of δ_C . For a nonempty cone $K \subset X$, the support function σ_K is equal to the indicator function of the polar cone K° of K defined by

$$K^{\circ} = \{ x^* \in X^*, \langle x^*, x \rangle \le 0 \text{ for all } x \in K \}.$$

For a set $C \subset X$, we denote by $\operatorname{co}(C)$ (resp. $\overline{\operatorname{co}}(C)$) the convex hull (resp. closed convex hull) of C. The $w(X^*, X)$ -closed convex hull of a set $D \subset X^*$ is denoted by $\overline{\operatorname{co}}^{w*}(D)$. For a function $f: X \to \overline{\mathbb{R}}$, its convex hull $\operatorname{co}(f)$ (resp. lower semicontinuous convex hull $\overline{\operatorname{co}}(f)$) is the greatest convex (resp. lower semicontinuous convex) function less or equal to f. The $w(X^*, X)$ -lower semicontinuous convex hull of a function $g: X^* \to \overline{\mathbb{R}}$ is denoted by $\overline{\operatorname{co}}^{w*}(g)$.

If $f \in \Gamma_0(X)$ and if $\overline{x} \in \text{dom } f$, the recession function f^∞ is defined by

$$\forall u \in X, \quad f^{\infty}(u) = \lim_{t \to +\infty} \frac{f(\overline{x} + tu) - f(\overline{x})}{t} = \sup_{t > 0} \frac{f(\overline{x} + tu) - f(\overline{x})}{t}.$$

The function $f^{\infty}: X \to \mathbb{R} \cup \{+\infty\}$ does not depend on the point $\overline{x} \in \text{dom } f$ since it is also given by

$$\forall u \in X, \quad f^{\infty}(u) = \sup_{x \in \operatorname{dom} f} (f(x+u) - f(x)).$$

The function f^{∞} satisfies $f^{\infty} \in \Gamma_0(X)$, it is positively homogeneous and we have $f^{\infty} = \sigma_{\text{dom } f^*}$. Given a closed convex set $C \subset X$ and $\overline{x} \in C$, the recession cone C^{∞} is defined by

$$C^{\infty} = \{ u \in X, \quad \overline{x} + tu \in C \text{ for all } t \ge 0 \}.$$

The set C^{∞} does not depend on $\overline{x} \in C$ and is also given by

$$C^{\infty} = \{ u \in X, u + C \subset C \}.$$

It follows from the definition that C^{∞} is a closed convex cone and we have $\delta_{C^{\infty}} = (\delta_C)^{\infty}$. For more details on recession analysis, see, for example, [1, 2, 13, 28].

Let us end these preliminaries with the subdifferential of convex analysis. We recall that the *subdifferential* $\partial f(x)$ of a convex function $f: X \to \mathbb{R} \cup \{+\infty\}$ at $x \in \text{dom } f$ is the set

$$\partial f(x) = \{\xi^* \in X^*, f(y) \ge f(x) + \langle \xi^*, y - x \rangle \text{ for every } y \in X\}.$$
(1)

When $x \notin \text{dom} f$, then $\partial f(x) = \emptyset$ by convention. The *domain* and the *range* of the operator $\partial f : X \rightrightarrows X^*$ are respectively given by

dom
$$(\partial f) = \{x \in X, \, \partial f(x) \neq \emptyset\}$$
 and Rge $(\partial f) = \{x^* \in X^*, \, \exists x \in X, \, x^* \in \partial f(x)\}.$

If $f \in \Gamma_0(X)$, the subdifferentials of f and f^* are connected through the following relation

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*),$$
 (2)

for all $x \in X$ and $x^* \in X^*$. For further details, the reader is referred to the classical textbooks on convex analysis, see for example [13, 28].

3. Definitions. General properties

Let X be a vector space. For functions $\varphi : X \to \overline{\mathbb{R}}$ and $f : X \to \overline{\mathbb{R}}$, the φ -envelope of f is defined as follows:

$$\forall x \in X, \quad f^{\varphi}(x) = \sup_{y \in X} \{\varphi(x-y) - f(y)\} = \sup_{z \in X} \{\varphi(z) - f(x-z)\}.$$

A function $g: X \to \overline{\mathbb{R}}$ is said to be a φ -envelope if there exists $f: X \to \overline{\mathbb{R}}$ such that $g = f^{\varphi}$. It is immediate to check that for every function $f: X \to \overline{\mathbb{R}}$,

$$f^{-\omega_X} = -\omega_X$$
, while $f^{\omega_X} = \begin{cases} \omega_X & \text{if } f \neq \omega_X \\ -\omega_X & \text{if } f = \omega_X \end{cases}$

It ensues that the unique $(-\omega_X)$ -envelope is the function $-\omega_X$, while the ω_X -envelopes are $\pm \omega_X$. The function f^{φ} can be expressed via the inf-convolution and sup-convolution operators

$$f^{\varphi} = \varphi \bigtriangleup (-f) = -((-\varphi) \bigtriangledown f).$$
(3)

The roles played by f and φ in the definition of f^{φ} are opposite in the sense that

$$(-\varphi)^{(-f)} = (-f) \bigtriangleup (-(-\varphi)) = (-f) \bigtriangleup \varphi = f^{\varphi}.$$
(4)

The definition of f^{φ} is closely connected to the deconvolution operation. For any $g, h: X \to \overline{\mathbb{R}}$, the *deconvolution* of g and h is the function $g \ominus h$ defined by

$$(g\ominus h)(x) = \sup_{y-z=x} (g(y) - h(z)),$$

for every $x \in X$. Denoting by h_{-} the function defined by $h_{-}(x) = h(-x)$ for every $x \in X$, we deduce immediately from the above definition that

$$g \ominus h = g \bigtriangleup (-h_{-}) = (h_{-})^{g}.$$
(5)

It ensues that for any $f, \varphi : X \to \overline{\mathbb{R}}$,

$$f^{\varphi} = \varphi \ominus f_{-}.$$

The deconvolution operation has been studied in details by many authors, see for example [3, 12, 14, 36].

Following the terminology of Moreau [21], we call φ -elementary function a function of the form $\varphi(\cdot - y) + \lambda$ with $y \in X$ and $\lambda \in \mathbb{R}$. By using a generalized conjugacy argument, one can show that for any φ , $f: X \to \overline{\mathbb{R}}$

 $(f^{\varphi_{-}})^{\varphi}$ is the upper envelope of the φ -elementary functions that minorize f, (6) see for example [21, Section 4] and [30, Section 11.L]. It can easily be deduced the following characterization of φ -envelopes: for any $g: X \to \overline{\mathbb{R}}$,

g is the upper envelope of a family of φ -elementary functions (7)

$$\begin{array}{c}
\downarrow \\
g = (g^{\varphi_{-}})^{\varphi} \\
\downarrow
\end{array}$$
(8)

$$g$$
 is a φ -envelope. (9)

The expression of the double envelope $(g^{\varphi_-})^{\varphi}$ can be developed as follows

$$\begin{aligned} (g^{\varphi_-})^{\varphi} &= \varphi \bigtriangleup (-g^{\varphi_-}) \\ &= \varphi \bigtriangleup \left(- (\varphi_- \bigtriangleup (-g)) \right) \\ &= \varphi \bigtriangleup ((-\varphi_-) \bigtriangledown g). \end{aligned}$$

By using the deconvolution operation, we obtain

$$egin{array}{rcl} (g^{arphi_-})^{arphi}&=&arphi\ominus (arphi\bigtriangleup (-g_-))\ &=&arphi\ominus (arphi\ominus arphi). \end{array}$$

From the equivalence $(8) \Leftrightarrow (9)$, we deduce that

Now let $f, \psi : X \to \overline{\mathbb{R}}$. Following the terminology of Martinez-Legaz & Penot [18], the function f is said to be (exactly) ψ -regular if $f = (f \ominus \psi) \bigtriangledown \psi$. By taking the opposite in each member of the equality (10), we find

$$-g = (-\varphi) \bigtriangledown (\varphi_{-} \bigtriangleup (-g))$$
$$= (-\varphi) \bigtriangledown ((-g) \ominus (-\varphi)).$$

In view of the above equivalences, this implies that

g is a
$$\varphi$$
-envelope \iff $-g$ is $(-\varphi)$ -regular in the sense of [18].

We denote by $\mathcal{E}^{\varphi}(X)$, or \mathcal{E}^{φ} if there is no risk of confusion, the set of φ -envelopes and by $F_{\varphi} : \mathcal{E}^{\varphi_{-}} \to \mathcal{E}^{\varphi}$ the map defined by $F_{\varphi}(f) = f^{\varphi}$ for every $f \in \mathcal{E}^{\varphi_{-}}$. The equivalence (8) \Leftrightarrow (9) says that $F_{\varphi} \circ F_{\varphi_{-}} = Id_{\mathcal{E}^{\varphi}}$ and $F_{\varphi_{-}} \circ F_{\varphi} = Id_{\mathcal{E}^{\varphi_{-}}}$, otherwise stated we have:

Proposition 3.1. The map $F_{\varphi}: \mathcal{E}^{\varphi_{-}} \to \mathcal{E}^{\varphi}$ is bijective and $(F_{\varphi})^{-1} = F_{\varphi_{-}}$.

As a consequence of the previous proposition, if φ is even the map $F_{\varphi} : \mathcal{E}^{\varphi} \to \mathcal{E}^{\varphi}$ is bijective and $(F_{\varphi})^{-1} = F_{\varphi}$.

Let us now state several general properties of φ -envelopes.

Proposition 3.2. Let X be a vector space and let $\varphi : X \to \overline{\mathbb{R}}$.

- (i) For every function $f : X \to \overline{\mathbb{R}}$ and every $a \in X$ and $\beta \in \mathbb{R}$, we have $(f(\cdot a) \beta)^{\varphi} = f^{\varphi}(\cdot a) + \beta$. If $g \in \mathcal{E}^{\varphi}$, then $g(\cdot a) + \beta \in \mathcal{E}^{\varphi}$ for every $a \in X$ and $\beta \in \mathbb{R}$.
- (ii) Given a family $(f_i)_{i \in I}$ of functions $f_i : X \to \overline{\mathbb{R}}$, we have $(\inf_{i \in I} f_i)^{\varphi} = \sup_{i \in I} f_i^{\varphi}$. If $g = \sup_{i \in I} g_i$ with $g_i \in \mathcal{E}^{\varphi}$ for every $i \in I$, then $g \in \mathcal{E}^{\varphi}$.
- (iii) For $f_1, f_2 : X \to \overline{\mathbb{R}}$, we have $(f_1 \bigtriangledown f_2)^{\varphi} = f_1^{(f_2^{\varphi})}$. Let $g, h : X \to \overline{\mathbb{R}}$. If $h \in \mathcal{E}^g$ and $g \in \mathcal{E}^{\varphi}$, then $h \in \mathcal{E}^{\varphi}$. Otherwise stated, if $g \in \mathcal{E}^{\varphi}$, then $\mathcal{E}^g \subset \mathcal{E}^{\varphi}$.
- (iv) For $f: X \to \overline{\mathbb{R}}$, we have $(f^{\varphi})_{-} = f_{-}^{\varphi_{-}}$. As a consequence, $g \in \mathcal{E}^{\varphi}$ if and only if $g_{-} \in \mathcal{E}^{\varphi_{-}}$.

Proof. (i) Let $a \in X$ and $\beta \in \mathbb{R}$. For every $x \in X$, we have

$$(f(\cdot - a) - \beta)^{\varphi}(x) = \sup_{y \in X} \{\varphi(x - y) - f(y - a) + \beta\}$$

=
$$\sup_{y' \in X} \{\varphi(x - a - y') - f(y') + \beta\} = f^{\varphi}(x - a) + \beta.$$

For the second assertion of (i), it suffices to apply the first part with $g = f^{\varphi}$. (ii) By definition, we have

$$(\inf_{i \in I} f_i)^{\varphi} = \varphi \bigtriangleup \left(-\inf_{i \in I} f_i \right) \\ = \varphi \bigtriangleup \sup_{i \in I} (-f_i) \\ = \sup_{i \in I} (\varphi \bigtriangleup (-f_i)) = \sup_{i \in I} f_i^{\varphi}, \text{ see for example [20].}$$

Now assume that $g = \sup_{i \in I} g_i$ with $g_i \in \mathcal{E}^{\varphi}$ for every $i \in I$. Then, for each $i \in I$, we have $g_i = f_i^{\varphi}$ for some f_i . It ensues that $g = \sup_{i \in I} f_i^{\varphi} = (\inf_{i \in I} f_i)^{\varphi}$, hence $g \in \mathcal{E}^{\varphi}$.

(iii) By definition, we have

$$\begin{aligned} f_1^{(f_2^{\varphi})} &= f_2^{\varphi} \bigtriangleup (-f_1) \\ &= (\varphi \bigtriangleup (-f_2)) \bigtriangleup (-f_1) \\ &= \varphi \bigtriangleup ((-f_2) \bigtriangleup (-f_1)) \\ &= \varphi \bigtriangleup ((-f_2 \bigtriangledown f_1)) \\ &= (f_2 \bigtriangledown f_1)^{\varphi} = (f_1 \bigtriangledown f_2)^{\varphi}. \end{aligned}$$

Now assume that $h \in \mathcal{E}^g$ and $g \in \mathcal{E}^{\varphi}$. Then there exist $f_1, f_2 : X \to \overline{\mathbb{R}}$ such that $h = f_1^g$ and $g = f_2^{\varphi}$. It ensues that $h = f_1^{(f_2^{\varphi})} = (f_1 \bigtriangledown f_2)^{\varphi}$, hence $h \in \mathcal{E}^{\varphi}$. (iv) For every $x \in X$, we have

$$\begin{split} (f^{\varphi})_{-}(x) &= & \sup_{y \in X} \{\varphi(-x-y) - f(y)\} \\ &= & \sup_{\xi \in X} \{\varphi(-x+\xi) - f(-\xi)\} \\ &= & \sup_{\xi \in X} \{\varphi_{-}(x-\xi) - f_{-}(\xi)\} = f_{-}^{-\varphi_{-}}(x). \end{split}$$

If $g \in \mathcal{E}^{\varphi}$, there exists $f: X \to \overline{\mathbb{R}}$ such that $g = f^{\varphi}$. It ensues that $g_{-} = (f^{\varphi})_{-} = (f_{-})^{\varphi_{-}}$, hence $g_{-} \in \mathcal{E}^{\varphi_{-}}$. The proof of the reverse assertion is identical. \Box

In the next proposition, we show that the φ -envelope of a continuous linear functional is affine and we characterize the elements of \mathcal{E}^{φ} that are linear.

Proposition 3.3. Let X be a locally convex space. Let $\varphi : X \to \overline{\mathbb{R}}$ and $\xi^* \in X^*$. Then we have

(i) $\langle \xi^*, \cdot \rangle^{\varphi} = -\langle \xi^*, \cdot \rangle + (-\varphi)^*(\xi^*).$

(ii) If $\varphi \neq -\omega_X$, the following equivalence holds

$$\langle \xi^*, \cdot \rangle \in \mathcal{E}^{\varphi} \quad \Longleftrightarrow \quad \xi^* \in -\mathrm{dom}\,(-\varphi)^*.$$

Proof. (i) For every $x \in X$, we have

$$\begin{aligned} \langle \xi^*, \cdot \rangle^{\varphi}(x) &= \sup_{y \in X} \left\{ \varphi(y) - \langle \xi^*, x - y \rangle \right\} \\ &= -\langle \xi^*, x \rangle + (-\varphi)^* (\xi^*). \end{aligned}$$

(*ii*) Let $g = \langle \xi^*, \cdot \rangle$. We deduce from (*i*) that

$$g^{\varphi_{-}} = -\langle \xi^*, \cdot \rangle + (-\varphi_{-})^* (\xi^*) = -\langle \xi^*, \cdot \rangle + (-\varphi)^* (-\xi^*).$$
(11)

First assume that $(-\varphi)^*(-\xi^*) = +\infty$. Then we have $g^{\varphi_-} = \omega_X$, thus implying that $(g^{\varphi_-})^{\varphi} = -\omega_X$. It ensues that $(g^{\varphi_-})^{\varphi} \neq g$, which shows that $g \notin \mathcal{E}^{\varphi}$ according to the equivalence (7) \iff (8). Now assume that $(-\varphi)^*(-\xi^*) < +\infty$. Observe that $(-\varphi)^*(-\xi^*) \in \mathbb{R}$ since

$$(-\varphi)^*(-\xi^*) = -\infty \implies \sup_{x \in X} \langle -\xi^*, x \rangle + \varphi(x) = -\infty \implies \varphi = -\omega_X,$$

which is impossible by assumption. Since $(-\varphi)^*(-\xi^*) \in \mathbb{R}$, we deduce from (11), (*i*) above and Proposition 3.2 (*i*) that

$$(g^{\varphi_-})^{\varphi} = \langle \xi^*, \cdot \rangle + (-\varphi)^* (-\xi^*) - (-\varphi)^* (-\xi^*) = \langle \xi^*, \cdot \rangle = g,$$

and therefore $g \in \mathcal{E}^{\varphi}$.

For every set $C \subset X$, let us set

$$\Sigma_C = \{ f : X \to \mathbb{R}, \operatorname{dom} f \subset C \} \text{ and } \Sigma_C^* = \{ f^*, f \in \Sigma_C \}.$$

We adopt the same notations Σ_D and Σ_D^* for a subset $D \subset X^*$.

Theorem 3.1. Let X be a locally convex space and let $\varphi : X \to \overline{\mathbb{R}}$ be such that $\varphi \neq -\omega_X$. For every subset D of X^* , the following assertions are equivalent

 $\begin{array}{ll} (i) \ \Sigma_D^* \subset \mathcal{E}^{\varphi}; \\ (ii) \ \{f \in \Gamma_0(X), \, \mathrm{dom} \, f^* \subset D\} \subset \mathcal{E}^{\varphi}; \\ (iii) \ D \subset -\mathrm{dom} \, (-\varphi)^*. \end{array}$

Proof. $(i) \Rightarrow (ii)$ Let $D \subset X^*$. Observe that

$$\{f \in \Gamma_0(X), \operatorname{dom} f^* \subset D\} = \{g^*, \operatorname{dom} g \subset D \text{ and } g \in \Gamma_0(X)\} \\ \subset \{g^*, \operatorname{dom} g \subset D\} = \Sigma_D^*.$$

The implication $(i) \Rightarrow (ii)$ follows immediately. $(ii) \Rightarrow (iii)$ Assume that

$$\{f \in \Gamma_0(X), \, \mathrm{dom}\, f^* \subset D\} \subset \mathcal{E}^{\varphi}.$$
(12)

Let $\xi^* \in D$. Observe that $\langle \xi^*, . \rangle \in \Gamma_0(X)$ and that

$$\operatorname{dom}\left(\langle\xi^*,.\rangle\right)^* = \operatorname{dom}\delta_{\{\xi^*\}} = \{\xi^*\} \subset D,$$

8

hence $\langle \xi^*, . \rangle \in \mathcal{E}^{\varphi}$ in view of (12). We then deduce from Proposition 3.3 (*ii*) that $\xi^* \in -\text{dom}(-\varphi)^*$. Since this is true for every $\xi^* \in D$, we conclude that $D \subset -\text{dom}(-\varphi)^*$.

 $(iii) \Rightarrow (i)$ Now assume that $D \subset -\operatorname{dom}(-\varphi)^*$ and let $f \in \Sigma_D^*$. There exists $g: X^* \to \overline{\mathbb{R}}$ such that $f = g^*$ and $\operatorname{dom} g \subset D$. The definition of the Legendre-Fenchel conjugate yields

$$f = \sup_{\substack{\xi^* \in X^*}} \{ \langle \xi^*, . \rangle - g(\xi^*) \}$$
$$= \sup_{\substack{\xi^* \in \text{dom} g}} \{ \langle \xi^*, . \rangle - g(\xi^*) \}.$$
(13)

Recalling that dom $g \subset D \subset -\text{dom}(-\varphi)^*$, we deduce from Proposition 3.3 (*ii*) that the linear function $\langle \xi^*, . \rangle$ is a φ -envelope for every $\xi^* \in \text{dom } g$. In view of Proposition 3.2 (*i*), the affine function $\langle \xi^*, . \rangle - g(\xi^*)$ is also a φ -envelope for every $\xi^* \in \text{dom } g$. Coming back to formula (13), we infer from Proposition 3.2 (*ii*) that f is a φ -envelope as a supremum of φ -envelopes. Finally, we have shown that $f \in \mathcal{E}^{\varphi}$, which proves the inclusion $\Sigma_D^* \subset \mathcal{E}^{\varphi}$.

Given a set $D \subset X^*$, the following result explores the links between the class Σ_D^* and the class of functions $f \in \Gamma_0(X)$ satisfying dom $f^* \subset D$. When the set D is $w(X^*, X)$ -closed and convex, these classes can be characterized via the support function of D.

Proposition 3.4. Let X be a locally convex space and let D be a nonempty subset of X^* .

(i) We have

$$\{f \in \Gamma_0(X), \, \mathrm{dom}\, f^* \subset D\} \cup \{\omega_X, -\omega_X\} \subset \Sigma_D^*, \tag{14}$$

$$\Sigma_D^* \subset \{ f \in \Gamma_0(X), \, \operatorname{dom} f^* \subset \overline{\operatorname{co}}^{w*}(D) \} \cup \{ \omega_X, -\omega_X \}.$$
(15)

As a consequence, if the set $D \subset X^*$ is $w(X^*, X)$ -closed and convex, the following equality holds true

$$\Sigma_D^* = \{ f \in \Gamma_0(X), \, \operatorname{dom} f^* \subset D \} \cup \{ \omega_X, -\omega_X \}.$$
(16)

(ii) If the set $D \subset X^*$ is $w(X^*, X)$ -closed and convex, then $\{f \in \Gamma_0(X), \text{ dom } f^* \subset D\} = \{f \in \Gamma_0(X) \mid f^\infty < \sigma_n\}$

$$f \in \Gamma_0(X), \operatorname{dom} f^* \subset D\} = \{f \in \Gamma_0(X), f^{\infty} \leq \sigma_D\}$$

$$= \{f \in \Gamma_0(X), f(y) \leq f(x) + \sigma_D(y-x), \forall x, y \in X\}.$$
(18)

Proof. (i) We have already shown the inclusion $\{f \in \Gamma_0(X), \operatorname{dom} f^* \subset D\} \subset \Sigma_D^*$, see the proof of Theorem 3.1. On the other hand, we always have $-\omega_X \in \Sigma_D^*$. Since $D \neq \emptyset$, we also have $\omega_X \in \Sigma_D^*$. This proves the inclusion (14). Let us now establish (15). Assume that $f \in \Sigma_D^*$. There exists $g : X^* \to \overline{\mathbb{R}}$ such that $\operatorname{dom} g \subset D$ and $f = g^*$. We distinguish the cases $\overline{\operatorname{co}}^{w*}(g)$ proper and $\overline{\operatorname{co}}^{w*}(g)$ improper. If $\overline{\operatorname{co}}^{w*}(g) = \omega_{X^*}$, we have $g = \omega_{X^*}$, hence $f = -\omega_X$. If $\overline{\operatorname{co}}^{w*}(g)$ takes the value $-\infty$, we infer that $g^* = (\overline{\operatorname{co}}^{w*}(g))^* = \omega_X$, whence $f = \omega_X$. Let us now assume that $\overline{\operatorname{co}}^{w*}(g) \in \Gamma_0(X^*)$. It ensues that $f = g^* = (\overline{\operatorname{co}}^{w*}(g))^* \in \Gamma_0(X)$. This implies in turn that $f^* = \overline{\operatorname{co}}^{w*}(g)$, thus

$$\operatorname{dom} f^* = \operatorname{dom} \left(\overline{\operatorname{co}}^{w*}(g) \right) \subset \overline{\operatorname{co}}^{w*}(\operatorname{dom} g) \subset \overline{\operatorname{co}}^{w*}(D),$$

which ends the proof of (15). When the set D is $w(X^*, X)$ -closed and convex, equality (16) is an immediate consequence of the inclusions (14)-(15).

(*ii*) Assuming that the set D is $w(X^*, X)$ -closed and convex, we have dom $f^* \subset D$ if and only if $\sigma_{\text{dom } f^*} \leq \sigma_D$. Recalling that $\sigma_{\text{dom } f^*} = f^{\infty}$ (see section 2), we derive equality (17). Since $f^{\infty} = \sup_{x \in \text{dom } f} (f(\cdot + x) - f(x))$, we deduce in turn equality (18).

Remark 3.1. In general, the inclusions (14) and (15) are strict, as will be shown in Example 7.1.

If X is a Banach space and if the set $D \subset X^*$ is closed, the class of functions $f \in \Gamma_0(X)$ satisfying dom $f^* \subset D$ can be expressed via the subdifferential of f.

Proposition 3.5. Let X be a Banach space and let D be a closed subset of X^* . Then we have

$$\{f \in \Gamma_0(X), \operatorname{dom} f^* \subset D\} = \{f \in \Gamma_0(X), \partial f(x) \subset D \text{ for all } x \in X\}.$$

Proof. Let us first state as a lemma the following direct consequence of the Brønsted-Rockafellar theorem (see [5, Theorem 2]) concerning the conjugate of a function in $\Gamma_0(X)$.

Lemma 3.1 (See Theorem 2 in [5]). If X is a Banach space and if $f \in \Gamma_0(X)$, then $\operatorname{cl}(\operatorname{dom} f^*) = \operatorname{cl}(\operatorname{Rge}(\partial f))$.

Assume that the set $D \subset X^*$ is closed. From Lemma 3.1, we have for every $f \in \Gamma_0(X)$

$$\operatorname{dom} f^* \subset D \iff \operatorname{Rge}(\partial f) \subset D$$
$$\iff \partial f(x) \subset D \quad \text{for all } x \in X.$$

The announced equality follows immediately.

Applying Theorem 3.1 with particular sets D, we obtain the following corollaries.

Corollary 3.1. Let X be a locally convex space and let $\varphi : X \to \overline{\mathbb{R}}$ be such that $\varphi \neq -\omega_X$. Then the following equivalence holds

$$\Gamma(X) \subset \mathcal{E}^{\varphi} \iff \operatorname{dom}(-\varphi)^* = X^*.$$

Proof. It suffices to take $D = X^*$ in the equivalence $(i) \Leftrightarrow (iii)$ of Theorem 3.1. \Box

Remark 3.2. Under the assumption dom $(-\varphi)^* = X^*$, the function φ cannot be convex (see hereafter). Therefore the set \mathcal{E}^{φ} is strictly larger than $\Gamma(X)$, since it contains the nonconvex function φ .

If dom $(-\varphi)^* = X^*$, we have $(-\varphi)^*(0) < +\infty$. Recalling that $(-\varphi)^*(0) = \sup \varphi$, we deduce that the function φ is bounded from above on the whole space X. If moreover the function φ is convex, we infer from a classical result that it is constant, say $\varphi \equiv \beta$ for some $\beta \in \mathbb{R}$. It ensues that $(-\varphi)^* = \beta + \delta_{\{0\}}$, hence dom $(-\varphi)^* = \{0\}$, a contradiction. This confirms that functions φ with dom $(-\varphi)^* = X^*$ cannot be convex.

Given a set $K \subset X$, recall that a function $f : X \to \mathbb{R} \cup \{+\infty\}$ is said to be *K*-nonincreasing (resp. *K*-nondecreasing) if $f(y) \leq f(x)$ (resp. $f(y) \geq f(x)$) for all $x, y \in X$ such that $y - x \in K$.

Corollary 3.2. Let X be a locally convex space. Let $K \subset X$ be a closed convex cone and let $\varphi : X \to \overline{\mathbb{R}}$ be such that $\varphi \neq -\omega_X$. Then the set \mathcal{E}^{φ} contains all the functions of $\Gamma_0(X)$ which are K-nonincreasing if and only if $-K^{\circ} \subset \operatorname{dom}(-\varphi)^*$.

$$\square$$

Proof. Take $D = K^{\circ}$ in the equivalence $(ii) \Leftrightarrow (iii)$ of Theorem 3.1 to obtain that

$$\{f \in \Gamma_0(X), \operatorname{dom} f^* \subset K^\circ\} \subset \mathcal{E}^\varphi \iff K^\circ \subset -\operatorname{dom} (-\varphi)^* \iff -K^\circ \subset \operatorname{dom} (-\varphi)^*.$$
(19)

On the other hand, observe by (18) that for $f \in \Gamma_0(X)$,

$$\operatorname{dom} f^* \subset K^{\circ} \iff f(y) \leq f(x) + \sigma_{K^{\circ}}(y - x) \quad \text{for all } x, y \in X$$
$$\iff f(y) \leq f(x) + \delta_K(y - x) \quad \text{for all } x, y \in X$$
$$\iff f \text{ is } K\text{-nonincreasing.} \tag{20}$$

The announced equivalence then follows immediately from (19) and (20).

In the sequel, when X is a normed space we will denote by \mathbb{B}_X (resp. \mathbb{B}_{X^*}) the closed unit ball of X (resp. X^*).

Corollary 3.3. Let $(X, \|\cdot\|)$ be a normed space. Let a real $k \ge 0$ and let $\varphi : X \to \overline{\mathbb{R}}$ be such that $\varphi \ne -\omega_X$. Then the set \mathcal{E}^{φ} contains all the functions of $\Gamma_0(X)$ which are k-Lipschitz continuous on X if and only if $k\mathbb{B}_{X^*} \subset \text{dom}(-\varphi)^*$.

Proof. Take $D = k\mathbb{B}_{X^*}$ in the equivalence $(ii) \Leftrightarrow (iii)$ of Theorem 3.1 to obtain that

$$\{f \in \Gamma_0(X), \operatorname{dom} f^* \subset k \mathbb{B}_{X^*}\} \subset \mathcal{E}^{\varphi} \iff k \mathbb{B}_{X^*} \subset -\operatorname{dom} (-\varphi)^* \iff k \mathbb{B}_{X^*} \subset \operatorname{dom} (-\varphi)^*.$$
(21)

Then observe by (18) that for $f \in \Gamma_0(X)$,

$$\operatorname{dom} f^* \subset k \mathbb{B}_{X^*} \iff f(y) \leq f(x) + k \|y - x\| \quad \text{for all } x, y \in X$$
$$\iff f \text{ is } k\text{-Lipschitz on } X, \tag{22}$$

where the last equivalence is obtained by reversing the roles of x and y. The announced equivalence then follows immediately from (21) and (22).

4. Equivalence between functions and sets

Recall that for $f: X \to \overline{\mathbb{R}}$, the epigraph (resp. hypograph) of f is defined by

$$epi f = \{(x, \lambda) \in X \times \mathbb{R}, f(x) \le \lambda\} \quad (resp. hypo f = \{(x, \lambda) \in X \times \mathbb{R}, f(x) \ge \lambda\})$$

The strict epigraph and strict hypograph of f are obtained by replacing the above inequalities with strict inequalities

$$\operatorname{epi}_s f = \{(x,\lambda) \in X \times \mathbb{R}, \, f(x) < \lambda\} \quad (\operatorname{resp.} \, \operatorname{hypo}_s f = \{(x,\lambda) \in X \times \mathbb{R}, \, f(x) > \lambda\}).$$

The following lemma gives a geometrical interpretation for the inf-convolution and sup-convolution operations. Assertion (i) is well known. For completeness and convenience of the reader we provide a proof of (ii).

Lemma 4.1. Let X be a vector space and let $f, g: X \to \overline{\mathbb{R}}$. Then we have (i) $\operatorname{epi}_{s}(f \bigtriangledown g) = \operatorname{epi}_{s} f + \operatorname{epi}_{s} g$. (ii) $\operatorname{hypo}_{s}(f \bigtriangleup g) = \operatorname{hypo}_{s} f + \operatorname{hypo}_{s} g$. *Proof.* Point (i) is classical, see for example [20, 30]. Point (ii) is deduced easily from (i) by observing that

$$\begin{aligned} (x,\lambda) \in \mathrm{hypo}_{s} f \bigtriangleup g &\iff (x,-\lambda) \in \mathrm{epi}_{s}[-(f\bigtriangleup g)] \\ &\iff (x,-\lambda) \in \mathrm{epi}_{s}[(-f)\bigtriangledown (-g)] \\ &\iff (x,-\lambda) \in \mathrm{epi}_{s}(-f) + \mathrm{epi}_{s}(-g) \\ &\iff (x,\lambda) \in \mathrm{hypo}_{s}(f) + \mathrm{hypo}_{s}(g). \end{aligned}$$

Since f^{φ} is defined via a sup-convolution operation, we derive the following consequence of Lemma 4.1.

Proposition 4.1. Let X be a vector space and let $\varphi : X \to \overline{\mathbb{R}}$.

(i) For every $f: X \to \overline{\mathbb{R}}$, we have

$$\begin{aligned} \operatorname{hypo}_{s} f^{\varphi} &= \operatorname{hypo}_{s} (-f) + \operatorname{hypo}_{s} \varphi \\ \operatorname{epi} f^{\varphi} &= \bigcap_{u \in \operatorname{hypo}_{s} (-f)} u + \operatorname{epi} \varphi. \end{aligned}$$

(ii) For every $g: X \to \overline{\mathbb{R}}$, the following equivalences hold

$$\begin{array}{ll} g\in \mathcal{E}^{\varphi} & \Longleftrightarrow & \mathrm{hypo}\,_{s}g = U + \mathrm{hypo}\,_{s}\varphi & \textit{for some } U \subset X \times \mathbb{R} \\ & \Longleftrightarrow & \mathrm{epi}\,g = \bigcap_{u \in U} u + \mathrm{epi}\,\varphi & \textit{for some } U \subset X \times \mathbb{R}. \end{array}$$

Proof. (i) Let $f, \varphi : X \to \overline{\mathbb{R}}$. Recalling that $f^{\varphi} = \varphi \triangle (-f)$, we deduce from Lemma 4.1 (ii) that

$$\text{hypo}_{s} f^{\varphi} = \text{hypo}_{s} (-f) + \text{hypo}_{s} \varphi \\ = \bigcup_{u \in \text{hypo}_{s} (-f)} u + \text{hypo}_{s} \varphi.$$

Taking the complement of each member of the above equality, we infer that

$$\operatorname{epi} f^{\varphi} = \bigcap_{u \in \operatorname{hypo}_{s}(-f)} u + \operatorname{epi} \varphi.$$

(*ii*) Let $g: X \to \overline{\mathbb{R}}$. If $g \in \mathcal{E}^{\varphi}$, there exists $f: X \to \overline{\mathbb{R}}$ such that $g = f^{\varphi}$. In view of (*i*), we obtain that hypo_s $g = U + \text{hypo}_s \varphi$ with $U = \text{hypo}_s(-f)$. Conversely, assume that hypo_s $g = U + \text{hypo}_s \varphi$ for some $U \subset X \times \mathbb{R}$. Then we have

$$\begin{aligned} \operatorname{hypo}_{s}g &= \bigcup_{(x,\lambda)\in U} (x,\lambda) + \operatorname{hypo}_{s}\varphi \\ &= \bigcup_{(x,\lambda)\in U} \operatorname{hypo}_{s}[\varphi(\cdot - x) + \lambda] \\ &= \operatorname{hypo}_{s}\Big[\sup_{(x,\lambda)\in U} \varphi(\cdot - x) + \lambda\Big]. \end{aligned}$$

Hence we deduce that $g = \sup_{(x,\lambda) \in U}(\varphi(\cdot - x) + \lambda)$, which shows that $g \in \mathcal{E}^{\varphi}$. This proves the first equivalence of (ii). For the other equivalence, it suffices to take the complement of the sets arising in each member of the equality concerning hypo $_{s}g$.

12

Given a set $\Lambda \subset X$, the previous result suggests to consider the class \mathcal{I}^{Λ} of subsets of X defined as follows¹

$$\mathcal{I}^{\Lambda} = \{ C^{\Lambda}, C \subset X \}, \quad \text{where } C^{\Lambda} = \bigcap_{x \in C} x + \Lambda.$$

By convention², we take $\emptyset^{\Lambda} = \bigcap_{x \in \emptyset} x + \Lambda = X$ for every set $\Lambda \subset X$. This implies that $X \in \mathcal{I}^{\Lambda}$ for every $\Lambda \subset X$. It is immediate to check that $\mathcal{I}^X = \{X\}$, while $\mathcal{I}^{\emptyset} = \{\emptyset, X\}$. A set $D \subset X$ belongs to the class \mathcal{I}^{Λ} if it is equal to some intersection of translated sets from Λ . It ensues immediately that the class \mathcal{I}^{Λ} is stable under translation and intersection.

Example 4.1. Take r > 0 and $\Lambda = r \mathbb{B}_X$. The class $\mathcal{I}^{r \mathbb{B}_X}$ corresponds to the class studied by Vial [34] under the terminology of r-strongly convex sets. More generally, for a closed convex set $\Lambda \subset X$, the sets of the form C^{Λ} are called Λ -strongly convex. The Λ -strongly convex sets are thoroughly studied by Polovinkin [24], under an additional condition on the set Λ (which is assumed to be generating, see [24] for more details).

The definition of C^{Λ} is directly linked to the star-difference of sets. For every $C_1, C_2 \subset X$, the star-difference of C_1 with C_2 is the set $C_1 \stackrel{*}{=} C_2$ given by

$$C_1 \stackrel{*}{=} C_2 = \bigcap_{x \in C_2} C_1 - x.$$

We deduce immediately from the above definition that $C^{\Lambda} = \Lambda \stackrel{*}{-} (-C)$ for every $C, \Lambda \subset X$. The star-difference of sets was used in [26] in the context of differential games. See also [12] for the links between the star-difference of sets and the deconvolution operation, also called epigraphical star-difference.

Given $C \subset X$ and $\Lambda \subset X$, the next proposition gives several expressions for the set C^{Λ} .

Proposition 4.2. Let X be a vector space. For any sets $C \subset X$ and $\Lambda \subset X$, we have

- $\begin{array}{l} (i) \ \ C^{\Lambda} = \{x \in X, \ x C \subset \Lambda\} = \{x \in X, \ C \subset x \Lambda\};\\ (ii) \ \ X \setminus C^{\Lambda} = C + (X \setminus \Lambda) \ or \ equivalently \ C^{X \setminus \Lambda} = X \setminus (C + \Lambda).\\ (iii) \ \ (X \setminus \Lambda)^{X \setminus C} = C^{\Lambda}. \end{array}$

Proof. (i) It suffices to observe that

$$\begin{aligned} x \in C^{\Lambda} & \iff \forall u \in C, \, x \in u + \Lambda \\ & \iff \forall u \in C, \, x - u \in \Lambda \\ & \iff x - C \subset \Lambda \\ & \iff C \subset x - \Lambda \end{aligned}$$

(*ii*) From the definition of C^{Λ} , we deduce immediately that

$$X \setminus C^{\Lambda} = \bigcup_{u \in C} u + (X \setminus \Lambda) = C + (X \setminus \Lambda),$$

¹We draw the attention of the reader to the fact that the notation C^{Λ} must not be confused with that of the set of maps from Λ into C.

²In particular, we obtain $\emptyset^{\emptyset} = X$.

which is the first equality in (*ii*). From this equality with $X \setminus \Lambda$ in place of Λ , we obtain that $X \setminus C^{X \setminus \Lambda} = C + \Lambda$, or equivalently $C^{X \setminus \Lambda} = X \setminus (C + \Lambda)$. (*iii*) We infer from the previous assertion that

$$X \setminus \left[(X \setminus \Lambda)^{X \setminus C} \right] = (X \setminus \Lambda) + C = X \setminus C^{\Lambda},$$

ity $(X \setminus \Lambda)^{X \setminus C} = C^{\Lambda}.$

whence the equality $(X \setminus \Lambda)^{X \setminus C} = C^{\Lambda}$

The elements D of \mathcal{I}^{Λ} can be characterized by the equality $(D^{-\Lambda})^{\Lambda} = D$. This is the subject of the next proposition.

Proposition 4.3. Let X be a vector space and let $\Lambda \subset X$. For any set $D \subset X$, the set $(D^{-\Lambda})^{\Lambda}$ is the smallest element of \mathcal{I}^{Λ} containing the set D. As a consequence, the following equivalence holds true

$$D \in \mathcal{I}^{\Lambda} \quad \Longleftrightarrow \quad (D^{-\Lambda})^{\Lambda} = D$$

Proof. Let S be the subset of X defined by

$$S = \bigcap_{x \in X, \, x + \Lambda \supset D} x + \Lambda.$$

We clearly have $S \in \mathcal{I}^{\Lambda}$ and $S \supset D$. Now let any $S' \in \mathcal{I}^{\Lambda}$ with $S' \supset D$. By definition, there exists some $C \subset X$ such that $S' = \bigcap_{x \in C} x + \Lambda$. The inclusion $S' \supset D$ implies that $x + \Lambda \supset D$ for every $x \in C$ and therefore

$$S' = \bigcap_{x \in C} x + \Lambda \supset \bigcap_{x \in X, \, x + \Lambda \supset D} x + \Lambda = S.$$

This proves that the set S is the smallest element of \mathcal{I}^{Λ} containing D. Recall now from Proposition 4.2 (i) that condition $x + \Lambda \supset D$ is equivalent to $x \in D^{-\Lambda}$. We deduce that

$$S = \bigcap_{x \in D^{-\Lambda}} x + \Lambda = (D^{-\Lambda})^{\Lambda}.$$

This finishes the proof of the first assertion. The second assertion is an immediate consequence of the first one. $\hfill \Box$

Let us write the expression of the double envelope $(D^{-\Lambda})^{\Lambda}$ by using the star-difference operation

$$(D^{-\Lambda})^{\Lambda} = \Lambda \stackrel{*}{=} (-(D^{-\Lambda}))$$
$$= \Lambda \stackrel{*}{=} ((-D)^{\Lambda})$$
$$= \Lambda \stackrel{*}{=} (\Lambda \stackrel{*}{=} D).$$
(23)

In view of Proposition 4.2, the complement of the set $(D^{-\Lambda})^{\Lambda}$ can be expressed as

$$X \setminus (D^{-\Lambda})^{\Lambda} = D^{-\Lambda} + X \setminus \Lambda$$

= $(-(X \setminus \Lambda))^{X \setminus D} + X \setminus \Lambda$
= $((X \setminus D) \stackrel{*}{=} (X \setminus \Lambda)) + X \setminus \Lambda.$ (24)

From equalities (23)-(24) and Proposition 4.3, we deduce that

$$D \in \mathcal{I}^{\Lambda}$$

$$\updownarrow$$

$$D = \Lambda \stackrel{*}{-} (\Lambda \stackrel{*}{-} D)$$

$$\widehat{\Upsilon} X \setminus D = \left((X \setminus D) \stackrel{*}{=} (X \setminus \Lambda) \right) + X \setminus \Lambda.$$

The last equality amounts to saying that the set $X \setminus D$ is exactly $(X \setminus \Lambda)$ -regular in the sense of [18].

With the notations introduced above, for $f, g: X \to \overline{\mathbb{R}}$, the results of Proposition 4.1 can be restated as

$$\operatorname{epi} f^{\varphi} = (\operatorname{hypo}_{s}(-f))^{\operatorname{epi} \varphi}$$

and

$$g \in \mathcal{E}^{\varphi} \iff \operatorname{epi} g \in \mathcal{I}^{\operatorname{epi} \varphi}.$$

This shows that the study of φ -envelopes amounts to that of the class $\mathcal{I}^{\operatorname{epi}\varphi}$. Conversely, given a set $\Lambda \subset X$, the class \mathcal{I}^{Λ} can be fully described via the δ_{Λ} -envelopes.

Proposition 4.4. Let X be a vector space and let $\Lambda \subset X$.

(i) For every function $f: X \to \overline{\mathbb{R}}$, we have³

$$f^{\delta_{\Lambda}} = -\inf_{X} f + \delta_{(\mathrm{dom}\,f)^{\Lambda}}.\tag{25}$$

As a consequence, the equality $(\delta_C)^{\delta_{\Lambda}} = \delta_{C^{\Lambda}}$ holds for any nonempty set $C \subset X$.

(ii) For every function $g: X \to \overline{\mathbb{R}}$ such that $g \neq \pm \omega_X$, we have

$$g \in \mathcal{E}^{\delta_{\Lambda}} \iff g = \beta + \delta_{C^{\Lambda}} \text{ for some } \beta \in \mathbb{R} \text{ and some } C \neq \emptyset.$$

Proof. (i) For every function $f: X \to \overline{\mathbb{R}}$ and every $x \in X$, the definition of $f^{\delta_{\Lambda}}$ gives

$$f^{\delta_{\Lambda}}(x) = \sup_{y \in X} \{\delta_{\Lambda}(x-y) - f(y)\} = \sup_{y \in \operatorname{dom} f} \{\delta_{\Lambda}(x-y) - f(y)\}.$$

First assume that $x - \text{dom } f \subset \Lambda$. For every $y \in \text{dom } f$, we then have $x - y \in \Lambda$, whence $\delta_{\Lambda}(x - y) = 0$. It ensues that

$$f^{\delta_{\Lambda}}(x) = \sup_{y \in \operatorname{dom} f} -f(y) = \sup_{X} (-f) = -\inf_{X} f.$$

Now assume that $x - \text{dom } f \not\subset \Lambda$. In this case, there exists $y \in \text{dom } f$ such that $x - y \notin \Lambda$. We then have $\delta_{\Lambda}(x - y) = +\infty$, whence $f^{\delta_{\Lambda}}(x) = +\infty$. Finally, we obtain for every $x \in X$

$$f^{\delta_{\Lambda}}(x) = \begin{cases} -\inf_X f & \text{if } x - \operatorname{dom} f \subset \Lambda \\ +\infty & \text{otherwise.} \end{cases}$$

Condition $x - \text{dom } f \subset \Lambda$ is equivalent to $x \in (\text{dom } f)^{\Lambda}$ in view of Proposition 4.2 (i). Formula (25) follows immediately. For the last assertion, it suffices to take $f = \delta_C$. (ii) Let $g \in \mathcal{E}^{\delta_{\Lambda}}$ be such that $g \neq \pm \omega_X$. There exists $f : X \to \mathbb{R}$ such that $g = f^{\delta_{\Lambda}}$, hence we deduce from (i) that $g = -\inf_X f + \delta_{(\text{dom } f)^{\Lambda}}$. Since $g \neq \pm \omega_X$, we have $\inf_X f \in \mathbb{R}$ and $\text{dom } f \neq \emptyset$. It suffices then to take $\beta = -\inf_X f$ and C = dom f. Conversely, assume that $g = \beta + \delta_{C^{\Lambda}}$ for some $\beta \in \mathbb{R}$ and some $C \neq \emptyset$. Assertion (i) then shows that $g = f^{\delta_{\Lambda}}$ for the function f defined by $f = -\beta + \delta_C$, hence $g \in \mathcal{E}^{\delta_{\Lambda}}$.

³If $\inf_X f = +\infty$ we have dom $f = \emptyset$, hence $(\operatorname{dom} f)^{\Lambda} = X$ and $\delta_{(\operatorname{dom} f)^{\Lambda}} \equiv 0$. Therefore the addition in the right-hand side of (25) is well-defined.

Remark 4.1. The previous proposition shows that for every $C, \Lambda \subset X$ with $C \neq \emptyset$

$$(\delta_C)^{\delta_\Lambda} = (-\delta_C) \bigtriangleup \delta_\Lambda = \delta_{C^\Lambda}.$$
 (26)

It is interesting to compare this formula with the following one

$$(\delta_C)^{-\delta_\Lambda} = (-\delta_C) \bigtriangleup (-\delta_\Lambda) = -\delta_{C+\Lambda}, \tag{27}$$

that is obtained as a consequence of the equality $\delta_{C+\Lambda} = \delta_C \bigtriangledown \delta_{\Lambda}$.

Corollary 4.1. Let X be a vector space. For every set $\Lambda \subset X$ and every set $D \subset X$ such that $D \neq \emptyset$ and $D \neq X$, the following equivalence holds

$$\delta_D \in \mathcal{E}^{\delta_\Lambda} \quad \Longleftrightarrow \quad D \in \mathcal{I}^\Lambda.$$

In fact, the implication from the left to the right is true as soon as $D \neq \emptyset$, while the reverse one is true if $D \neq X$.

Proof. First assume that $\delta_D \in \mathcal{E}^{\delta_\Lambda}$ and that $D \neq \emptyset$. There exists $f: X \to \mathbb{R}$ such that $\delta_D = f^{\delta_\Lambda}$, hence we deduce from Proposition 4.4 (i) that $\delta_D = -\inf_X f + \delta_{(\text{dom } f)^{\Lambda}}$. Since $D \neq \emptyset$, we have $\inf_X f = 0$ and $D = (\text{dom } f)^{\Lambda} \in \mathcal{I}^{\Lambda}$. Conversely, assume that $D \in \mathcal{I}^{\Lambda}$ and that $D \neq X$. This implies that $D = C^{\Lambda}$ for some $C \neq \emptyset$, and hence by Proposition 4.4 (i) again $\delta_D = \delta_{C^{\Lambda}} = (\delta_C)^{\delta_{\Lambda}} \in \mathcal{E}^{\delta_{\Lambda}}$.

Let us now study the class $\mathcal{E}^{-\delta_{\Lambda}}$. From the generalized conjugation point of view, the case $\varphi = -\delta_{\Lambda}$ is a special instance of a coupling functional $c: X \times Y \to \overline{\mathbb{R}}$ of the type $c = -\delta_G$, where G is a subset of $X \times Y$. The corresponding conjugation operator, which arises in quasiconvex analysis, has been considered in many papers, see for example [17, 31, 35].

Proposition 4.5. Let X be a vector space. Let Λ be a nonempty subset of X and let $f: X \to \overline{\mathbb{R}}$. Then we have

(i)

$$f \in \mathcal{E}^{-\delta_{\Lambda}} \iff f = \sup_{y \in \Lambda} \inf_{z \in \Lambda} f(\cdot - y + z).$$
 (28)

This means equivalently that for every $x \in X$ and every $\lambda < f(x)$, there exists $y \in \Lambda$ such that $f(x - y + z) \geq \lambda$ for every $z \in \Lambda$.

(ii) If $f \in \mathcal{E}^{-\delta_{\Lambda}}$ and if $\Lambda + \Lambda \subset \Lambda$, then f is Λ -nondecreasing. Conversely, if f is Λ -nondecreasing and if $0 \in \Lambda$, then $f \in \mathcal{E}^{-\delta_{\Lambda}}$.

Proof. (i) The equivalence (7) \iff (8) yields

$$f \in \mathcal{E}^{-\delta_{\Lambda}} \iff f = (f^{(-\delta_{\Lambda})_{-}})^{-\delta_{\Lambda}}.$$

On the other hand, we have

$$f^{(-\delta_{\Lambda})_{-}} = \sup_{\xi \in X} -\delta_{\Lambda}(-\xi) - f(\cdot - \xi) = \sup_{-\xi \in \Lambda} -f(\cdot - \xi) = -\inf_{z \in \Lambda} f(\cdot + z)$$

and hence

$$\left(f^{(-\delta_{\Lambda})_{-}}\right)^{-\delta_{\Lambda}} = \sup_{y \in \Lambda} -f^{(-\delta_{\Lambda})_{-}}(\cdot - y) = \sup_{y \in \Lambda} \inf_{z \in \Lambda} f(\cdot - y + z).$$

We deduce immediately the equivalence (28).

Since the inequality $(f^{(-\delta_{\Lambda})})^{-\delta_{\Lambda}} \leq f$ is always satisfied, we infer that $f \in \mathcal{E}^{-\delta_{\Lambda}}$ if and only if for every $x \in X$,

$$\sup_{y \in \Lambda} \inf_{z \in \Lambda} f(x - y + z) \ge f(x).$$

The last assertion of (i) follows immediately.

(*ii*) Assume that $f \in \mathcal{E}^{-\delta_{\Lambda}}$ and that $\Lambda + \Lambda \subset \Lambda$. Let $\xi \in \Lambda$. In view of (28), we have for every $x \in X$

$$f(x + \xi) = \sup_{y \in \Lambda} \inf_{z \in \Lambda} f(x + \xi - y + z)$$

=
$$\sup_{y \in \Lambda} \inf_{z' \in \xi + \Lambda} f(x - y + z')$$

$$\geq \sup_{y \in \Lambda} \inf_{z' \in \Lambda} f(x - y + z') \quad \text{since } \xi + \Lambda \subset \Lambda$$

=
$$f(x).$$

Since this is true for every $\xi \in \Lambda$, we infer that f is Λ -nondecreasing. Conversely, assume that f is Λ -nondecreasing and that $0 \in \Lambda$. For every $y, z \in \Lambda$, we have

$$f(\cdot - y) \le f(\cdot - y + z) \le f(\cdot + z)$$

It ensues immediately that

$$\sup_{y \in \Lambda} f(\cdot - y) \le \sup_{y \in \Lambda} \inf_{z \in \Lambda} f(\cdot - y + z) \le \inf_{z \in \Lambda} f(\cdot + z).$$

Since $0 \in \Lambda$, we obtain $\sup_{y \in \Lambda} f(\cdot - y) = \inf_{z \in \Lambda} f(\cdot + z) = f$, and hence $f = \sup_{y \in \Lambda} \inf_{z \in \Lambda} f(\cdot - y + z)$. In view of (28), we conclude that $f \in \mathcal{E}^{-\delta_{\Lambda}}$.

Remark 4.2. When $\Lambda + \Lambda \subset \Lambda$ and $0 \in \Lambda$, the equivalence

$$f \in \mathcal{E}^{-\delta_{\Lambda}} \iff f \text{ is } \Lambda \text{-nondecreasing}$$

can be recovered by using the subadditivity of the function δ_{Λ} , see section 6.

Proposition 4.6. Let X be a vector space and let Λ , $D \subset X$.

(i) The following equivalence holds

$$-\delta_D \in \mathcal{E}^{-\delta_\Lambda} \quad \Longleftrightarrow \quad X \setminus D \in \mathcal{I}^{X \setminus \Lambda}.$$

(ii) If moreover $\Lambda \neq \emptyset$, we have

$$\delta_D \in \mathcal{E}^{-\delta_\Lambda} \quad \Longleftrightarrow \quad D \in \mathcal{I}^{X \setminus \Lambda}.$$

Proof. (i) First observe that the equivalence trivially holds if $\Lambda = \emptyset$. Now assume that $\Lambda \neq \emptyset$. Recall that

$$-\delta_D \in \mathcal{E}^{-\delta_\Lambda} \quad \Longleftrightarrow \quad -\delta_D = \left(\left(-\delta_D \right)^{\left(-\delta_\Lambda \right)_-} \right)^{-\delta_\Lambda}.$$
⁽²⁹⁾

Further, note by (4) that

$$(-\delta_D)^{(-\delta_\Lambda)_-} = (-\delta_D)^{(-\delta_{-\Lambda})} = (\delta_{-\Lambda})^{\delta_D}$$

= $\delta_{(-\Lambda)^D}$ from formula (26) and the nonvacuity of Λ .

In view of formula (27), we deduce that

$$\left(\left(-\delta_D\right)^{(-\delta_\Lambda)_-}\right)^{-\delta_\Lambda} = \left(\delta_{(-\Lambda)^D}\right)^{-\delta_\Lambda} = -\delta_{(-\Lambda)^D + \Lambda}.$$

Coming back to (29), we infer that

$$\begin{split} -\delta_D \in \mathcal{E}^{-\delta_{\Lambda}} &\iff D = (-\Lambda)^D + \Lambda \\ &\iff D = (X \setminus D)^{-(X \setminus \Lambda)} + \Lambda, \quad \text{see Proposition 4.2 (iii)} \\ &\iff X \setminus D = \left((X \setminus D)^{-(X \setminus \Lambda)} \right)^{X \setminus \Lambda}, \quad \text{in view of Proposition 4.2 (ii)} \\ &\iff X \setminus D \in \mathcal{I}^{X \setminus \Lambda}, \quad cf. \text{ Proposition 4.3.} \end{split}$$

(*ii*) Assume that $\Lambda \neq \emptyset$. By arguing as in (*i*), we find

$$(\delta_D)^{(-\delta_\Lambda)_-} = (\delta_D)^{-\delta_{-\Lambda}} = -\delta_{D-\Lambda},$$

and hence by (4) and (26)

$$\left(\left(\delta_{D}\right)^{\left(-\delta_{\Lambda}\right)_{-}}\right)^{-\delta_{\Lambda}} = \left(-\delta_{D-\Lambda}\right)^{-\delta_{\Lambda}} = \left(\delta_{\Lambda}\right)^{\delta_{D-\Lambda}} = \delta_{\Lambda^{D-\Lambda}}.$$

Recalling that

$$\delta_D \in \mathcal{E}^{-\delta_{\Lambda}} \iff \delta_D = \left(\left(\delta_D \right)^{\left(-\delta_{\Lambda} \right)_{-}} \right)^{-\delta_{\Lambda}},$$

we deduce that

$$\begin{split} \delta_D \in \mathcal{E}^{-\delta_{\Lambda}} &\iff D = \Lambda^{D-\Lambda} \\ &\iff D = (X \setminus (D-\Lambda))^{X \setminus \Lambda} \quad \text{by Proposition 4.2 (iii)} \\ &\iff D = \left(D^{-(X \setminus \Lambda)}\right)^{X \setminus \Lambda} \quad \text{by Proposition 4.2 (ii)} \\ &\iff D \in \mathcal{I}^{X \setminus \Lambda}, \quad \text{see Proposition 4.3.} \end{split}$$

Combining Corollary 4.1 and Proposition 4.6, we derive the following corollary giving various characterizations of \mathcal{I}^{Λ} via the classes $\mathcal{E}^{\delta_{\Lambda}}$ and $\mathcal{E}^{-\delta_{X\setminus\Lambda}}$.

Corollary 4.2. For every set $\Lambda \subset X$ and every set $D \subset X$ such that $D \neq \emptyset$ and $D \neq X$, the following equivalences hold

$$D \in \mathcal{I}^{\Lambda} \iff \delta_D \in \mathcal{E}^{\delta_{\Lambda}} \iff -\delta_{X \setminus D} \in \mathcal{E}^{-\delta_{X \setminus \Lambda}} \iff \delta_D \in \mathcal{E}^{-\delta_{X \setminus \Lambda}}$$

Proof. The first equivalence is a consequence of Corollary 4.1, under the assumptions $D \neq \emptyset$ and $D \neq X$. The equivalence $D \in \mathcal{I}^{\Lambda} \iff -\delta_{X\setminus D} \in \mathcal{E}^{-\delta_{X\setminus\Lambda}}$ follows from Proposition 4.6 (i) applied with $X \setminus D$ (resp. $X \setminus \Lambda$) in place of D (resp. Λ). If $\Lambda \neq X$, the equivalence $D \in \mathcal{I}^{\Lambda} \iff \delta_D \in \mathcal{E}^{-\delta_{X\setminus\Lambda}}$ is a consequence of Proposition 4.6 (ii) applied with $X \setminus \Lambda$ in place of Λ . If $\Lambda = X$, the equivalence becomes $D \in \mathcal{I}^X \iff \delta_D \in \mathcal{E}^{-\omega_X}$. Since $\mathcal{I}^X = \{X\}$ and $\mathcal{E}^{-\omega_X} = \{-\omega_X\}$, the equivalence amounts to $D = X \iff \delta_D = -\omega_X$. The condition D = X is not realized by assumption, while the condition $\delta_D = -\omega_X$ is never realized. It ensues that the equivalence trivially holds true if $\Lambda = X$.

For a function $f: X \to \mathbb{R}$ and $r \in \mathbb{R}$, the notation $[f \ge r]$ (resp. [f > r]) denotes the set $\{x \in X, f(x) \ge r\}$ (resp. $\{x \in X, f(x) > r\}$). We adopt the corresponding notations for the sublevel sets. Adapting Proposition 3.3 to the framework of sets, we obtain the following statement.

Proposition 4.7. Let X be a locally convex space. Let $\Lambda \subset X$ and $\xi^* \in X^*$. Then we have

(i) $[\langle \xi^*, \cdot \rangle > 0]^{\Lambda} = [\langle \xi^*, \cdot \rangle \le -\sigma_{X \setminus \Lambda}(-\xi^*)].$

(ii) If $\Lambda \neq X$, the following equivalence holds

$$\left[\langle \xi^*, \cdot \rangle \le 0 \right] \in \mathcal{I}^{\Lambda} \quad \Longleftrightarrow \quad \xi^* \in -\mathrm{dom}\,\sigma_{X \setminus \Lambda}$$

Proof. (i) Set $C = [\langle \xi^*, \cdot \rangle > 0]$ and observe that

$$\begin{array}{ll} \in C^{\Lambda} & \Longleftrightarrow & x - C \subset \Lambda \\ & \Leftrightarrow & X \setminus \Lambda \subset x - X \setminus C \\ & \Leftrightarrow & X \setminus \Lambda \subset \{y \in X, \, \langle \xi^*, y \rangle \geq \langle \xi^*, x \rangle \} \\ & \Leftrightarrow & \forall y \in X \setminus \Lambda, \, \langle \xi^*, y \rangle \geq \langle \xi^*, x \rangle \\ & \Leftrightarrow & \inf_{X \setminus \Lambda} \langle \xi^*, \cdot \rangle \geq \langle \xi^*, x \rangle \\ & \Leftrightarrow & -\sigma_{X \setminus \Lambda}(-\xi^*) \geq \langle \xi^*, x \rangle. \end{array}$$

Item (i) follows immediately.

(*ii*) First assume that $\sigma_{X \setminus \Lambda}(-\xi^*) \in \mathbb{R}$. Recall from (*i*) that the set $[\langle \xi^*, \cdot \rangle \leq -\sigma_{X \setminus \Lambda}(-\xi^*)]$ belongs to \mathcal{I}^{Λ} . Let $\xi \in X$ satisfying⁴ the equality $\langle \xi^*, \xi \rangle = -\sigma_{X \setminus \Lambda}(-\xi^*)$. We then have

$$\left[\langle \xi^*, \cdot - \xi \rangle \le 0\right] = \left[\langle \xi^*, \cdot \rangle \le -\sigma_{X \setminus \Lambda}(-\xi^*)\right] \in \mathcal{I}^{\Lambda}.$$

Since the class \mathcal{I}^{Λ} is stable under translations, the set $[\langle \xi^*, \cdot \rangle \leq 0]$ also belongs to \mathcal{I}^{Λ} . Now assume that $\sigma_{X \setminus \Lambda}(-\xi^*)$ is not finite, or equivalently $\sigma_{X \setminus \Lambda}(-\xi^*) = +\infty$ since $X \setminus \Lambda \neq \emptyset$ by assumption. Let us determine the set $([\langle \xi^*, \cdot \rangle \leq 0]^{-\Lambda})^{\Lambda}$. Remark that

$$[\langle \xi^*, \cdot \rangle \le 0]^{-\Lambda} \subset [\langle \xi^*, \cdot \rangle < 0]^{-\Lambda}$$

= $[\langle -\xi^*, \cdot \rangle > 0]^{-\Lambda}$
= $[\langle -\xi^*, \cdot \rangle \le -\sigma_{-(X \setminus \Lambda)}(\xi^*)]$ in view of (i) .

Since $\sigma_{-(X \setminus \Lambda)}(\xi^*) = \sigma_{X \setminus \Lambda}(-\xi^*) = +\infty$, it ensues that $[\langle \xi^*, \cdot \rangle \leq 0]^{-\Lambda} = \emptyset$, thus implying that

$$\left(\left[\langle \xi^*, \cdot \rangle \le 0\right]^{-\Lambda}\right)^{\Lambda} = X \neq \left[\langle \xi^*, \cdot \rangle \le 0\right]$$

From Proposition 4.3, we conclude that $[\langle \xi^*, \cdot \rangle \leq 0] \notin \mathcal{I}^{\Lambda}$, which ends the proof of the announced equivalence.

Let us denote by $\mathcal{C}(X)$ the class of nonempty closed convex sets of X.

Theorem 4.1. Let X be a locally convex space. Let $\Lambda \subset X$ be such that $\Lambda \neq X$. For every cone $Q \subset X^*$, the following equivalence holds true

$$\{C \in \mathcal{C}(X), \operatorname{dom} \sigma_C \subset Q\} \subset \mathcal{I}^{\Lambda} \quad \Longleftrightarrow \quad Q \subset -\operatorname{dom} \sigma_{X \setminus \Lambda}.$$

Proof. Let $Q \subset X^*$ be a cone and assume that

$$\{C \in \mathcal{C}(X), \, \operatorname{dom} \sigma_C \subset Q\} \subset \mathcal{I}^{\Lambda}. \tag{30}$$

Let $\xi^* \in Q$. Setting $C = [\langle \xi^*, \cdot \rangle \leq 0] \in \mathcal{C}(X)$, we have $\sigma_C = \delta_{\mathbb{R}+\xi^*}$, and hence dom $\sigma_C = \mathbb{R}_+\xi^* \subset Q$. In view of (30), it ensues that $C \in \mathcal{I}^{\Lambda}$. We then deduce from Proposition 4.7 (*ii*) that $\xi^* \in -\text{dom}\,\sigma_{X\setminus\Lambda}$. Since this is true for every $\xi^* \in Q$, we

⁴If $\xi^* = 0$, we have $\sigma_{X \setminus \Lambda}(-\xi^*) = 0$ because $X \setminus \Lambda \neq \emptyset$ by assumption. In this case, the equality $\langle \xi^*, \xi \rangle = -\sigma_{X \setminus \Lambda}(-\xi^*)$ is satisfied by every $\xi \in X$.

conclude that $Q \subset -\operatorname{dom} \sigma_{X \setminus \Lambda}$.

Now assume that $Q \subset -\operatorname{dom} \sigma_{X \setminus \Lambda}$ and let $C \in \mathcal{C}(X)$ be such that $\operatorname{dom} \sigma_C \subset Q$. Then $\delta_C \in \Gamma_0(X)$ with $\operatorname{dom} \delta_C^* \subset Q$, and since

 $Q \subset -\mathrm{dom}\,\sigma_{X \setminus \Lambda} = -\mathrm{dom}\,\delta^*_{X \setminus \Lambda} = -\mathrm{dom}\,(-(-\delta_{X \setminus \Lambda}))^*,$

by Theorem 3.1 we have $\delta_C \in \mathcal{E}^{-\delta_{X\setminus\Lambda}}$ (keep in mind $-\delta_{X\setminus\Lambda} \neq -\omega_X$ since $\Lambda \neq X$). Proposition 4.6 (*ii*) yields that $C \in \mathcal{I}^{\Lambda}$ as desired. Finally, we have shown the inclusion (30), which ends the proof.

Applying Theorem 4.1 with $Q = X^*$, we immediately obtain the following result.

Corollary 4.3. Let X be a locally convex space. Let $\Lambda \subset X$ be such that $\Lambda \neq X$. Then, the following equivalence holds true

$$\mathcal{C}(X) \subset \mathcal{I}^{\Lambda} \quad \Longleftrightarrow \quad \operatorname{dom} \sigma_{X \setminus \Lambda} = X^*.$$

5. A preorder relation on $\mathcal{F}(X, \overline{\mathbb{R}})$ based on φ -envelopes

Let X be a vector space and let $\mathcal{F}(X,\overline{\mathbb{R}})$ be the set of extended real-valued functions on X. We define the relation \sim on the space $\mathcal{F}(X,\overline{\mathbb{R}})$ as follows: for every $\varphi, \psi: X \to \overline{\mathbb{R}}$

$$\psi \sim \varphi \iff$$
 there exist $\xi \in X$ and $\alpha \in \mathbb{R}$ such that $\psi = \varphi(\cdot - \xi) + \alpha$
 $\iff \psi$ is a φ -elementary function.

Clearly, the relation \sim is reflexive, symmetric and transitive, hence defines an equivalence relation. The objective of this section is to determine suitable⁵ subsets \mathcal{G} of $\mathcal{F}(X, \mathbb{R})$ such that the following implication holds true for every $\varphi, \psi \in \mathcal{G}$

$$\psi \in \mathcal{E}^{\varphi} \text{ and } \varphi \in \mathcal{E}^{\psi} \implies \psi \sim \varphi.$$
 (31)

5.1. The coercive case. For any function $\varphi : X \to \overline{\mathbb{R}}$, the deconvolution function $\varphi \ominus \varphi$ defined by $(\varphi \ominus \varphi)(x) = \sup_{y-z=x}(\varphi(y) - \varphi(z))$ can be expressed as a φ -envelope via the equality $\varphi \ominus \varphi = (\varphi_{-})^{\varphi}$. The next lemma shows that this function is subadditive. Recall that a function $f : X \to \overline{\mathbb{R}}$ is said to be subadditive if for any $x, y \in X$,

$$f(x+y) \le f(x) \dotplus f(y)$$

Lemma 5.1. Let X be a vector space and let $f, \varphi : X \to \overline{\mathbb{R}}$. For any $x, x' \in X$, we have

$$f^{\varphi}(x') \leq (\varphi \ominus \varphi)(x'-x) + f^{\varphi}(x).$$

Moreover, the function $\varphi \ominus \varphi$ is subadditive.

Proof. Fix $x, x' \in X$. It is immediate to check that for every $y \in X$,

$$\varphi(x'-y) - f(y) \le [\varphi(x'-y) - \varphi(x-y)] + [\varphi(x-y) - f(y)].$$

Taking the supremum over $y \in X$ and using [21, Proposition 4.a] we deduce that

$$\begin{split} f^{\varphi}(x') &\leq \sup_{y \in X} [\varphi(x'-y) - \varphi(x-y)] \dotplus \sup_{y \in X} [\varphi(x-y) - f(y)], \\ &= (\varphi \ominus \varphi)(x'-x) \dotplus f^{\varphi}(x), \end{split}$$

⁵The implication (31) is not true for all $\varphi, \psi \in \mathcal{F}(X, \mathbb{R})$, see a counterexample in subsection 5.3.

which yields the desired inequality. Further taking $f = \varphi_{-}$ in the above inequality and using the identity $(\varphi_{-})^{\varphi} = \varphi \ominus \varphi$, we obtain

$$(\varphi \ominus \varphi)(x') \le (\varphi \ominus \varphi)(x'-x) \dotplus (\varphi \ominus \varphi)(x),$$

hence the function $\varphi \ominus \varphi$ is subadditive.

If the space $(X, \|\cdot\|)$ is normed and if the function φ satisfies the coercivity property $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = +\infty$, the following lemma shows that $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$.

Lemma 5.2. Let $(X, \|\cdot\|)$ be a normed space and let $\varphi : X \to \overline{\mathbb{R}}$ be an extended real-valued function. Assume that $\varphi \neq +\omega_X$ and $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = +\infty$. Then we have $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$.

Proof. Let us argue by contradiction and assume that there exists $u \neq 0$ such that $(\varphi \ominus \varphi)(u) < +\infty$. Let us fix $\overline{x} \in \operatorname{dom} \varphi$ and observe that for every $n \in \mathbb{N}$,⁶

$$\varphi(\overline{x} + nu) - \varphi(\overline{x}) \leq (\varphi \ominus \varphi)(nu)$$

 $\leq n (\varphi \ominus \varphi)(u)$ since $\varphi \ominus \varphi$ is subadditive.

It ensues that

$$\frac{1}{n}\varphi(\overline{x}+nu) \leq \frac{1}{n}\varphi(\overline{x}) + (\varphi \ominus \varphi)(u),$$

and taking the upper limit as $n \to +\infty$, we deduce that

$$\limsup_{n \to +\infty} \frac{1}{n} \varphi(\overline{x} + nu) \le (\varphi \ominus \varphi)(u),$$

which contradicts the fact that $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = +\infty$. Finally, we obtain that $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$.

Theorem 5.1. Let X be a vector space and let φ , $\psi : X \to \overline{\mathbb{R}}$ be such that $\psi \in \mathcal{E}^{\varphi}$ and $\varphi \in \mathcal{E}^{\psi}$.

- (i) If $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$, then we have $\psi \sim \varphi$.
- (ii) Assume that $(X, \|\cdot\|)$ is a normed space. If $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = +\infty$ (resp. $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = -\infty$), then we have $\psi \sim \varphi$.

Proof. If $\varphi = \pm \omega_X$, it is immediate to check that $\psi = \varphi$. From now on, let us assume that $\varphi \neq \pm \omega_X$. Since $\psi \in \mathcal{E}^{\varphi}$ and $\varphi \in \mathcal{E}^{\psi}$, there exist $f, g: X \to \overline{\mathbb{R}}$ such that $-\psi = (-\varphi) \bigtriangledown f$ and $-\varphi = (-\psi) \bigtriangledown g$. It ensues that

$$-\varphi = (-\varphi) \bigtriangledown (f \bigtriangledown g). \tag{32}$$

Now observe that

$$\begin{array}{rcl} (-\varphi) \bigtriangledown (f \bigtriangledown g) \geq -\varphi & \iff & (-\varphi)(x-y) \dotplus (f \bigtriangledown g)(y) \geq -\varphi(x) & \text{for all } x, y \in X \\ & \iff & (f \bigtriangledown g)(y) \geq \varphi(x-y) \dotplus \varphi(x) & \text{for all } x, y \in X \\ & \iff & (f \bigtriangledown g)(y) \geq \sup_{x \in X} (\varphi(x-y) \dashv \varphi(x)) & \text{for all } y \in X \\ & \iff & f \bigtriangledown g \geq [\varphi \ominus \varphi]_{-}. \end{array}$$

 $^{^{6}\}mathbb{N}$ denotes the set of positive integers.

(i) Assume that $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$. We then deduce from the above inequality that

$$f \bigtriangledown g = +\infty \quad \text{on } X \setminus \{0\}. \tag{33}$$

If $f \bigtriangledown g = \omega_X$, we infer from (32) that $\varphi = -\omega_X$, thus implying in turn that $\psi = -\omega_X$. If $f \bigtriangledown g \neq \omega_X$, equality (33) shows that dom $(f \bigtriangledown g) = \{0\}$. Recalling that dom $(f \bigtriangledown g) = \text{dom } f + \text{dom } g$, we deduce that dom $f + \text{dom } g = \{0\}$. Hence there exists $\xi \in X$ such that dom $f = \{\xi\}$ and dom $g = \{-\xi\}$. We infer that

$$-\psi = (-\varphi) \bigtriangledown f = (-\varphi)(\cdot - \xi) \dotplus f(\xi) \tag{34}$$

and

$$-\varphi = (-\psi) \bigtriangledown g = (-\psi)(\cdot + \xi) + g(-\xi).$$
(35)

If $f(\xi) \in \mathbb{R}$, we obtain from (34) that $\psi = \varphi(\cdot - \xi) - f(\xi)$ and therefore $\psi \sim \varphi$. If $g(-\xi) \in \mathbb{R}$, equality (35) shows that $\varphi = \psi(\cdot + \xi) - g(-\xi)$, and hence $\varphi \sim \psi$. On the other hand, if $f(\xi) = g(-\xi) = -\infty$, we deduce from (34)-(35) that

 $-\psi \le (-\varphi)(\cdot -\xi)$ and $-\varphi \le (-\psi)(\cdot +\xi)$,

thus implying that $\psi = \varphi(\cdot - \xi)$ and therefore $\psi \sim \varphi$.

(*ii*) First assume that $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = +\infty$. We infer from Lemma 5.2 that $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$ and we conclude with (*i*).

Now assume that $\lim_{\|x\|\to+\infty} \varphi(x)/\|x\| = -\infty$. From Lemma 5.2, we deduce that $(-\varphi) \ominus (-\varphi) = +\infty$ on $X \setminus \{0\}$. Recalling that

$$(-\varphi) \ominus (-\varphi) = (-\varphi_{-})^{-\varphi} = \varphi^{\varphi_{-}} = [(\varphi_{-})^{\varphi}]_{-} = [\varphi \ominus \varphi]_{-},$$

we infer that $\varphi \ominus \varphi = +\infty$ on $X \setminus \{0\}$ and we conclude again with (i).

Let us define the relation \leq on $\mathcal{F}(X,\mathbb{R})$ by

$$\psi \preceq \varphi \quad \Longleftrightarrow \quad \psi \in \mathcal{E}^{\varphi}.$$

The relation \leq is clearly reflexive, and also transitive in view of Proposition 3.2 (*iii*). It is compatible with the equivalence relation \sim , *i.e.*

$$\varphi \sim \varphi', \quad \psi \sim \psi' \quad \text{and} \quad \psi \preceq \varphi \implies \psi' \preceq \varphi'.$$

It ensues that we can properly define the relation \leq on the quotient set $\mathcal{F}(X, \mathbb{R})/\sim$. The relation \leq so defined on $\mathcal{F}(X, \mathbb{R})/\sim$ is clearly reflexive and transitive, hence it is a preorder. Let us denote by $\mathcal{G}, \mathcal{G}'$ and \mathcal{G}'' the following respective sets

$$\begin{aligned} \mathcal{G} &= \left\{ f: X \to \mathbb{R}, \, f \ominus f = +\infty \quad \text{on } X \setminus \{0\} \right\}, \\ \mathcal{G}' &= \left\{ f: X \to \overline{\mathbb{R}}, \, \lim_{\|x\| \to +\infty} f(x) / \|x\| = +\infty \right\}, \\ \mathcal{G}'' &= \left\{ f: X \to \overline{\mathbb{R}}, \, \lim_{\|x\| \to +\infty} f(x) / \|x\| = -\infty \right\}. \end{aligned}$$

Theorem 5.1 expresses that for every $\varphi, \psi \in \mathcal{G}$ (resp. $\mathcal{G}', \mathcal{G}''$), we have

 $\psi \preceq \varphi, \quad \varphi \preceq \psi \quad \Longrightarrow \quad \psi \sim \varphi.$

Hence the induced relation \leq on the quotient set \mathcal{G}/\sim (resp. \mathcal{G}'/\sim , \mathcal{G}''/\sim) is antisymmetric, thus giving rise to an order relation.

22

Let us now specialize the result of Theorem 5.1 in the case of sets. We define the equivalence relation \sim on $\mathcal{P}(X)$ by

$$C \sim D \quad \iff \quad \text{there exists } \xi \in X \text{ such that } D = C + \xi_s$$

along with the preorder relation \prec on $\mathcal{P}(X)$ by

$$C \preceq D \iff C \in \mathcal{I}^D.$$

Recall that the star-difference $C \stackrel{*}{=} C$ is defined by

$$C \stackrel{*}{-} C = \bigcap_{x \in C} C - x = (-C)^C.$$

By applying Theorem 5.1 with indicator functions, we obtain the following corollary.

Corollary 5.1. Let X be a vector space and let Γ , $\Delta \subset X$ be such that $\Delta \in \mathcal{I}^{\Gamma}$ and $\Gamma \in \mathcal{I}^{\Delta}$.

- (i) If $\Gamma \stackrel{*}{-} \Gamma = \{0\}$, then we have $\Delta \sim \Gamma$.
- (ii) Assume that $(X, \|\cdot\|)$ is a normed space. If the set Γ (resp. $X \setminus \Gamma$) is bounded, then we have $\Delta \sim \Gamma$.

Proof. If $\Gamma \in \{\emptyset, X\}$ (resp. $\Delta \in \{\emptyset, X\}$), it is immediate to check that $\Delta = \Gamma$. Let us now assume that $\Gamma \notin \{\emptyset, X\}$ and $\Delta \notin \{\emptyset, X\}$. In view of Corollary 4.1, the assumptions $\Delta \in \mathcal{I}^{\Gamma}$ and $\Gamma \in \mathcal{I}^{\Delta}$ imply that $\delta_{\Delta} \in \mathcal{E}^{\delta_{\Gamma}}$ and $\delta_{\Gamma} \in \mathcal{E}^{\delta_{\Delta}}$. (*i*) Assume that $\Gamma \stackrel{*}{=} \Gamma = \{0\}$. Then, by (5) and Proposition 4.4 (*i*) we have

$$\delta_{\Gamma} \ominus \delta_{\Gamma} = (\delta_{-\Gamma})^{\delta_{\Gamma}} = \delta_{(-\Gamma)^{\Gamma}} = \delta_{\Gamma} \underline{*}_{\Gamma} = \delta_{\{0\}}.$$

By applying Theorem 5.1 (i) with $\varphi = \delta_{\Gamma}$ and $\psi = \delta_{\Delta}$, we obtain that $\delta_{\Delta} \sim \delta_{\Gamma}$ and hence $\Delta \sim \Gamma$.

(*ii*) First assume that Γ is bounded. Then the indicator function δ_{Γ} is coercive and we deduce from Lemma 5.2 that $\delta_{\Gamma} \ominus \delta_{\Gamma} = +\infty$ on $X \setminus \{0\}$. This implies that $\Gamma \stackrel{*}{-} \Gamma = \{0\}$ and we conclude with (i). Now assume that $X \setminus \Gamma$ is bounded. From what precedes, we have $(X \setminus \Gamma) \stackrel{*}{-} (X \setminus \Gamma) = \{0\}$. Observing that

$$\Gamma \stackrel{*}{-} \Gamma = (-\Gamma)^{\Gamma} = (X \setminus \Gamma)^{-X \setminus \Gamma} = -[(-X \setminus \Gamma)^{X \setminus \Gamma}] = -[(X \setminus \Gamma) \stackrel{*}{-} (X \setminus \Gamma)],$$

we infer that $\Gamma \stackrel{*}{=} \Gamma = \{0\}$ and we conclude again with (i).

Let us denote by $\mathcal{Q}, \mathcal{Q}'$ and \mathcal{Q}'' the following respective sets

$$\mathcal{Q} = \{ C \subset X, C \stackrel{*}{=} C = \{0\} \},$$
$$\mathcal{Q}' = \{ C \subset X, C \text{ is bounded} \},$$

$$\mathcal{Q}'' = \{ C \subset X, X \setminus C \text{ is bounded} \}.$$

The above corollary expresses that for every Γ , $\Delta \in \mathcal{Q}$ (resp. $\mathcal{Q}', \mathcal{Q}''$), we have

 $\Delta \prec \Gamma, \quad \Gamma \prec \Delta \implies \Delta \sim \Gamma.$

Hence the induced relation \preceq on the quotient set \mathcal{Q}/\sim (resp. $\mathcal{Q}'/\sim, \mathcal{Q}''/\sim$) is antisymmetric, thus giving rise to an order relation.

5.2. The case $\varphi, \psi \in -\Gamma_0(X)$. Let us first state a result that will be a key ingredient for the next theorem.

Lemma 5.3. Let X be a vector space, let $D \subset X$ be a convex set and let us denote by Aff (D) the affine space generated by D. Assume that a real-valued function $h: D \to \mathbb{R}$ is both convex and concave. Then there exists a unique affine function $\tilde{h}: Aff(D) \to \mathbb{R}$ such that $\tilde{h}_{|D} = h$.

For a proof of this result, the reader is referred to [33]. By extending affinely the function \tilde{h} to the whole space X, we deduce from the above result that there exists a linear function $\ell: X \to \mathbb{R}$ along with $\alpha \in \mathbb{R}$ such that $h = \ell_{|D} + \alpha$.

In view of stating the next theorem, given a locally convex space X recall that the Mackey topology $\tau(X^*, X)$ on X^* is defined as the finest locally convex topology \mathcal{T} on X^* such that the topological dual of (X^*, \mathcal{T}) coincides with X. If $(X, \|\cdot\|)$ is normed, this topology is exactly the one associated with the dual norm $\|\cdot\|_{X^*}$ provided that $(X, \|\cdot\|)$ is a reflexive Banach space.

Theorem 5.2. Let X be a locally convex space. Let φ , $\psi : X \to \mathbb{R}$ be functions such that $\psi \in \mathcal{E}^{\varphi}$ and $\varphi \in \mathcal{E}^{\psi}$. Assume that either

-the space X is finite-dimensional, or

-one of the functions $(-\varphi)^*$ and $(-\psi)^*$ is $\tau(X^*, X)$ -continuous at some point and finite at this point.

Then we have $(-\varphi)^{**} \sim (-\psi)^{**}$. If each of the functions $-\varphi$ and $-\psi$ has a continuous affine minorant, then $\overline{\operatorname{co}}(-\varphi) \sim \overline{\operatorname{co}}(-\psi)$. In particular, if $-\varphi \in \Gamma_0(X)$ and $-\psi \in \Gamma_0(X)$, then we have $\varphi \sim \psi$.

Proof. By assumption, we have $-\psi = (-\varphi) \bigtriangledown f$ and $-\varphi = (-\psi) \bigtriangledown g$, for some f, $g: X \to \overline{\mathbb{R}}$. Taking the conjugates, we obtain that

$$(-\psi)^* = (-\varphi)^* + f^*$$
 and $(-\varphi)^* = (-\psi)^* + g^*$. (36)

First observe that if one of the functions $(-\varphi)^*$, $(-\psi)^*$, f^* or g^* is equal to $-\omega_{X^*}$, then equalities (36) imply that $(-\varphi)^* = (-\psi)^* = -\omega_{X^*}$. This implies in turn that $\varphi = \psi = -\omega_X$ and the conclusion is satisfied. From now on, let us assume that the functions $(-\varphi)^*$, $(-\psi)^*$, f^* and g^* differ from $-\omega_{X^*}$. From the first equality of (36), we deduce that dom $(-\psi)^* \subset \text{dom}(-\varphi)^*$, while the second equality of (36) yields dom $(-\varphi)^* \subset \text{dom}(-\psi)^*$. Finally, the domains of $(-\varphi)^*$ and $(-\psi)^*$ coincide and both functions are finite on their common domain D. If the set D is empty, then $(-\varphi)^* = (-\psi)^* = \omega_{X^*}$. This implies that $(-\varphi)^{**} = (-\psi)^{**} = -\omega_X$, hence the conclusion is trivially satisfied. Without loss of generality, we now assume that $D \neq \emptyset$. By combining both equalities of (36), we obtain

$$(-\varphi)^* = (-\varphi)^* + f^* + g^*.$$

It ensues that $f^* + g^* = 0$ on D. Hence the function $f^*_{|D}$ is finite-valued on Dand both convex and concave. By applying the previous lemma with $h = f^*_{|D}$, we obtain that there exist a linear function $\ell : X^* \to \mathbb{R}$ and $\alpha \in \mathbb{R}$ such that $f^* = \ell + \alpha$ on D. Coming back to the first equality of (36), we deduce that

$$(-\psi)^* = (-\varphi)^* + \ell + \alpha.$$

Observe that the above equality holds true on the whole space X^* , since the functions $(-\varphi)^*$ and $(-\psi)^*$ are equal to $+\infty$ outside D. Taking the conjugate of each member, we find for every $\xi \in X$

$$(-\psi)^{**}(\xi) = \sup_{x^* \in X^*} [\langle x^*, \xi \rangle - (-\varphi)^*(x^*) - \ell(x^*) - \alpha].$$
 (37)

Let us now show that the linear function ℓ is $\tau(X^*, X)$ -continuous on X^* .

Lemma 5.1. Under the assumptions of Theorem 5.2, the function $\ell : X^* \to \mathbb{R}$ is $\tau(X^*, X)$ -continuous on X^* .

Proof of Lemma 5.1. If the space X is finite-dimensional, the assertion is obvious. Now assume that the function $(-\varphi)^*$ is $\tau(X^*, X)$ -continuous at some $\overline{x}^* \in X^*$ and finite at this point. There exist a $\tau(X^*, X)$ -neighborhood W of \overline{x}^* and $M \in \mathbb{R}$ such that $(-\varphi)^* \leq M$ on W. We deduce from (37) that for every $\xi \in X$,

$$\begin{aligned} (-\psi)^{**}(\xi) &\geq \sup_{x^* \in W} [\langle x^*, \xi \rangle - (-\varphi)^*(x^*) - \ell(x^*) - \alpha] \\ &\geq \sup_{x^* \in W} [\langle x^*, \xi \rangle - \ell(x^*)] - M - \alpha. \end{aligned}$$

Let us argue by contradiction and assume that ℓ is not $\tau(X^*, X)$ -continuous on X^* . Since the linear function $\langle \cdot, \xi \rangle - \ell$ is not $\tau(X^*, X)$ -continuous on X^* , the above supremum equals $+\infty$. It ensues that $(-\psi)^{**} = \omega_X$, and hence $-\psi = \omega_X$. Recalling that $-\varphi = (-\psi) \bigtriangledown g$, we deduce that $-\varphi = \omega_X$. This implies in turn that $(-\varphi)^* = -\omega_{X^*}$, a contradiction with $(-\varphi)^*(\overline{x}^*) \in \mathbb{R}$. We conclude that the linear function ℓ is $\tau(X^*, X)$ -continuous on X^* . Since φ and ψ play symmetric roles, the same conclusion holds true if the function $(-\psi)^*$ is assumed to be $\tau(X^*, X)$ -continuous at some $\tilde{x}^* \in X^*$ and finite at this point.

From the previous lemma and the definition of the Mackey topology $\tau(X^*, X)$, there exists $x \in X$ such that $\ell(x^*) = \langle x^*, x \rangle$ for every $x^* \in X^*$. In view of (37), we deduce that

$$(-\psi)^{**}(\xi) = \sup_{x^* \in X^*} [\langle x^*, \xi - x \rangle - (-\varphi)^*(x^*)] - \alpha = (-\varphi)^{**}(\xi - x) - \alpha.$$

Since this is true for every $\xi \in X$, we conclude that $(-\psi)^{**} \sim (-\varphi)^{**}$. If the function $(-\varphi)$ (resp. $(-\psi)$) admits a continuous affine minorant, we have $(-\varphi)^{**} = \overline{\operatorname{co}}(-\varphi)$ (resp. $(-\psi)^{**} = \overline{\operatorname{co}}(-\psi)$). We infer that $\overline{\operatorname{co}}(-\psi) \sim \overline{\operatorname{co}}(-\varphi)$. The last assertion of the statement is a direct consequence of what precedes.

Remark 5.1. If the normed space $(X, \|\cdot\|)$ is reflexive, the $\tau(X^*, X)$ -continuity assumption on $(-\varphi)^*$ (resp. $(-\psi)^*$) amounts to the continuity assumption with respect to the dual norm $\|\cdot\|_{X^*}$.

Theorem 5.2 implies that the relation \leq defines an order on the following set

 $\{\varphi \in -\Gamma_0(X), (-\varphi)^* \text{ is } \tau(X^*, X) \text{-continuous at some point}\}/\sim$.

If the space X is finite-dimensional, the relation \leq is an order on the set $(-\Gamma_0(X))/\sim$. By applying Theorem 5.2 with the opposite of indicator functions, we obtain the

following corollary.

Corollary 5.2. Let X be a locally convex space. Let Γ , $\Delta \subset X$ be such that $\Delta \in \mathcal{I}^{\Gamma}$ and $\Gamma \in \mathcal{I}^{\Delta}$. Assume that either

-the space X is finite-dimensional, or

-one of the functions $\sigma_{X\setminus\Gamma}$ and $\sigma_{X\setminus\Delta}$ is $\tau(X^*, X)$ -continuous at some point.

Then we have $\overline{\operatorname{co}}(X \setminus \Gamma) \sim \overline{\operatorname{co}}(X \setminus \Delta)$. In particular, if the sets $X \setminus \Gamma$ and $X \setminus \Delta$ are closed and convex, then $\Gamma \sim \Delta$.

Proof. From Proposition 4.6 (*i*), condition $\Delta \in \mathcal{I}^{\Gamma}$ (resp. $\Gamma \in \mathcal{I}^{\Delta}$) is equivalent to $-\delta_{X \setminus \Delta} \in \mathcal{E}^{-\delta_{X \setminus \Gamma}}$ (resp. $-\delta_{X \setminus \Gamma} \in \mathcal{E}^{-\delta_{X \setminus \Delta}}$). By applying Theorem 5.2 with $\varphi = -\delta_{X \setminus \Gamma}$ and $\psi = -\delta_{X \setminus \Delta}$, we obtain the existence of $\xi \in X$ and $\alpha \in \mathbb{R}$ such that

 $\overline{\operatorname{co}}(\delta_{X\setminus\Delta}) = [\overline{\operatorname{co}}(\delta_{X\setminus\Gamma})](\cdot - \xi) - \alpha.$

We immediately deduce that $\overline{\operatorname{co}}(X \setminus \Delta) = \overline{\operatorname{co}}(X \setminus \Gamma) + \xi$. The last assertion of the statement is a direct consequence of what precedes.

5.3. A counterexample. Let us start with a preliminary result.

Lemma 5.4. Let X be a topological vector space and let G be a dense additive subgroup of X. Assume that $K \subset X$ is an open set such that $K + K \subset K$ and $0 \in cl(K)$. Then we have

(i) For all $\xi, \xi' \in X$,

$$[G \cap (K + \xi)] + [G \cap (K + \xi')] = G \cap (K + \xi + \xi').$$

(ii) If in addition $\operatorname{cl}(K) \cap -\operatorname{cl}(K) = \{0\}$, then

$$G \cap (K + \xi) = (G \cap K) + \xi' \implies \xi = \xi'.$$

If $G \neq X$ and $\xi \in X \setminus G$, there is no $\xi' \in X$ such that $G \cap (K + \xi) = (G \cap K) + \xi'$.

Proof. (i) Let us fix $\xi, \xi' \in X$ and let us prove the inclusion from the left to the right. Observe that

$$[G \cap (K+\xi)] + [G \cap (K+\xi')] \subset G + G$$

and

$$[G \cap (K + \xi)] + [G \cap (K + \xi')] \subset (K + \xi) + (K + \xi').$$

Since $G + G \subset G$ and $K + K \subset K$, we deduce that

$$[G \cap (K+\xi)] + [G \cap (K+\xi')] \subset G \cap (K+\xi+\xi').$$

Now let us establish the reverse inclusion. Let $x \in G \cap (K + \xi + \xi')$. Observe that the open set $K + \xi + \xi' - x$ contains 0. Recalling that $0 \in cl(K)$, we have $(K + \xi + \xi' - x) \cap -K \neq \emptyset$, hence $(K + \xi - x) \cap (-K - \xi') \neq \emptyset$. Since the set K is open, the set $(K + \xi - x) \cap (-K - \xi')$ is open. By using the density of G in X, we deduce that

$$G \cap (K + \xi - x) \cap (-K - \xi') \neq \emptyset.$$

Since G = -G, the above property can be rewritten as

$$[G \cap (K + \xi - x)] \cap [-G \cap (-K - \xi')] \neq \emptyset,$$

which is in turn equivalent to

$$0 \in [G \cap (K + \xi - x)] + [G \cap (K + \xi')].$$

Recalling that $x \in G$, we have G = G - x, hence $G \cap (K + \xi - x) = [G \cap (K + \xi)] - x$. In view of the latter inclusion, we conclude that

$$x \in [G \cap (K + \xi)] + [G \cap (K + \xi')].$$

The inclusion

$$G \cap (K + \xi + \xi') \subset [G \cap (K + \xi)] + [G \cap (K + \xi')]$$

is proved.

(*ii*) Let us assume that $G \cap (K + \xi) = (G \cap K) + \xi'$ for some $\xi, \xi' \in X$. We deduce that $G \cap (K + \xi) \subset K + \xi'$. By using the openness of the set $K + \xi$ along with the density of G in X, we easily infer that $K + \xi \subset \operatorname{cl}(K) + \xi'$. This implies in turn that $\operatorname{cl}(K) + \xi \subset \operatorname{cl}(K) + \xi'$ and since $0 \in \operatorname{cl}(K)$, we obtain $\xi - \xi' \in \operatorname{cl}(K)$. By a symmetric argument, we find $\xi' - \xi \in \operatorname{cl}(K)$, hence $\xi - \xi' \in \operatorname{cl}(K) \cap -\operatorname{cl}(K)$. Since $\operatorname{cl}(K) \cap -\operatorname{cl}(K) = \{0\}$ by assumption, we conclude that $\xi = \xi'$. Now let $\xi \in X \setminus G$ and assume that there exists $\xi' \in X$ such that $G \cap (K + \xi) = (G \cap K) + \xi'$. From what precedes, we have $\xi' = \xi$ and hence $G \cap (K + \xi) = (G + \xi) \cap (K + \xi)$. On the other hand, the assumption $\xi \in X \setminus G$ implies that the sets G and $G + \xi$ are disjoint. We deduce that $G \cap (K + \xi) = \emptyset$, a contradiction

Let us now build an example of sets Γ , $\Delta \subset X$ satisfying $\Delta \in \mathcal{I}^{\Gamma}$ and $\Gamma \in \mathcal{I}^{\Delta}$, but with Δ and Γ not equal up to a translation. We are given an open set $K \subset X$ such that $K + K \subset K$ and $\operatorname{cl}(K) \cap -\operatorname{cl}(K) = \{0\}$, along with a dense additive subgroup $G \subset X$ such that $G \neq X$. Define the sets $C, U, V \subset X$ respectively by

$$C = G \cap K; \quad U = G \cap (K + \xi); \quad V = G \cap (K - \xi),$$

where $\xi \in X \setminus G$. In view of Lemma 5.4 (i), the set D = C + U satisfies

since the nonempty set K is open and the set G is dense in X.

$$D = G \cap (K + \xi)$$
 and $D + V = G \cap K = C$.

Lemma 5.4 (*ii*) shows that the set D is not translated from C. Defining the complementary sets $\Gamma = X \setminus C$ and $\Delta = X \setminus D$, we have

$$\Delta = X \setminus (C+U) = U^{X \setminus C} = U^{\Gamma} \in \mathcal{I}^{\Gamma}$$
(38)

and

$$\Gamma = X \setminus (D+V) = V^{X \setminus D} = V^{\Delta} \in \mathcal{I}^{\Delta}.$$
(39)

From what precedes, the set Δ is not translated from Γ . The above counterexample for sets obviously furnishes a counteraxample for functions. Indeed, we deduce from (38)-(39) that the indicator functions δ_{Γ} and δ_{Δ} satisfy $\delta_{\Delta} \in \mathcal{E}^{\delta_{\Gamma}}$ and $\delta_{\Gamma} \in \mathcal{E}^{\delta_{\Delta}}$, but the functions δ_{Γ} and δ_{Δ} are not equal up to a translation.

By particularizing the above sets $G, K \subset X$, one obtains various counterexamples. If $X = \mathbb{R}$, one can take $G = \mathbb{Q}, K =]0, +\infty[$ and $\xi \in \mathbb{R} \setminus \mathbb{Q}$. On the other hand, if X is infinite dimensional, one can assume that G is a dense subspace of X and that K is an open convex cone such that cl(K) is pointed. This furnishes a counterexample with convex sets $C, D \subset X$.

6. Cases of either superadditivity or subadditivity of φ

Let us first recall that a function $\varphi: X \to \overline{\mathbb{R}}$ is said to be superadditive (resp. subadditive) if for all $x, y \in X$,

$$\varphi(x+y) \ge \varphi(x) + \varphi(y) \quad (\text{resp. } \varphi(x+y) \le \varphi(x) + \varphi(y)).$$

Let us start with a preliminary result.

Lemma 6.1. Let X be a vector space. Let $h, k : X \to \overline{\mathbb{R}}$ and assume that k(0) = 0. Then we have

$$\begin{split} h &= h \bigtriangleup k &\iff h(x) \ge h(y) + k(x-y) \quad \textit{for all } x, y \in X \\ &\iff h(y) \le h(x) \dotplus (-k_{-})(y-x) \quad \textit{for all } x, y \in X \\ &\iff h = h \bigtriangledown (-k_{-}). \end{split}$$

As a consequence, the function k is superadditive if and only if $k = k \triangle k$, which is in turn equivalent to $k = k \bigtriangledown (-k_{-})$.

Proof. If $h = h \triangle k$, then the definition of $h \triangle k$ entails that $h(x) \ge h(y) + k(x-y)$ for all $x, y \in X$. Conversely, if this inequality holds true for every $x, y \in X$, we have

$$h(x) \ge \sup_{y \in X} h(y) + k(x-y) \ge h(x) + k(0) = h(x),$$

for every $x \in X$. This implies that $h(x) = (h \triangle k)(x)$ for every $x \in X$ and the first equivalence is proved.

For the second equivalence, observe that for all $x, y \in X$

$$h(x) \ge h(y) + k(x-y) \quad \Longleftrightarrow \quad h(y) \le h(x) + (-k)(x-y) = h(x) + (-k_-)(y-x)$$

The proof of the third equivalence follows the same lines as the first one. For the last assertion, observe that k is superadditive if and only if $k(x) \ge k(y) + k(x-y)$ for all $x, y \in X$. It suffices then to use what precedes with h = k.

Through the above lemma, the following theorem provides, in particular, various characterizations of the class \mathcal{E}^{φ} when φ is superadditive.

Theorem 6.1. Let X be a vector space. Let $\varphi : X \to \overline{\mathbb{R}}$ be a superadditive function satisfying $\varphi(0) = 0$.

- (a) For a function $g: X \to \overline{\mathbb{R}}$, the following assertions are equivalent
 - (i) $g \in \mathcal{E}^{\varphi};$
 - (*ii*) $g = g \bigtriangleup \varphi;$
 - (iii) $g(x) \ge g(y) + \varphi(x-y)$ for all $x, y \in X$;
 - $(iv) \ g(y) \leq g(x) \dotplus (-\varphi_-)(y-x) \quad \ for \ all \ x,y \in X;$
 - (v) $g = g \bigtriangledown (-\varphi_{-});$
 - $(vi) -g \in \mathcal{E}^{\varphi_-}.$
- (b) For every function f : X → R, f ⊂ (-φ_) is the greatest φ-envelope that is majorized by f, while f △ φ is the lowest φ-envelope that is minorized by f.
- (c) The following inclusion holds true $\mathcal{E}^{-\varphi} \subset \mathcal{E}^{\varphi_{-}}$.

Proof. (a) Let us assume that $g \in \mathcal{E}^{\varphi}$. Then there exists $f : X \to \mathbb{R}$ such that $g = f^{\varphi} = (-f) \bigtriangleup \varphi$. Using the superadditivity of φ and the last assertion of Lemma 6.1, we have

$$g \bigtriangleup \varphi = ((-f) \bigtriangleup \varphi) \bigtriangleup \varphi = (-f) \bigtriangleup (\varphi \bigtriangleup \varphi) = (-f) \bigtriangleup \varphi = g.$$

This shows that $(i) \implies (ii)$. Conversely, if $g = g \bigtriangleup \varphi$ then $g = (-g)^{\varphi}$ and clearly $g \in \mathcal{E}^{\varphi}$. The equivalences $(ii) \iff (iii) \iff (iv) \iff (v)$ follow directly from

Lemma 6.1. For the equivalence $(v) \iff (vi)$, observe that

$$g = g \bigtriangledown (-\varphi_{-}) \iff -g = (-g) \bigtriangleup \varphi_{-},$$

and invoke the equivalence $(i) \iff (ii)$. (b) Let $f: X \to \overline{\mathbb{R}}$. Observe that

$$\begin{array}{lll} (f \bigtriangledown (-\varphi_{-})) \bigtriangledown (-\varphi_{-}) &=& f \bigtriangledown ((-\varphi_{-}) \bigtriangledown (-\varphi_{-})) \\ &=& f \bigtriangledown (-(\varphi_{-} \bigtriangleup \varphi_{-})) \\ &=& f \bigtriangledown (-\varphi_{-}) & \text{by Lemma 6.1 since } \varphi_{-} \text{ is superadditive.} \end{array}$$

In view of the implication $(v) \Longrightarrow (ii)$ in (a), we deduce that

$$f \bigtriangledown (-\varphi_{-}) = (f \bigtriangledown (-\varphi_{-})) \bigtriangleup \varphi = ((-f) \bigtriangleup \varphi_{-})^{\varphi} = (f^{\varphi_{-}})^{\varphi}.$$

Hence $f \bigtriangledown (-\varphi_{-})$ coincides with $(f^{\varphi_{-}})^{\varphi}$, which is by property (6) the greatest element of \mathcal{E}^{φ} that is majorized by f. Replacing f (resp. φ) with -f (resp. φ_{-}) and taking the opposite, we deduce that $f \bigtriangleup \varphi$ is the lowest element of $-\mathcal{E}^{\varphi_{-}}$ that is minorized by f. It suffices then to recall that $\mathcal{E}^{\varphi_{-}} = -\mathcal{E}^{\varphi}$, see the equivalence $(i) \iff (vi)$ in (a).

(c) Since $\varphi \in \mathcal{E}^{\varphi}$, we have $-\varphi \in -\mathcal{E}^{\varphi} = \mathcal{E}^{\varphi_{-}}$. In view of Proposition 3.2 (*iii*), we infer that $\mathcal{E}^{-\varphi} \subset \mathcal{E}^{\varphi_{-}}$.

Example 6.1. Assume that $(X, \|\cdot\|)$ is a normed space. For $k \ge 0$ and $\alpha \in]0, 1]$, take $\varphi = -k \|\cdot\|^{\alpha}$. Observe that for all $x, y \in X$

$$||x+y||^{\alpha} \le (||x|| + ||y||)^{\alpha} \le ||x||^{\alpha} + ||y||^{\alpha}.$$
(40)

It ensues that the function $\|\cdot\|^{\alpha}$ is subadditive, hence φ is superadditive. From Theorem 6.1 (a), we deduce that

$$f \in \mathcal{E}^{-k \, \|\cdot\|^{\alpha}} \iff f(x) \ge f(y) - k \, \|x - y\|^{\alpha} \text{ for all } x, y \in X.$$
 (41)

By reversing the roles of x and y, we immediately obtain

$$f \in \mathcal{E}^{-k \, \|\cdot\|^{\alpha}} \quad \Longleftrightarrow \quad f(x) \le f(y) + k \, \|x - y\|^{\alpha} \quad \text{for all } x, y \in X.$$
 (42)

If $f(y) = +\infty$ (resp. $f(y) = -\infty$) for some $y \in X$, we deduce from (41) (resp. (42)) that $f = \omega_X$ (resp. $f = -\omega_X$). On the other hand, if the function f is finite-valued, we infer from (41)-(42) that $|f(x) - f(y)| \le k ||x - y||^{\alpha}$ for all $x, y \in X$. This implies that

$$\mathcal{E}^{-k \|\cdot\|^{\alpha}} = \{f : X \to \mathbb{R}, |f(x) - f(y)| \le k \|x - y\|^{\alpha} \text{ for all } x, y \in X\} \cup \{\omega_X, -\omega_X\} \\ = \{f : X \to \mathbb{R}, f \text{ is } \alpha \text{-H\"olderian with constant } k\} \cup \{\omega_X, -\omega_X\}.$$

From Theorem 6.1 (b), we deduce that $f \bigtriangledown k \| \cdot \|^{\alpha}$ (resp. $f \bigtriangleup (-k \| \cdot \|^{\alpha})$) is the greatest (resp. lowest) φ -envelope that is majorized (resp. minorized) by f. Since the map $\| \cdot \|^{\alpha}$ is even, Theorem 6.1 (c) shows that $\mathcal{E}^{k \| \cdot \|^{\alpha}} \subset \mathcal{E}^{-k \| \cdot \|^{\alpha}}$. Now assume that $\alpha = 1$. From what precedes, we obtain that

$$\mathcal{E}^{-k \parallel \cdot \parallel} = \{ f : X \to \mathbb{R}, f \text{ is } k \text{-Lipschitz continuous} \} \cup \{ \omega_X, -\omega_X \}.$$

The Pasch-Hausdorff regularization of f, defined by $l_k(f) = f \bigtriangledown k \|\cdot\|$, is the greatest function of $\mathcal{E}^{-k} \|\cdot\|$ that is majorized by f. On the other hand, $f \bigtriangleup (-k \|\cdot\|)$ is the lowest function of $\mathcal{E}^{-k} \|\cdot\|$ that is minorized by f. The inclusion $\mathcal{E}^{k} \|\cdot\| \subset \mathcal{E}^{-k} \|\cdot\|$ shows that the $k \|\cdot\|$ -envelopes are either k-Lipschitz continuous or equal to $\pm \omega_X$. The convexity of $\|\cdot\|$ implies that $k \|\cdot\|$ -envelopes are also convex, therefore the

inclusion $\mathcal{E}^{k \|\cdot\|} \subset \mathcal{E}^{-k \|\cdot\|}$ is strict. This ensures that the inclusion in (c) of the above theorem generally fails to be an equality.

As regards the function $\varphi = -k \| \cdot \|^{\alpha}$ it is also worth mentioning that, for $\eta(x, y) := \|x - y\|^{\alpha}$ with $\alpha > 0$ (even with more general coupling functions) and taking

$$\mathbf{\Phi} := \{ r - \sigma \, \eta(\cdot, y) : r \in \mathbb{R}, \, \sigma > 0, \, y \in X \},\$$

a lower semicontinuous function on the normed space X is shown in [7, Theorem 4.2] to be Φ -convex (i.e., a pointwise supremum of functions in Φ), whenever it is bounded from below by a function in Φ . The latter property with $\alpha = 2$ was previously proved in [29, Theorem 2]. The function $(x, y) \mapsto -k ||x-y||^{\alpha}$ is also used as a particular important example of coupling functions arising in the framework of generalized conjugacy in many papers, see for example [23, p. 204].

Remark 6.1. Given a nonincreasing convex function $\theta : \mathbb{R}_+ \to \mathbb{R}$ such that $\theta(0) = 0$, one can easily check that the function $\theta(\|\cdot\|)$ is superadditive. Hence the previous example can be generalized by taking $\varphi = \theta(\|\cdot\|)$.

Example 6.2. Let X be a vector space. Let $\Lambda \subset X$ be a set containing the origin and such that $\Lambda + \Lambda \subset \Lambda$. The function δ_{Λ} is clearly subadditive. This implies that the function $\varphi = -\delta_{\Lambda}$ is superadditive. By Theorem 6.1 (a) it follows that

$$\begin{split} f \in \mathcal{E}^{-\delta_{\Lambda}} & \iff f(x) \geq f(y) + (-\delta_{\Lambda})(x-y) \quad \text{for all } x, y \in X \\ & \iff f(x) \geq f(y) \quad \text{if } x - y \in \Lambda \\ & \iff f \text{ is } \Lambda \text{-nondecreasing.} \end{split}$$

This and Theorem 6.1 (b) entail that $f \bigtriangledown \delta_{-\Lambda}$ (resp. $f \bigtriangleup (-\delta_{\Lambda})$) is the greatest (resp. lowest) Λ -nondecreasing function that is majorized (resp. minorized) by f. Further, Theorem 6.1 (c) says that $\mathcal{E}^{\delta_{\Lambda}} \subset \mathcal{E}^{(-\delta_{\Lambda})_{-}} = \mathcal{E}^{-\delta_{-\Lambda}}$, hence the functions of $\mathcal{E}^{\delta_{\Lambda}}$ are Λ -nonincreasing. In fact, this can be recovered directly by using the characterization of $\mathcal{E}^{\delta_{\Lambda}}$ given by Proposition 4.4 (ii).

7. CASE
$$\varphi \in \Gamma(X)$$

7.1. Expressions of φ -envelopes as Legendre-Fenchel conjugates. Let us start with the following elementary lemma.

Lemma 7.1. Let X be a locally convex space. For every function $f: X \to \overline{\mathbb{R}}$, we have $(f^*)_- = (f_-)^*$.

Proof. It suffices to use the definition of the Legendre-Fenchel conjugate. For every $\xi^* \in X^*$, we have

$$(f^*)_{-}(\xi^*) = (f^*)(-\xi^*) = \sup_{x \in X} \{ \langle -\xi^*, x \rangle - f(x) \}$$

=
$$\sup_{y \in X} \{ \langle \xi^*, y \rangle - f(-y) \}$$

=
$$\sup_{y \in X} \{ \langle \xi^*, y \rangle - f_{-}(y) \} = (f_{-})^*(\xi^*).$$

30

$$f^{\varphi} = (\psi - (f_{-})^{*})^{*}.$$
(43)

Moreover the following equivalences hold

$$g \in \mathcal{E}^{\varphi} \iff g = (\psi - h)^* \quad \text{for some } h \in \Gamma(X^*)$$
$$\iff g = (\psi - (\psi - g^*)^{**})^*.$$

Proof. For every $x \in X$,

$$\begin{split} f^{\varphi}(x) &= \sup_{y \in X} \{\varphi(x-y) - f(y)\} \\ &= \sup_{y \in X} \left\{ \sup_{\xi^* \in X^*} \{\langle \xi^*, x-y \rangle - \psi(\xi^*) \} - f(y) \right\} \quad \text{since } \varphi = \psi^* \\ &= \sup_{y \in X} \sup_{\xi^* \in X^*} \{\langle \xi^*, x-y \rangle - \psi(\xi^*) - f(y) \} \\ &= \sup_{\xi^* \in X^*} \sup_{y \in X} \{\langle \xi^*, x-y \rangle - \psi(\xi^*) - f(y) \} \\ &= \sup_{\xi^* \in X^*} \left\{ \sup_{y \in X} \{\langle \xi^*, -y \rangle - f(y) \} - \psi(\xi^*) + \langle \xi^*, x \rangle \right\} \\ &= \sup_{\xi^* \in X^*} \{f^*(-\xi^*) - \psi(\xi^*) + \langle \xi^*, x \rangle \} \\ &= \left(\psi - (f^*)_{-} \right)^* (x) \\ &= \left(\psi - (f_{-})^* \right)^* (x) \quad \text{in view of Lemma 7.1.} \end{split}$$

For the first equivalence, recall that $g \in \mathcal{E}^{\varphi}$ if and only if there exists $f: X \to \overline{\mathbb{R}}$ such that $g = f^{\varphi}$. Then use the equality $f^{\varphi} = \left(\psi - (f_{-})^*\right)^*$ and the fact that the range of the Legendre-Fenchel transform is equal to $\Gamma(X^*)$, see, e.g., [20]. For the second equivalence, observe that

$$g \in \mathcal{E}^{\varphi} \iff g = (g^{\varphi_{-}})^{\varphi}$$
$$\iff g = \left[\left(\psi_{-} \dot{-} (g_{-})^{*} \right)^{*} \right]^{\varphi} \quad \text{from formula (43)}$$
$$\iff g = \left[\left((\psi \dot{-} g^{*})^{*} \right)_{-} \right]^{\varphi} \quad \text{by Lemma 7.1}$$
$$\iff g = \left(\psi \dot{-} (\psi \dot{-} g^{*})^{**} \right)^{*} \quad \text{from formula (43) again.}$$

Remark 7.1. Since $\varphi \in \Gamma(X)$ by assumption, we have $\varphi^{**} = \varphi$, hence we can take $\psi = \varphi^*$ in the statement of Theorem 7.1.

Remark 7.2. Formula (43) can be recovered partially by using a formula on the conjugate of the difference of functions. Recall that for $\psi : X \to \mathbb{R} \cup \{+\infty\}$ and

 $h \in \Gamma_0(X),$

$$\forall x^* \in X^*, \quad (\psi \doteq h)^*(x^*) = \sup_{\substack{y^* \in \mathrm{dom}\,h^*}} \{\psi^*(x^* + y^*) - h^*(y^*)\} \\ = (\psi^* \ominus h^*)(x^*).$$
(44)

This formula is due to Hiriart-Urruty [11]. It was established first by Pshenichnyi [26], assuming that both ψ and h are finite-valued convex functions. Now let $\varphi \in \Gamma_0(X)$ and $f \in \Gamma_0(X)$. By reversing the roles of X and X^* and by using equality (44) with $h = (f_-)^*$ and $\psi : X^* \to \mathbb{R} \cup \{+\infty\}$ such that $\psi^* = \varphi$, we find

$$egin{array}{rcl} (\psi \dot{-} (f_{-})^{*})^{*} &=& \varphi \ominus (f_{-})^{**} \ &=& \varphi \ominus f_{-} = f^{arphi} \end{array}$$

Hence we recover formula (43) in the case where both functions φ and f are in $\Gamma_0(X)$.

The next corollary says in particular that the φ -envelope of a function coincides with the φ -envelope of its lower semicontinuous convex hull whenever $\varphi \in \Gamma(X)$.

Corollary 7.1. Let X be a locally convex space and $\varphi \in \Gamma(X)$. Then we have for every function $f: X \to \overline{\mathbb{R}}$ and every function $g: X \to \overline{\mathbb{R}}$ satisfying $\overline{\operatorname{co}} f \leq g \leq f$,

$$f^{\varphi} = (\overline{\mathrm{co}}f)^{\varphi} = g^{\varphi}.$$

Proof. For the first equality, it suffices to use Theorem 7.1 and the fact that the functions f and $\overline{\operatorname{co}} f$ have the same Legendre-Fenchel conjugate. On the other hand, since $\overline{\operatorname{co}} f \leq g \leq f$, we see that $f^{\varphi} \leq g^{\varphi} \leq (\overline{\operatorname{co}} f)^{\varphi}$. Recalling that $f^{\varphi} = (\overline{\operatorname{co}} f)^{\varphi}$, the second equality immediately follows.

For every set $D \subset X^*$, we define as in section 3 the classes Σ_D and Σ_D^* by

$$\Sigma_D = \{ f : X^* \to \overline{\mathbb{R}}, \operatorname{dom} f \subset D \} \text{ and } \Sigma_D^* = \{ f^*, f \in \Sigma_D \}.$$

In the same vein, let us define the classes $\widehat{\Sigma}_D$ and $\widehat{\Sigma}_D^*$ by

$$\widehat{\Sigma}_D = \{ f : X^* \to \overline{\mathbb{R}}, \operatorname{dom} f = D \}$$
 and $\widehat{\Sigma}_D^* = \{ f^*, f \in \widehat{\Sigma}_D \}.$

The following proposition allows us to characterize the classes $\widehat{\Sigma}_D^*$ and Σ_D^* .

Proposition 7.1. Let X be a locally convex space and let $D \subset X^*$ be such that $D = \{a_i^*, i \in I\}$ for some set I. Then for every function $f : X \to \overline{\mathbb{R}}$, we have $f \in \widehat{\Sigma}_D^*$ (resp. Σ_D^*) if and only if there exists a family $(\alpha_i)_{i \in I} \subset \mathbb{R} \cup \{+\infty\}$ (resp. $\overline{\mathbb{R}}$) such that $f = \sup_{i \in I} \langle a_i^*, \cdot \rangle + \alpha_i$.

Proof. Assume that $f \in \widehat{\Sigma}_D^*$ (resp. Σ_D^*). By definition, there exists $g : X^* \to \overline{\mathbb{R}}$ such that $f = g^*$ and dom g = D (resp. dom $g \subset D$). Hence we have

$$f = \sup_{x^* \in D} \langle x^*, \cdot \rangle - g(x^*) = \sup_{i \in I} \langle a_i^*, \cdot \rangle - g(a_i^*).$$

By setting $\alpha_i = -g(a_i^*)$ for every $i \in I$, we obtain $f = \sup_{i \in I} \langle a_i^*, \cdot \rangle + \alpha_i$ with $\alpha_i \in \mathbb{R} \cup \{+\infty\}$ (resp. $\overline{\mathbb{R}}$).

Conversely, assume that there exists $(\alpha_i)_{i \in I} \subset \mathbb{R} \cup \{+\infty\}$ (resp. \mathbb{R}) such that $f = \sup_{i \in I} \langle a_i^*, \cdot \rangle + \alpha_i$. Then we have

$$f = \sup_{x^* \in D} \left[\sup_{\{i \in I, a_i^* = x^*\}} \langle a_i^*, \cdot \rangle + \alpha_i \right]$$
$$= \sup_{x^* \in D} \left[\langle x^*, \cdot \rangle + \sup_{\{i \in I, a_i^* = x^*\}} \alpha_i \right].$$

Defining the function $h: X^* \to \overline{\mathbb{R}}$ by

$$h(x^*) = \begin{cases} \sup_{\{i \in I, a_i^* = x^*\}} \alpha_i & \text{if } x^* \in D \\ \{i \in I, a_i^* = x^*\} & \\ -\infty & \text{if } x^* \notin D, \end{cases}$$

we obtain

$$f = \sup_{x^* \in D} \langle x^*, \cdot \rangle + h(x^*)$$
$$= \sup_{x^* \in X^*} \langle x^*, \cdot \rangle + h(x^*).$$

We conclude that $f = (-h)^*$ with dom(-h) = D (resp. dom $(-h) \subset D$), hence $f \in \widehat{\Sigma}_D^*$ (resp. $f \in \Sigma_D^*$).

Example 7.1. Take $D = \{a_1^*, \cdots, a_n^*\} \subset X^*$ for some $n \ge 1$. The previous proposition shows that, for every function $f: X \to \overline{\mathbb{R}}$,

$$f \in \Sigma_D^* \quad \iff \quad f = \sup_{i=1}^n \langle a_i^*, \cdot \rangle + \alpha_i \quad \text{ for some } \alpha_1, \cdots, \alpha_n \in \overline{\mathbb{R}}.$$
 (45)

On the other hand, if $f \in \Gamma_0(X)$, the following equivalence holds true

dom $f^* \subset D \iff \text{dom } f^* \subset \{a_i^*\}$ for some $i \in \{1, \cdots, n\}$

because the set dom f^* is convex. Since f^* is proper, this is in turn equivalent to $f^* = \delta_{\{a_i^*\}} - \alpha_i$ for some $\alpha_i \in \mathbb{R}$. Taking the conjugate, we find $f = \langle a_i^*, \cdot \rangle + \alpha_i$. It ensues that the set $\{f \in \Gamma_0(X), \text{ dom } f^* \subset D\}$ coincides with the set of affine continuous functions with slopes in $D = \{a_1^*, \cdots, a_n^*\}$. This yields an example for which the inclusion (14) is strict. By applying again Proposition 7.1, we obtain that

$$f \in \Sigma^*_{\operatorname{co}(D)} \iff f = \sup_{x^* \in \operatorname{co}(D)} \langle x^*, \cdot \rangle + \alpha_{x^*},$$
 (46)

with $\alpha_{x^*} \in \overline{\mathbb{R}}$ for every $x^* \in \operatorname{co}(D)$. The comparison of (45) and (46) clearly shows that the inclusion $\Sigma_D^* \subset \Sigma_{\operatorname{co}(D)}^*$ is strict as soon as the set $D = \{a_1^*, \cdots, a_n^*\}$ is not a singleton. This easily implies that the inclusion (15) is strict for such a set D.

The next result gives several upper bounds (in the sense of inclusion) for the set \mathcal{E}^{φ} , respectively when $\varphi \in \Gamma(X)$, $\varphi \in \widehat{\Sigma}^*_D$ and $\varphi \in \Sigma^*_D$.

Corollary 7.2. Let X be a locally convex space and let $\varphi \in \Gamma(X)$.

(i) The following inclusions hold true

$$\mathcal{E}^{\varphi} \subset \bigcap_{\{\psi, \varphi = \psi^*\}} \left(\widehat{\Sigma}^*_{\operatorname{dom} \psi} \cup \{-\omega_X\} \right) \subset \bigcap_{\{\psi, \varphi = \psi^*\}} \Sigma^*_{\operatorname{dom} \psi}.$$
(47)

(ii) For every subset $D \subset X^*$, we have

$$\begin{split} \varphi \in \widehat{\Sigma}_D^* &\iff \mathcal{E}^{\varphi} \subset \widehat{\Sigma}_D^* \cup \{-\omega_X\} \qquad if \ \varphi \neq -\omega_X \\ \varphi \in \Sigma_D^* &\iff \mathcal{E}^{\varphi} \subset \Sigma_D^*. \end{split}$$

(iii) Assume that there exist families $(a_i^*)_{i \in I} \subset X^*$ and $(\alpha_i)_{i \in I} \subset \mathbb{R} \cup \{+\infty\}$ (resp. $\overline{\mathbb{R}}$) such that

$$\varphi = \sup_{i \in I} \langle a_i^*, \cdot \rangle + \alpha_i.$$

Then for every $g \in \mathcal{E}^{\varphi} \setminus \{-\omega_X\}$ (resp. $g \in \mathcal{E}^{\varphi}$), there exists $(\beta_i)_{i \in I} \subset \mathbb{R} \cup \{+\infty\}$ (resp. \mathbb{R}) such that

$$g = \sup_{i \in I} \langle a_i^*, \cdot \rangle + \beta_i.$$

In particular, if the set I is finite, every φ -envelope is polyhedral.

Proof. (i) Let $\psi : X^* \to \overline{\mathbb{R}}$ be such that $\varphi = \psi^*$. Assuming that $g \in \mathcal{E}^{\varphi}$, Theorem 7.1 shows that $g = (\psi - h)^*$ for some $h \in \Gamma(X^*)$. If $h = -\omega_{X^*}$, we have $\psi - h = \omega_{X^*}$ and therefore $g = -\omega_X$. If $h \neq -\omega_{X^*}$, we see that dom $(\psi - h) = \operatorname{dom} \psi$, hence $g \in \widehat{\Sigma}^*_{\operatorname{dom} \psi}$. We deduce the inclusion $\mathcal{E}^{\varphi} \subset \widehat{\Sigma}^*_{\operatorname{dom} \psi} \cup \{-\omega_X\}$. Since this is true for every function $\psi : X^* \to \overline{\mathbb{R}}$ such that $\varphi = \psi^*$, the first inclusion of (47) follows. For the second inclusion, it suffices to notice that $\widehat{\Sigma}^*_{\operatorname{dom} \psi} \cup \{-\omega_X\} \subset \Sigma^*_{\operatorname{dom} \psi}$. (*ii*) Let us fix $D \subset X^*$ and assume that $\varphi \in \widehat{\Sigma}^*_D$. Then there exists $\psi : X^* \to \overline{\mathbb{R}}$

such that $\varphi = \psi^*$ and dom $\psi = D$. We deduce from the first inclusion of (47) that

$$\mathcal{E}^{\varphi} \subset \widetilde{\Sigma}^*_{\mathrm{dom}\,\psi} \cup \{-\omega_X\} = \widetilde{\Sigma}^*_D \cup \{-\omega_X\}.$$

Conversely, if $\mathcal{E}^{\varphi} \subset \widehat{\Sigma}_D^* \cup \{-\omega_X\}$ and if $\varphi \neq -\omega_X$, then we obtain $\varphi \in \widehat{\Sigma}_D^*$ according to the inclusion $\varphi \in \mathcal{E}^{\varphi}$. The proof of the second equivalence is analogous and left to the reader.

(*iii*) Let $(a_i^*)_{i\in I} \subset X^*$ and $(\alpha_i)_{i\in I} \subset \mathbb{R} \cup \{+\infty\}$ (resp. $\overline{\mathbb{R}}$) be such that $\varphi = \sup_{i\in I} \langle a_i^*, \cdot \rangle + \alpha_i$. Let us set $D = \{a_i^*, i \in I\}$. Proposition 7.1 shows that $\varphi \in \widehat{\Sigma}_D^*$ (resp. Σ_D^*). If $g \in \mathcal{E}^{\varphi} \setminus \{-\omega_X\}$ (resp. $g \in \mathcal{E}^{\varphi}$), we deduce from (*ii*) that $g \in \widehat{\Sigma}_D^*$ (resp. Σ_D^*). By applying Proposition 7.1 again, we derive the existence of $(\beta_i)_{i\in I} \subset \mathbb{R} \cup \{+\infty\}$ (resp. $\overline{\mathbb{R}}$) such that $g = \sup_{i\in I} \langle a_i^*, \cdot \rangle + \beta_i$. Finally, if the set I is finite and if g is a φ -envelope, then either $g = \pm \omega_X$ or the function g is the supremum of a finite collection of continuous affine functions. We then conclude that g is polyhedral.

By applying the second equivalence of Corollary 7.2 (*ii*) with $D = X^*$, we obtain that $\varphi \in \Gamma(X)$ if and only if $\mathcal{E}^{\varphi} \subset \Gamma(X)$. Corollary 7.3 below shows that in this case the set \mathcal{E}^{φ} is strictly included in $\Gamma(X)$. Notice that for $\varphi \in \Gamma_0(X)$ satisfying a suitable condition (named generating condition), the functions of the class \mathcal{E}^{φ} have been studied in [24] under the terminology of φ -strongly convex functions.

Following Theorem 7.1 and Remark 7.1, we have $g \in \mathcal{E}^{\varphi}$ if and only if $g = (\varphi^* \dot{-} h)^*$ for some $h \in \Gamma(X^*)$. Let us now have a look at the class of the functions equal to $(\varphi^* \dot{-} h)^*$ for some $h : X^* \to \mathbb{R} \cup \{+\infty\}$ not necessarily in $\Gamma(X^*)$.

Proposition 7.2. Let X be a locally convex space. Assume that $\varphi \in \Gamma_0(X)$ and $g \in \Gamma_0(X)$.

34

- (i) If $g = (\varphi^* h)^*$ for some $h : X^* \to \mathbb{R} \cup \{+\infty\}$, then we have $g^{\infty} = \varphi^{\infty}$, which is equivalent to $\mathrm{cl}^{w*}(\mathrm{dom}\,g^*) = \mathrm{cl}^{w*}(\mathrm{dom}\,\varphi^*)$.
- (ii) If dom $g^* = \operatorname{dom} \varphi^*$, then $g = (\varphi^* h)^*$ for $h : X^* \to \mathbb{R} \cup \{+\infty\}$ given by $h = \varphi^* g^*$.

Proof. (i) Assume that $g = (\varphi^* - h)^*$ for some $h : X^* \to \mathbb{R} \cup \{+\infty\}$. By definition of the Legendre-Fenchel transform, we obtain

$$g = \sup_{\substack{\xi^* \in X^*}} \{ \langle \xi^*, \cdot \rangle + h(\xi^*) - \varphi^*(\xi^*) \}$$

$$= \sup_{\substack{\xi^* \in \text{dom } \varphi^*}} \{ \langle \xi^*, \cdot \rangle + h(\xi^*) - \varphi^*(\xi^*) \}.$$
(48)

Observe that the function h cannot take the value $+\infty$ on dom φ^* (otherwise we would have $g = \omega_X$). Therefore the values $-\varphi^*(\xi^*)$ and $h(\xi^*)$ are finite for every $\xi^* \in \operatorname{dom} \varphi^*$. By taking the recession function of each member of (48), we obtain

$$g^{\infty} = \sup_{\xi^* \in \operatorname{dom} \varphi^*} [\langle \xi^*, \cdot \rangle + h(\xi^*) - \varphi^*(\xi^*)]^{\infty}.$$

The recession function of the affine map $\langle \xi^*, \cdot \rangle + h(\xi^*) - \varphi^*(\xi^*)$ is equal to $\langle \xi^*, \cdot \rangle$, thus implying that $g^{\infty} = \sup_{\xi^* \in \operatorname{dom} \varphi^*} \langle \xi^*, \cdot \rangle = \sigma_{\operatorname{dom} \varphi^*}$. Recalling that $\sigma_{\operatorname{dom} \varphi^*} = \varphi^{\infty}$, we deduce that $g^{\infty} = \varphi^{\infty}$, which is in turn equivalent to the equality $\operatorname{cl}^{w*}(\operatorname{dom} g^*) = \operatorname{cl}^{w*}(\operatorname{dom} \varphi^*)$, see [20].

(*ii*) Assume that dom $g^* = \operatorname{dom} \varphi^*$. It is easy to check that for every $x^* \in X^*$,

$$\left(\varphi^* \doteq (\varphi^* \doteq g^*) \right)(x^*) = \begin{cases} g^*(x^*) & \text{if } x^* \in \operatorname{dom} g^* \\ +\infty & \text{if } x^* \notin \operatorname{dom} g^*. \end{cases}$$

It ensues that $\varphi^* \dot{-} (\varphi^* \dot{-} g^*) = g^*$. Since $g \in \Gamma_0(X)$ by assumption, we have $g = g^{**}$, hence $g = (\varphi^* \dot{-} (\varphi^* \dot{-} g^*))^*$. The function $h = \varphi^* \dot{-} g^*$ takes its values in $\mathbb{R} \cup \{+\infty\}$ because dom $g^* = \operatorname{dom} \varphi^*$.

Combining Theorem 7.1 and Proposition 7.2, we derive a necessary (resp. sufficient) condition for a function $g \in \Gamma_0(X)$ to be a φ -envelope.

Corollary 7.3. Let X be a locally convex space. Assume that $\varphi \in \Gamma_0(X)$ and $g \in \Gamma_0(X)$.

- (i) If $g \in \mathcal{E}^{\varphi}$ then $g^{\infty} = \varphi^{\infty}$.
- (ii) If dom $g^* = \operatorname{dom} \varphi^*$ and $\varphi^* g^* \in \Gamma_0(X^*)$, then $g \in \mathcal{E}^{\varphi}$.

Proof. (i) If $g \in \mathcal{E}^{\varphi}$, we deduce from Theorem 7.1 that $g = (\varphi^* - h)^*$ for some $h \in \Gamma(X^*)$. Since $g \in \Gamma_0(X)$ by assumption, we have $h \neq -\omega_{X^*}$, hence the function h does not take the value $-\infty$. Proposition 7.2 (i) then implies that $g^{\infty} = \varphi^{\infty}$. (ii) If dom $q^* = \operatorname{dom} \varphi^*$, Proposition 7.2 (ii) shows that $q = (\varphi^* - h)^*$ with h =

 $\varphi^* \doteq g^*$. Since $h \in \Gamma_0(X^*)$ by assumption, we conclude by Theorem 7.1 that $g \in \mathcal{E}^{\varphi}$.

7.2. Klee envelopes. Let $(X, \|\cdot\|)$ be a normed space and let $f: X \to \overline{\mathbb{R}}$ be an extended real-valued function. For any reals $\lambda > 0$ and p > 1, we define the Klee envelope of f with index λ and power p as

$$\kappa_{\lambda,p}f(x) = \sup_{y \in X} \left(\frac{1}{p\lambda} \|x - y\|^p - f(y) \right).$$

In other words, we have $\kappa_{\lambda,p}f = f^{\varphi}$ with the function $\varphi : X \to \mathbb{R}$ defined by $\varphi(x) = \frac{1}{p\lambda} \|x\|^p$. Applying Theorem 7.1 with $\varphi = \frac{1}{p\lambda} \|\cdot\|^p$ and denoting by $\|\cdot\|_{X^*}$ the dual norm on X^* we obtain the following result.

Corollary 7.4. Let $(X, \|\cdot\|)$ be a normed space. For any $\lambda > 0$, p > 1 and for every function $f: X \to \overline{\mathbb{R}}$, we have

$$\kappa_{\lambda,p} f = \left(\frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q - (f_-)^*\right)^*,$$
(49)

where q > 1 is the conjugate exponent of p. Moreover the following assertions are equivalent

- (i) g is a Klee envelope with index λ and power p; (i) $g = \left(\frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q - h\right)^*$ for some $h \in \Gamma(X^*)$; (iii) $g = \left(\frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q - \left(\frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q - g^*\right)^{**}\right)^*$.

These assertions are satisfied whenever the following stronger condition is fulfilled

(iv) $g \in \Gamma(X)$ and $\frac{\lambda^{q-1}}{q} \parallel \cdot \parallel_{X^*}^q - g^* \in \Gamma(X^*).$

Proof. It suffices to apply Theorem 7.1 with $\varphi = \frac{1}{p\lambda} \|\cdot\|^p$ and $\psi = \varphi^* = \frac{\lambda^{q-1}}{q} \|\cdot\|^q_{X^*}$. Let us now establish the implication $(iv) \Longrightarrow (ii)$. Assume that $g \in \Gamma(X)$ and that $\frac{\lambda^{q-1}}{q} \|\cdot\|^q_{X^*} - g^* \in \Gamma(X^*)$. The function g^* can be written as $g^* = \frac{\lambda^{q-1}}{q} \|\cdot\|^q_{X^*} - h$ for some $h \in \Gamma(X^*)$. Since $g \in \Gamma(X)$ by assumption, we have $g = g^{**}$. Hence we deduce that $g = \left(\frac{\lambda^{q-1}}{q} \|\cdot\|^q_{X^*} - h\right)^*$ and assertion (ii) is proved. \Box

Corollary 7.5. Let $(X, \|\cdot\|)$ be a normed space. For every p > 1 and every $C \subset X$, the farthest distance function $\Delta_C = \sup_{y \in C} \|\cdot -y\|$ satisfies

$$\frac{1}{p}\Delta_C^p = \left(\frac{1}{q}\|\cdot\|_{X^*}^q - \sigma_{-C}\right)^*$$

Proof. Observe that

$$\kappa_{1,p} \,\delta_C = \sup_{y \in X} \left\{ \frac{1}{p} \| \cdot -y \|^p - \delta_C(y) \right\} = \sup_{y \in C} \frac{1}{p} \| \cdot -y \|^p = \frac{1}{p} \Delta_C^p.$$

It suffices then to apply formula (49) of Corollary 7.4 with $f = \delta_C$ and $\lambda = 1$. \Box

Additional properties of the Klee envelopes can be obtained in the case when $(X, \|\cdot\|)$ is a Hilbert space and p = 2.

Theorem 7.2. Assume that X is a Hilbert space endowed with the scalar product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$.

(a) For every $\lambda > 0$ and every function $f: X \to \overline{\mathbb{R}}$, we have

$$\kappa_{\lambda,2}f = \left(\frac{\lambda}{2} \|\cdot\|^2 - (f_{-})^*\right)^*$$
(50)

$$= \left(f - \frac{1}{2\lambda} \|\cdot\|^2\right)^* \left(-\frac{\cdot}{\lambda}\right) + \frac{1}{2\lambda} \|\cdot\|^2; \tag{51}$$

$$\kappa_{\lambda,2}\left(\kappa_{\lambda,2}f\right) = \left(f - \frac{1}{2\lambda} \|\cdot\|^2\right)^{**} + \frac{1}{2\lambda} \|\cdot\|^2.$$
(52)

- (b) For $\lambda > 0$ and $f: X \to \overline{\mathbb{R}}$ the following assertions are equivalent (i) f is a Klee envelope with index λ and power 2;
 - (ii) $f = \left(\frac{\lambda}{2} \|\cdot\|^2 h\right)^*$ for some $h \in \Gamma(X)$;
 - $\begin{array}{l} (ii) \quad f = \left(\frac{\lambda}{2} \| \cdot \|^2 \left(\frac{\lambda}{2} \| \cdot \|^2 f^*\right)^{**}\right)^*; \\ (iv) \quad f = \frac{1}{2\lambda} \| \cdot \|^2 \in \Gamma(X); \\ (v) \quad f \in \Gamma(X) \quad and \quad \frac{\lambda}{2} \| \cdot \|^2 f^* \in \Gamma(X). \end{array}$

Proof. (a) For the equality (50), it suffices to apply Corollary 7.4 with p = 2. For the equality (51), observe that for every $x \in X$,

$$\begin{aligned} \kappa_{\lambda,2}f(x) &= \sup_{y \in X} \left\{ \frac{1}{2\lambda} \|x - y\|^2 - f(y) \right\} \\ &= \sup_{y \in X} \left\{ \frac{1}{2\lambda} \|x\|^2 + \frac{1}{2\lambda} \|y\|^2 - \frac{1}{\lambda} \langle x, y \rangle - f(y) \right\} \\ &= \left(f - \frac{1}{2\lambda} \|\cdot\|^2 \right)^* (-x/\lambda) + \frac{1}{2\lambda} \|x\|^2. \end{aligned}$$

By iterating we deduce that

$$\kappa_{\lambda,2} (\kappa_{\lambda,2} f) = \left(\kappa_{\lambda,2} f - \frac{1}{2\lambda} \| \cdot \|^2 \right)^* \left(-\frac{\cdot}{\lambda} \right) + \frac{1}{2\lambda} \| \cdot \|^2$$
$$= \left[\left(f - \frac{1}{2\lambda} \| \cdot \|^2 \right)^* \left(-\frac{\cdot}{\lambda} \right) \right]^* \left(-\frac{\cdot}{\lambda} \right) + \frac{1}{2\lambda} \| \cdot \|^2$$
$$= \left(f - \frac{1}{2\lambda} \| \cdot \|^2 \right)^{**} + \frac{1}{2\lambda} \| \cdot \|^2,$$

which proves the equality (52).

(b) We now show that assertions (i) to (v) are equivalent. The equivalences $(i) \iff (ii) \iff (iii)$ are consequences of Corollary 7.4 applied with p = 2. Let us show the equivalence $(i) \iff (iv)$. Observe that f is a Klee envelope with index λ and power 2 if and only if $f \in \mathcal{E}^{\varphi}$ with $\varphi = \frac{1}{2\lambda} \|\cdot\|^2$. From the equivalence (7) \Leftrightarrow (8) and the fact that $\varphi_- = \varphi$, this is in turn equivalent to $f = (f^{\varphi})^{\varphi}$. Since $(f^{\varphi})^{\varphi} = \kappa_{\lambda,2} (\kappa_{\lambda,2} f)$ and using the equality (52), we infer that

f is a Klee envelope with index λ and power 2

$$\begin{pmatrix}
\uparrow \\
f - \frac{1}{2\lambda} \| \cdot \|^2 = \left(f - \frac{1}{2\lambda} \| \cdot \|^2 \right)^{**}$$

Hence the equivalence $(i) \iff (iv)$ is proved. Let us now show that $(iv) \implies (v)$. If $f - \frac{1}{2\lambda} \| \cdot \|^2 = \pm \omega_X$, then assertion (v) is trivially satisfied. Hence we can assume that $f = \frac{1}{2\lambda} \| \cdot \|^2 + h$ with $h \in \Gamma_0(X)$. This clearly implies that $f \in \Gamma_0(X)$. Taking the conjugate, we obtain that $f^* = \frac{\lambda}{2} \| \cdot \|^2 \bigtriangledown h^*$ since the classical qualification condition is satisfied. It ensues that for every $x \in X$,

$$f^{*}(x) = \inf_{y \in X} \left\{ \frac{\lambda}{2} \|x - y\|^{2} + h^{*}(y) \right\}$$

= $\frac{\lambda}{2} \|x\|^{2} + \inf_{y \in X} \left\{ -\lambda \langle x, y \rangle + \frac{\lambda}{2} \|y\|^{2} + h^{*}(y) \right\}.$

Therefore,

$$\begin{aligned} \frac{\lambda}{2} \|x\|^2 - f^*(x) &= \sup_{y \in X} \left\{ \lambda \langle x, y \rangle - \frac{\lambda}{2} \|y\|^2 - h^*(y) \right\} \\ &= \left(h^* + \frac{\lambda}{2} \|\cdot\|^2 \right)^* (\lambda x). \end{aligned}$$

This clearly implies that $\frac{\lambda}{2} \| \cdot \|^2 - f^* \in \Gamma_0(X)$ and (v) is proved. Let us finally observe that the implication $(v) \Longrightarrow (ii)$ has been established in Corollary 7.4. As a conclusion, we have shown the equivalences $(i) \iff (ii) \iff (iii) \iff (iv)$ along with the implications $(iv) \Longrightarrow (v) \Longrightarrow (ii)$, which clearly establishes that all assertions (i) to (v) are equivalent.

The equalities (51) and (52) have been previously established by Wang [37] respectively in Proposition 4.5 and at the end of the proof of Proposition 4.13. As noticed in [37, Proposition 4.13] those equalities directly yield, for f proper and lower semicontinuous, that $\kappa_{\lambda,2}(\kappa_{\lambda,2}f) = f$ if and only if $f - \frac{1}{2\lambda} \|\cdot\|^2$ is convex.

Taking f as the indicator function of a set C gives the following corollary.

Corollary 7.6. Assume that X is a Hilbert space. For every $C \subset X$, the farthest distance function Δ_C satisfies

$$\frac{1}{2}\Delta_C^2 = \left(\frac{1}{2}\|\cdot\|^2 - \sigma_{-C}\right)^* = \left(\delta_{-C} - \frac{1}{2}\|\cdot\|^2\right)^* + \frac{1}{2}\|\cdot\|^2.$$

Proof. It suffices to apply formulas (50)-(51) of Theorem 7.2 with $f = \delta_C$ and $\lambda = 1$.

7.3. Case of a positively homogeneous function φ . In this subsection, we assume that X is a locally convex space and that the function $\varphi \in \Gamma_0(X)$ is positively homogeneous, *i.e.* $\varphi = \sigma_D$ for a nonempty set $D \subset X^*$. By applying Theorem 7.1 with $\psi = \delta_D$, we immediately obtain the following result.

Corollary 7.7. Let X be a locally convex space. Take $\varphi = \sigma_D$ for a nonempty set $D \subset X^*$. Then we have for every function $f : X \to \overline{\mathbb{R}}$,

$$f^{\varphi} = (\delta_D - (f_-)^*)^* = \sup_{\xi^* \in D} \{ \langle \xi^*, \cdot \rangle + f^*(-\xi^*) \}.$$

Moreover,

$$g \in \mathcal{E}^{\varphi} \iff g = (\delta_D - h)^* = \sup_{\xi^* \in D} \{\langle \xi^*, \cdot \rangle + h(\xi^*)\} \quad \text{for some } h \in \Gamma(X^*)$$
$$\iff g = (\delta_D - (\delta_D - g^*)^{**})^*.$$

Let us now particularize to the case of a normed space $(X, \|\cdot\|)$ and take $\varphi = \|\cdot\|$. Corollary 7.8. Let $(X, \|.\|)$ be a normed space. For every function $f : X \to \overline{\mathbb{R}}$, we have

$$\kappa_{1,1} f = (\delta_{\mathbb{B}_{X^*}} \dot{-} (f_-)^*)^* = \sup_{\xi^* \in \mathbb{B}_{X^*}} \{ \langle \xi^*, \cdot \rangle + f^*(-\xi^*) \}$$
$$= (\delta_{\mathbb{S}_{X^*}} \dot{-} (f_-)^*)^* = \sup_{\xi^* \in \mathbb{S}_{X^*}} \{ \langle \xi^*, \cdot \rangle + f^*(-\xi^*) \}.$$

Moreover,

g is a Klee envelope with index 1 and power 1 \uparrow

Proof. For the equalities $\kappa_{1,1} f = \left(\delta_{\mathbb{B}_{X^*}} \dot{-} (f_-)^*\right)^*$ and $\kappa_{1,1} f = \left(\delta_{\mathbb{S}_{X^*}} \dot{-} (f_-)^*\right)^*$, use Corollary 7.7 respectively with $D = \mathbb{B}_{X^*}$ and $D = \mathbb{S}_{X^*}$. The characterizations of Klee envelopes with index 1 and power 1 follow immediately.

Assuming that $f = \delta_C$, we have

$$\kappa_{1,1} \, \delta_C = \sup_{x \in X} \{ \| \cdot -x \| - \delta_C(x) \} = \sup_{x \in C} \| \cdot -x \| = \Delta_C \,$$

where Δ_C is the farthest distance function. Taking into account the previous corollary, we then obtain

$$\Delta_C = \left(\delta_{\mathbb{B}_{X^*}} \div \sigma_{-C}\right)^* = \left(\delta_{\mathbb{S}_{X^*}} \div \sigma_{-C}\right)^*.$$

It is interesting to compare this expression with the one of the signed distance sgd defined by $\operatorname{sgd}(\cdot, C) := d(\cdot, C) - d(\cdot, X \setminus C)$, for which it is known that $\operatorname{sgd}(\cdot, C) = (\delta_{\mathbb{S}_{X^*}} + \sigma_C)^*$, see [22].

Consider now the case of a finite set $D = \{a_1^*, \ldots, a_n^*\} \subset X^*$ for $n \ge 1$. By applying Corollary 7.7, we obtain the following result.

Corollary 7.9. Let X be a locally convex space. Take $\varphi = \sigma_{\{a_1^*, \dots, a_n^*\}}$ with $a_1^*, \dots, a_n^* \in X^*$ and $n \ge 1$. Then we have for every function $f: X \to \overline{\mathbb{R}}$

$$f^{\varphi} = \sup_{i=1}^{n} \langle a_i^*, \cdot \rangle + f^*(-a_i^*).$$

Moreover,

$$g \in \mathcal{E}^{\varphi} \iff g = \sup_{i=1}^{n} \langle a_i^*, \cdot \rangle + h(a_i^*) \quad \text{for some } h \in \Gamma(X^*).$$

8. CASE $\varphi \in -\Gamma(X)$

8.1. Links between φ -envelopes and Legendre-Fenchel conjugates.

Proposition 8.1. Let X be a locally convex space and let φ , $g: X \to \overline{\mathbb{R}}$ be extended real-valued functions.

- (i) If $g \in \mathcal{E}^{\varphi}$, then there exists $h \in \Gamma(X^*)$ such that $(-g)^* = (-\varphi)^* + h$. If in addition $g \in -\Gamma(X)$, then $-g = ((-\varphi)^* + h)^*$.
- (ii) Assume that X is normed. If $\varphi \in -\Gamma(X)$ and if there exists $h \in \Gamma(X^*)$ satisfying the equality $-g = ((-\varphi)^* + h)^*$ along with the condition $0 \in$ int $(\operatorname{dom} h - \operatorname{dom} (-\varphi)^*)$, then $g \in \mathcal{E}^{\varphi}$.

Proof. (i) Since $g \in \mathcal{E}^{\varphi}$, there exists $f : X \to \mathbb{R}$ such that $g = f^{\varphi}$, hence $-g = (-\varphi) \bigtriangledown f$ by (3). Taking the conjugate of each member, we find $(-g)^* = (-\varphi)^* + f^*$. Hence the expected equality holds with $h = f^* \in \Gamma(X^*)$. If in addition $g \in -\Gamma(X)$, we have $-g = (-g)^{**}$, hence we deduce from what precedes that $-g = ((-\varphi)^* + h)^*$. (ii) Assume that $-g = ((-\varphi)^* + h)^*$ for some $h \in \Gamma(X^*)$. If $h = -\omega_{X^*}$ or if $(-\varphi)^* = -\omega_{X^*}$, then $-g = (-\omega_{X^*})^* = \omega_X$ and the inclusion $g \in \mathcal{E}^{\varphi}$ trivially holds. Now assume that $h \neq -\omega_{X^*}$ and $(-\varphi)^* \neq -\omega_{X^*}$. Since $0 \in \operatorname{int} (\operatorname{dom} h - \operatorname{dom} (-\varphi)^*)$, the functions $(-\varphi)^*$ and h are proper and according to the fact that X^* is a Banach space, we have

$$\begin{array}{rcl} -g &=& (-\varphi)^{**} \bigtriangledown h^* \\ &=& (-\varphi) \bigtriangledown h^* \quad \text{because } \varphi \in -\Gamma(X). \end{array}$$

We conclude that $g = \varphi \bigtriangleup (-h^*) = (h^*)^{\varphi} \in \mathcal{E}^{\varphi}.$

Corollary 8.1. Let X be a normed space and let $\varphi \in -\Gamma_0(X)$ be such that $\operatorname{dom}(-\varphi)^* = X^*$. For every $g \in -\Gamma(X)$, the following equivalences hold true

$$\begin{array}{rcl} g\in \mathcal{E}^{\varphi} & \Longleftrightarrow & (-g)^*-(-\varphi)^*\in \Gamma(X^*)\\ & \longleftrightarrow & -g=((-\varphi)^*+h)^* \quad for \ some \ h\in \Gamma(X^*). \end{array}$$

Proof. Fix $g \in -\Gamma(X)$. Since dom $(-\varphi)^* = X^*$ and $-\varphi \in \Gamma_0(X)$, the function $(-\varphi)^*$ is finite-valued on X^* , so the implication

$$g \in \mathcal{E}^{\varphi} \Longrightarrow h := (-g)^* - (-\varphi)^* \in \Gamma(X^*)$$

follows from Proposition 8.1 (i). Recalling that $g \in -\Gamma(X)$, the right-hand inclusion implies in turn that $-g = ((-\varphi)^* + h)^*$.

Now assume that $-g = ((-\varphi)^* + h)^*$ for some $h \in \Gamma(X^*)$. If dom $h \neq \emptyset$, the qualification assumption $0 \in \operatorname{int} (\operatorname{dom} h - \operatorname{dom} (-\varphi)^*)$ is automatically satisfied. We then deduce from Proposition 8.1 (*ii*) that $g \in \mathcal{E}^{\varphi}$. On the other hand, if

dom $h = \emptyset$, then we have $h = \omega_{X^*}$ and hence $-g = (\omega_{X^*})^* = -\omega_X$. Then the inclusion $q \in \mathcal{E}^{\varphi}$ trivially holds.

8.2. Moreau envelopes. Let $(X, \|\cdot\|)$ be a normed space and let $f: X \to \overline{\mathbb{R}}$ be an extended real-valued function. For $\lambda > 0$ and p > 1, we define the Moreau envelope of f with index λ and power p as

$$e_{\lambda,p}f = \inf_{y \in X} \left(\frac{1}{p\lambda} \| \cdot -y \|^p + f(y) \right) = \frac{1}{p\lambda} \| \cdot \|^p \bigtriangledown f.$$

Observe that $-e_{\lambda,p}f = \left(-\frac{1}{p\lambda} \|\cdot\|^p\right) \bigtriangleup (-f) = f^{\varphi}$, with the function $\varphi: X \to \mathbb{R}$ defined by $\varphi = -\frac{1}{p\lambda} \| \cdot \|^p$. It ensues that g is a Moreau envelope with index λ and power p if and only if $-g \in \mathcal{E}^{\varphi}$, for $\varphi = -\frac{1}{p\lambda} \|\cdot\|^p$. By applying the results of the previous subsection with $\varphi = -\frac{1}{p\lambda} \| \cdot \|^p$, we obtain the following statement.

Corollary 8.2. Assume that $(X, \|\cdot\|)$ is a normed space. Let $\lambda > 0$, p > 1 and let q be the conjugate exponent of p.

- (i) If g is a Moreau envelope with index λ and power p, then the function $g^* - \frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q \in \Gamma(X^*).$ (ii) If moreover $g \in \Gamma(X)$, the following equivalences hold true

g is a Moreau envelope with index λ and power p

$$\begin{aligned} & \updownarrow \\ g^* - \frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q \in \Gamma(X^*) \\ & \updownarrow \\ g = \left(\frac{\lambda^{q-1}}{q} \| \cdot \|_{X^*}^q + h\right)^* \quad for \ some \ h \in \Gamma(X^*). \end{aligned}$$

Proof. (i) It suffices to apply Proposition 8.1 (i) with $\varphi = -\frac{1}{p\lambda} \| \cdot \|^p$ and to recall that $\left(\frac{1}{p\lambda} \|\cdot\|^p\right)^* = \frac{\lambda^{q-1}}{q} \|\cdot\|^q_{X^*}.$

(*ii*) The equivalences follow from Corollary 8.1 applied with $\varphi = -\frac{1}{p\lambda} \| \cdot \|^p$.

When X is a Hilbert space, we obtain a more precise characterization of Moreau envelopes with power 2, as shown by the following proposition.

Proposition 8.2. Assume that X is a Hilbert space endowed with the scalar product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|\cdot\|$.

(a) For every $\lambda > 0$ and every function $f: X \to \overline{\mathbb{R}}$, we have

$$e_{\lambda,2}f = -\left(f + \frac{1}{2\lambda} \|\cdot\|^2\right)^* \left(\frac{\cdot}{\lambda}\right) + \frac{1}{2\lambda} \|\cdot\|^2.$$
(53)

The λ -proximal hull of f defined by $h_{\lambda}f = -e_{\lambda,2}(-e_{\lambda,2}f)$ is given by

$$-e_{\lambda,2}(-e_{\lambda,2}f) = \left(f + \frac{1}{2\lambda} \|\cdot\|^2\right)^{**} - \frac{1}{2\lambda} \|\cdot\|^2.$$
(54)

(b) A function $f: X \to \overline{\mathbb{R}}$ is a Moreau envelope with index λ and power 2 if and only if $f - \frac{1}{2\lambda} \| \cdot \|^2 \in -\Gamma(X)$.

Proof. (a) For every $x \in X$, we have

$$e_{\lambda,2}f(x) = \inf_{y \in X} \left\{ \frac{1}{2\lambda} \|x - y\|^2 + f(y) \right\}$$

=
$$\inf_{y \in X} \left\{ \frac{1}{2\lambda} \|x\|^2 + \frac{1}{2\lambda} \|y\|^2 - \frac{1}{\lambda} \langle x, y \rangle + f(y) \right\}$$

=
$$- \left(f + \frac{1}{2\lambda} \|\cdot\|^2 \right)^* (x/\lambda) + \frac{1}{2\lambda} \|x\|^2,$$

which proves the equality (53). By iterating we deduce that

$$\begin{aligned} -e_{\lambda,2}\left(-e_{\lambda,2}f\right) &= \left(-e_{\lambda,2}f + \frac{1}{2\lambda}\|\cdot\|^2\right)^* \left(\frac{\cdot}{\lambda}\right) - \frac{1}{2\lambda}\|\cdot\|^2 \\ &= \left[\left(f + \frac{1}{2\lambda}\|\cdot\|^2\right)^* \left(\frac{\cdot}{\lambda}\right)\right]^* \left(\frac{\cdot}{\lambda}\right) - \frac{1}{2\lambda}\|\cdot\|^2 \\ &= \left(f + \frac{1}{2\lambda}\|\cdot\|^2\right)^{**} - \frac{1}{2\lambda}\|\cdot\|^2, \end{aligned}$$

which proves the equality (54).

(b) Observe that f is a Moreau envelope with index λ and power 2 if and only if $-f \in \mathcal{E}^{\varphi}$ with $\varphi = -\frac{1}{2\lambda} \| \cdot \|^2$. From the equivalence (7) \Leftrightarrow (8) and the fact that $\varphi_- = \varphi$, this is in turn equivalent to $-f = ((-f)^{\varphi})^{\varphi}$. Since $((-f)^{\varphi})^{\varphi} = -e_{\lambda,2}(-e_{\lambda,2}(-f))$ and using the equality (54), we infer that

f is a Moreau envelope with index λ and power 2

$$\begin{aligned} & \uparrow \\ -f + \frac{1}{2\lambda} \| \cdot \|^2 = \left(-f + \frac{1}{2\lambda} \| \cdot \|^2 \right)^{**} \\ & \uparrow \\ -f + \frac{1}{2\lambda} \| \cdot \|^2 \in \Gamma(X). \\ & \uparrow \\ f - \frac{1}{2\lambda} \| \cdot \|^2 \in -\Gamma(X). \end{aligned}$$

The coupling functional $(x, y) \mapsto -\frac{1}{2\lambda} ||x - y||^2$ was considered in [7, Section 5] in the framework of generalized conjugacy. Equalities (53)-(54) were established by Penot and Volle [23, p. 206] and Martinez-Legaz [17, p. 182-184]. These equalities were also observed in [30, Example 11.26(c)] and [37, Lemma 3.3]. The characterization (b) above has been noticed in the aforementioned references, and it amounts to the previous characterization in [7, p. 288] of Q^c -convex functions with $c := 1/(2\lambda)$.

References

- H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces. Applications to PDE's and Optimization, *MPS/SIAM Series on Optimization*, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.
- [2] A. Auslender, M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer Monographs in Mathematics, Springer-Verlag, New-York, 2003.
- [3] D. Aze, M. Volle, Various continuity properties of the deconvolution, Lect. notes in Econ. and Math. Systems, 382 (1991), 16-30.
- [4] E.J. Balder, An extension of duality-stability relations to nonconvex optimization problems, SIAM J. Control Optim., 15 (1977), 329-343.
- [5] A. Brønsted, R.T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc., 16 (1965), 605-611.
- [6] S. Dolecki, Polarities and generalized extremal convolutions, J. Convex Anal., 23 (2016), to appear.
- [7] S. Dolecki, S. Kurcyusz, On Φ-convexity in extremal problems, SIAM J. Control Optim., 16 (1978), 277-300.
- [8] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, SIAM Classics in Applied Mathematics, 28, 1999.
- [9] K.-H. Elster, A. Wolf, Recent results on generalized conjugate functions, in "Trends in Mathematical OPtimization, Birkhäuser-Verlag, Basel (1988), 67-78.
- [10] A.S. Granero, M. Jiménez-Sevilla, J.P. Moreno, Intersections of closed balls and geometry of Banach spaces, *Extracta Mathematicae*, Vol. 19 Num. 1 (2004), 55-92.
- [11] J.-B. Hiriart-Urruty, A general formula on the conjugate of the difference of functions, Canad. Math. Bull. 29 (1986), 482-485.
- [12] J.-B. Hiriart-Urruty, The deconvolution operation in convex analysis: an introduction, Cybernetics and Systems Analysis, 30 (1994), 555-560.
- [13] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms, I. Fundamentals, II. Advanced Theory and Bundle Methods, Berlin, Springer-Verlag, 1993.
- [14] J.-B. Hiriart-Urruty, M.-L. Mazure, Formulations variationnelles de l'addition parallèle et de la soustraction parallèlle d'opérateurs semi-définis positifs, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 527-530.
- [15] G. E. Ivanov, Weak convexity of functions and the infimal convolution, J. Convex Anal., 23 (2016), to appear.
- [16] A. Jourani, L. Thibault, D. Zagrodny, The NSLUC property and Klee envelope, *Mathema-tische Annalen*, Published online, August 2015, 1-45.
- [17] J.-E. Martinez-Legaz, Generalized conjugation and related topics, in "Generalized Convexity and Fractional Programming with Economic Applications", Proc. Pisa. Italy (1988), A. Cambini et al. Eds., *Lecture Notes in Economics and Mathematical Systems*, 345 (1990), Springer-Verlag, Berlin, 168-197.
- [18] J.-E. Martinez-Legaz, J.-P. Penot, Regularization by erasement, Math. Scand., 98 (2006), 97-124.
- [19] S. Mazur, Über schwache Konvergentz in den Raumen L^p, Studia Math., 4 (1933), 128-133.
- [20] J.J. Moreau, Fonctionnelles convexes, Collège de France, Paris (1967); Second edition (2003), Consiglio Nazionale delle Ricerche and Facoltá di ingegneria Universita di Roma "Tor Vergata".
- [21] J.J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl., 49 (1970), 109-154.
- [22] J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathematics, Springer, New York, 2013.
- [23] J.-P. Penot, M. Volle, On strongly convex and paraconvex dualities, in "Generalized Convexity and Fractional Programming with Economic Applications", Proc. Pisa. Italy (1988), A. Cambini et al. Eds., *Lecture Notes in Economics and Mathematical Systems*, 345 (1990), Springer-Verlag, Berlin, 198-218.
- [24] E. S. Polovinkin, On strongly convex sets and strongly convex functions, J. Math. Sciences, 100 (2000), 2633-2681.
- [25] E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis, Fizmatlit, Moscow, 2004 (Russian).

- [26] B.N. Pshenichnyi, Leçons sur les jeux différentiels, Cahiers de l'I.R.I.A., No 4 (1971), 145-226.
- [27] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Acad. Publ., Boston, Dordrecht, London, 2000.
- [28] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
- [29] R.T. Rockafellar, Augmented Lagrange multipliers functions and duality in nonconvex programming, SIAM J. Control Optim., 12 (1974), 268-285.
- [30] R.T. Rockafellar and R. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
- [31] I. Singer, Some Relations between Dualities, Polarities, Coupling Functionals, and Conjugations, J. Math. Anal. Appl., 115 (1986), 1-22.
- [32] I. Singer, Duality for Nonconvex Approximation and Optimization, CMS Books in Mathematics, Springer, New York, 2006.
- [33] L. Vesely, Affine mappings and convex functions. Examples of convex functions, preprint available at *http://www.mat.unimi.it/users/libor/AnConvessa/functions.pdf*.
- [34] J.-P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res., 8 (1983), 231-259.
- [35] M. Volle, Contributions à la Dualité et à l'Épiconvergence, Thèse de Doctorat d'État, Université de Pau et des Pays de l'Adour, 1986.
- [36] M. Volle, A formula on the subdifferential of the deconvolution of convex functions, Bull. Austral. math. Soc., 47 (1993), 333-340.
- [37] X. Wang, On Chebyshev functions and Klee functions, J. Math. Anal. Appl., 368 (2010), 293-310.

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE, UMR 5584, CNRS, UNIV. BOURGOGNE FRANCHE-COMTÉ, 21000 DIJON, FRANCE.

 $E\text{-}mail\ address: \texttt{alexandre.cabot}@u-bourgogne.fr$

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE, UMR 5584, CNRS, UNIV. BOURGOGNE FRANCHE-COMTÉ, 21000 DIJON, FRANCE.

E-mail address: abderrahim.jourani@u-bourgogne.fr

INSTITUT MONTPELLIÉRAIN ALEXANDER GROTHENDIECK, UNIVERSITÉ DE MONTPELLIER, PLACE EUGÈNE BATAILLON, 34095 MONTPELLIER, FRANCE; AND CENTRO DE MODELAMIENTO MATEM-ATICO, UNIVERSIDAD DE CHILE.

E-mail address: lionel.thibault@univ-montp2.fr