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abstract: We provide sufficient conditions for radiality and semismooth-
ness. In general Banach spaces, we show that calmness ensures Dini-radiality
as well as Dini-convexity of solution set to inequality systems. In finite di-
mensional spaces, we introduce the concept of Clarke-radiality and semis-
moothness of order m and show that each subanalytic set satisfies these
properties. Similar properties are obtained for locally Lipschitzian subana-
lytic functions.
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1 Introduction

Consider a Banach space X and let S be a closed subset of X. The distance
of point x from the set S is given by

d(x, S) = inf
u∈S

‖x− u‖.

In the setting of Hilbert spaces, we know that when S is convex then each
point x ∈ X has a unique projection P (x) on S, that is,

d(x, S) = ‖x− P (x)‖.

But without convexity, it may happen that this projection can not exist
or P (x) is a set-valued mapping. Shapiro (1994) showed that existence
and uniqueness of the projection may be ensured by a special class of non
necessarily convex sets, called nearly convex sets. Following Shapiro, S is
nearly convex at x̄ ∈ S if there exists m > 0 such that

d(x, y + K(S, y)) = O(‖x− y‖m) as x, y → x̄ in S

where K(S, y) denotes the contingent (or Bouligand) cone to S at y.
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Closely to this notion, Lewis considered the following weaker concept :
The set S is said to be nearly radial at x̄ ∈ S if

d(x̄, x + K(S, x)) = o(‖x̄− x‖) as x → x̄ in S.

He uses it in the study of robust regularization of real-valued functions.
An other concept treated in the present paper is semismoothness. This

notion was introduced by Mifflin (1977) for studying necessary and sufficient
conditions in constrained optimization problems. It was also used in sev-
eral areas, namely for studying successive relaxation method in constrained
optimization (see Mifflin, 1977a, Konov, 1983 and references there in), for
giving sufficient conditions for calmness (see Henrion, Outrata, 2001 and
references there in)...

Our aim in this paper is to introduce new notions of radiality and semis-
moothness. One of them is weaker that the previous ones since it is expressed
in terms of the (lower) Dini directional derivative, called Dini-radiality. The
other one is given in terms of the Clarke’s tangent cone, called Clarke’s
radiality.

In general Banach spaces, we show that calmness ensures Dini-radiality
as well as Dini-convexity of solution set to inequality systems. In finite
dimensional spaces, we show that each subanalytic set is Clarke’s radial and
is semismooth. Similar properties are established for locally Lipschitzian
subanalytic functions.

2 Notions of nonsmooth analysis

This section contains some background material on nonsmooth analysis. We
give only concise definitions will be needed in the paper. For more detailed
information on the subject our references are Clarke (1983), Clarke et al.
(1998), Mordukhovich (2005).

Let X be a Banach space, X∗ be its topological dual with pairing 〈·, ·〉
and f : X 7→ IR ∪ {+∞} be a l.s.c. function such that f(x̄) < +∞. The
Clarke’s subdifferential of f at x̄ is the set

∂cf(x̄) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f0(x̄, h)∀h ∈ X}
where f0(x̄, h) denotes the Clarke’s directional derivative of f at x̄ in the
direction h, that is,

f0(x̄, h) = lim sup
t→0+

x→x̄

f(x + th)− f(x)
t

.

The (lower) Dini directional derivative of f at x̄ in the direction h is

f−(x̄, h) = lim inf
t→0+

u→h

f(x̄ + tu)− f(x̄)
t

.
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Let C ⊂ X, with x0 ∈ C. The contingent cone K(C, x0) to C at x0 is
the set given by the following Kuratowski limit :

K(C, x0) = lim sup
t→0+

C − x0

t

and the Clarke’s tangent cone Tc(C, x0) to C at x0 is the set of v ∈ X for
which d0

C(x0, v) = 0.
The Clarke’s normal cone to C at x0 is defined by

Nc(C, x0) = {x∗ ∈ X∗ : 〈x∗, v〉 ≤ 0 ∀v ∈ Tc(C, x0)}.

It is obvious that for all h ∈ X we have

f−(x0, h) ≤ f0(x0, h) and Tc(C, x0) ⊂ K(C, x0).

For the reader’s convenience, we will denote by

d−S (x, h) and d0
S(x, h)

the Dini-directional derivative and the Clarke directional derivative, respec-
tively, of the distance function to the set S at x in the direction h.

Finally, we will denote by B(x, r) the closed ball centred at x and of
radius r and if not specified the norm in a product of two Banach spaces is
defined by ‖(a, b)‖ = ‖a‖+ ‖b‖.

3 Radiality of inequality systems in Banach spaces

To ensure existence and differentiability of metric projections in Hilbert
spaces for non necessarily convex sets, Shapiro introduced the concept of
near convexity or o(1)-convexity. A set A in some Banach space X is said
to be nearly convex at x̄ ∈ A if

d(y, x + K(A, x)) = o(‖x− y‖) as x, y → x̄ in A. (1)

The set A is nearly convex if it is nearly convex at every point in A.
In order to study robust regularization of real-valued functions, Lewis

considered the following weaker concept.

DEFINITION 1 A set A in some Banach space X is said to be nearly
radial at x̄ ∈ A if

d(x̄, x + K(A, x)) = o(‖x̄− x‖) as x → x̄ in A. (2)

The set A is nearly radial if it is nearly radial at every point in A.
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Now, we introduce an other concept of radiality and near convexity in
terms of the lower Dini directional derivative of the distance function.

DEFINITION 2 1) A set A in some Banach space X is said to be nearly
Dini-radial (for short D-radial) at x̄ ∈ A if

d−A(x, x̄− x)) = o(‖x̄− x‖) as x → x̄ in A. (3)

The set A is nearly D-radial if it is nearly D-radial at every point in A.
2) A is said to be nearly Dini-convex (for short D-convex) at x̄ ∈ A if

d−A(x, y − x)) = o(‖y − x‖) as y, x → x̄ in A. (4)

The set A is nearly D-convex if it is nearly D-convex at every point in
A.

Clearly convex sets are nearly D-convex and hence D-radially convex.
Taking into account the following inequality

d−A(x, h) ≤ d(h,K(A, x)) ∀h
we clearly see that near radiality (resp. convexity) implies near D-radiality
(resp. D-convexity). As in finite dimension the previous inequality holds as
equality, both concepts coincide.

In this section, we are concerned with near D-radiality and near D-
convexity of the solution set S to the following inequality system

Find x ∈ A, satisfying F (x) ∈ B (5)

where A ⊂ X, B ⊂ Y are closed sets, F : X 7→ Y is a mapping and X and
Y are Banach spaces.

We say that the system (5) is calm at some solution point x̄ ∈ S if there
exist two real numbers a > 0 and r > 0 such that

d(x, S) ≤ ad(F (x), B) ∀x ∈ B(x̄, r) ∩A. (6)

Now, we can state the following result whose proof is very simple to
obtain.

THEOREM 1 Let x̄ ∈ S. Suppose that
i) the mapping F is continuously differentiable at x̄;
ii) the system (5) is calm at x̄;
iii) A is convex.
Then
α) the near D-radiality of B at F (x̄) implies the near D-radiality of S

at x̄.
β) the near D-convexity of B at F (x̄) implies the near D-convexity of S

at x̄.
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Proof. Since the map F is continuously differentiable at x̄, there exist
kF > 0 and s > 0 such that

‖F (x)− F (x̄)‖ ≤ kF ‖x− x̄‖ ∀x ∈ B(x̄, s). (7)

Let δ = min(r, s) where r satisfies relation (6). Then for all x ∈ B(x̄, δ) ∩ S
and t ∈]0, 1[, we have x + t(x̄− x) ∈ A ∩B(x̄, δ) and

d(x + t(x̄− x), S) ≤ ad(F (x + t(x̄− x), B).

Taylor expansion of F at x̄ leads to

F (x + t(x̄− x)) = F (x) + tDxF (x)(x̄− x) + o(t).

Combining the two last inequalities one obtains

d−S (x, x̄− x) ≤ ad−B(F (x), DxF (x)(x̄− x)) as x → x̄ in S.

Since
DxF (x)(x̄− x)) = F (x̄)− F (x) + o(x̄− x) as x → x̄

and

d−B(F (x), F (x̄)− F (x) + o(x̄− x)) ≤ d−B(F (x), F (x̄)− F (x)) + o(‖x̄− x‖)
we have

d−S (x, x̄−x
‖x̄−x‖) ≤ ad−B(F (x), F (x̄)−F (x)

‖F (x̄)−F (x)‖)×
‖F (x̄)−F (x)‖

‖x̄−x‖ + o(‖x̄−x‖)
‖x̄−x‖

≤ akF d−B(F (x), F (x̄)−F (x)
‖F (x̄)−F (x)‖) + o(‖x̄−x‖)

‖x̄−x‖

Now, since B is nearly D-radial at F (x̄) then S is nearly D-radial at x̄.¥
As a consequence, we obtain the following corollary.

COROLLARY 1 Consider the system (5) with A and B convex. Suppose
that F is continuously differentiable at x̄ ∈ S and

0 ∈ core[DxF (x̄)(A− x̄)− (B − F (x̄))].

Then S is nearly D-convex at x̄.

Proof. It suffices to see (Cominetti, 1990) that the core condition
implies calmness of the system (5) and to use Theorem 1.¥

In the case where A = X and B = {0}, we obtain the following corollary.

COROLLARY 2 Suppose that F is continuously differentiable at x̄, with
F (x̄) = 0, and that DxF (x̄)X = Y . Then the solution set to the equation

F (x) = 0 (8)

is nearly D-convex at x̄.
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4 Radiality and semismoothness in finite dimen-
sion

Through this section the space IRn will be endowed with the usual scalar
product, denoted by 〈·, ·〉, and the associated euclidean norm denoted by
‖ · ‖.

Our aim in this section is to show that the broad class of subanalytic
sets satisfies radiality and semismoothness. In fact, we will establish a more
general result including both previous concepts.

For this reason, we introduce the following definition.

DEFINITION 3 Let A ⊂ IRn be a closed set containing x̄ and let m > 0.
1) We say that A is nearly Clarke-radial (for short C-radial) of order m

at x̄ if

d(x̄− x, Tc(A, x)) = o(‖x̄− x‖m) as x → x̄ in A. (9)

2) We say that A is semismooth of order m at x̄ if for each xk → x̄ in
A we have

lim
k→∞

〈x∗k,
xk − x̄

‖xk − x̄‖m
〉 = 0 ∀x∗k ∈ ∂cd(xk, A).

All the definitions used here concerning semianalytic and subanalytic sets
are borrowed from the paper by Edward Bierstone and Pierre D. Milman
(1988).

Let M be a real analytic manifold. If U is an open set of M , let A(U)
denotes the ring of real analytic functions.

A subset A of M is semianalytic if each a ∈ M has a neighbourhood V
such that

V ∩A = ∪p
i=1 ∩q

j=1 {x : fij(x)σij0}
where fij ∈ A(V ) and σij ∈ {=, >〉.

We have the following representation of semianalytic sets.

PROPOSITION 1 (Bierstone and Milman, 1988) 1) Every open semian-
alytic subset X of M is a finite union of semianalytic sets of the form

{x ∈ M : fi(x) > 0, i = 1, · · · , k}

where fi ∈ A(X).
2) Every closed semianalytic subset X of M is a finite union of semian-

alytic sets of the form

{x ∈ M : fi(x) ≥ 0, i = 1, · · · , k}

where fi ∈ A(X).
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These sets are not stable under linear projection, that is the linear pro-
jection of a semianalytic set needs not to be semianalytic (see Bierstone and
Milman, 1988). This is the reason why we consider a larger class of subsets,
called subanalytic, satisfying this property. A subset X of M is subanalytic
if each point of X admits a neighbourhood U such that X ∩ U is a projec-
tion of a relatively compact semianalytic set, i. e., there is a real analytic
manifold N and a relatively compact semianalytic subset A of M ×N such
that X ∩ U = π(A), where π : M ×N 7→ M is the projection.

Some very interesting properties of these sets are listed in the following
proposition.

PROPOSITION 2 (Bierstone and Milman, 1988) 1) The closure of a sub-
analytic set is a subanalytic set.

2) The complement of subanalytic set is a subanalytic set.
3) The distance function to a subanalytic set is subanalytic.
4) The projection of a relatively compact subanalytic set is subanalytic.
5) A finite union of subanalytic sets is subanalytic.
6) A finite intersection of subanalytic sets is subanalytic.

Other characterizations of subanalytic sets can be found in Bierstone
and Milman, 1988.

Now we may state the following theorem.

THEOREM 2 Let A ⊂ IRn be a closed subanalytic set containing x̄. Then
there exist α > 0, r > 0 and s > 1 such that

|〈w, x̄− x〉| ≤ α‖w‖‖x̄− x‖s ∀x ∈ B(x̄, r) ∩A and w ∈ Nc(A, x).

Consequently A is nearly C-radial and semismooth of order m (for some
m > 1) at x̄.

Proof. Consider the function g : IRn × IRn 7→ IR ∪ {+∞} defined by

g(x,w) = ΨA(x)− 〈w, x− x̄〉

where ΨA(x) = 0 if x ∈ A and +∞ otherewise. Since tangency and nor-
mality are local notions, we may assume that A is a compact subanalytic
set and hence the function g is globally subanalytic. By Corollary 16 from
Bolte et al. (2007), there exist a > 0, 1 > r > 0 and θ ∈]0, 1[ such that

|g(x,w)−g(x̄, 0)|θ ≤ ad((0, 0), ∂cg(x,w)) ∀(x,w) ∈ [B(x̄, r)×B(0, r)]∩domg

or equivalently

|〈w, x−x̄〉|θ ≤ a[d(w,Nc(A, x))+‖x−x̄‖] ∀x ∈ B(x̄, r)∩A, ∀w ∈ B(0, r).
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Let x ∈ B(x̄, r) ∩A and w ∈ Nc(A, x)\{0}. Then r w
‖w‖ ∈ Nc(C, x) ∩B(0, r)

and hence
|〈r w

‖w‖ , x− x̄〉|θ ≤ a‖x− x̄‖.

The proof is then completed by taking into account the relation d(h, T (C, x)) =
sup{〈x∗, h〉 : x∗ ∈ Nc(A, x) ∩B(0, 1)} for all h.¥

COROLLARY 3 Let A ⊂ IRn be a closed subanalytic set containing x̄.
Then there exists m > 1 such that

d(x̄, x + Tc(A, x)) + d(x, x̄ + Tc(A, x)) = o(‖x̄− x‖m) as x → x̄ in A.

As d0
A(x, h) ≤ d(h, Tc(A, x)), we obtain :

COROLLARY 4 Let A ⊂ IRn be a closed subanalytic set containing x̄.
Then there exists m > 1 such that

d0
A(x, x̄− x) + d0

A(x, x− x̄) = o(‖x̄− x‖m) as x → x̄ in A.

The following corollary is an extension of the Lewis’s result from the
semialgebraic case to the subanalytic one.

COROLLARY 5 Let A ⊂ IRn be a closed subanalytic set containing x̄.
Then there exists m > 1 such that

d(x̄, x + K(A, x)) + d(x, x̄ + K(A, x)) = o(‖x̄− x‖m) as x → x̄ in A.

Proof. This follows from Corollary 3 because Tc(A, x) ⊂ K(A, x).¥

An example of C-radial and semismooth sets is the skelton of bounded
sets. Let Ω ⊂ IRn be an open set. The skelton set of Ω is defined by

SΩ = {p ∈ Ω̄ : B(p, r) ⊂ C(Ω)}
where C(Ω) is the core of Ω, that is the set of closed maximal balls inscribed
in the closure of Ω.

COROLLARY 6 Suppose that Ω is connected and relatively compact semi-
analytic. Then SΩ is nearly C-radial and semismooth of order m (for some
m > 1) at x̄.

Proof. It follows from Chazal and Soufflet (2004) that the set SΩ is
subanalytic and Theorem 2 completes the proof.¥

An other example of C-radial and semismooth set is the medial axis of
bounded sets. Let Ω ⊂ IRn be an open set. For each point x ∈ Ω, we
consider the set

N(x) = {y ∈ Ωc : ‖x− y‖ = d(x,Ωc}
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where Ωc denotes the complement of Ω.
The medial axis of Ω is the set given by

MΩ = {x ∈ Ω : card(N(x)) ≥ 2}.

COROLLARY 7 Suppose that Ω is connected and relatively compact semi-
analytic. Then the closure ofMΩ is nearly C-radial and semismooth of order
m (for some m > 1) at x̄.

Proof. It follows from Chazal and Soufflet (2004) that the set MΩ is
subanalytic and by Proposition 2, the closure of MΩ is also subanalytic. So
Theorem 2 completes the proof.¥

5 Semismoothness of locally Lipschitzian functions

Similar definition of semismoothness can be given for arbitrary functions.
We say that a function f : IRn 7→ IR is semismooth of order m at x̄ if

∀xk → x̄ and vk ∈ ∂cf(xk), lim
k→∞

f(xk)− f(x̄)− 〈vk, xk − x̄〉
‖xk − x̄‖m

= 0. (10)

We recall that f is subanalytic if its graph is a subanalytic set.

REMARK 1 It follows from the monotonicity lemma (Van Den Dries,
Miller, 1996), that if f is subanalytic locally Lipschitzian function at x̄,
then f has a directional derivative at x̄, that is the following limit exists (in
IR) for all h ∈ IRn

lim
t→0+

f(x̄ + th)− f(x̄)
t

THEOREM 3 Let f : IRn 7→ IR be a subanalytic function which is locally
Lipschitzian at x̄. Then f is semismooth of order m at x̄, for some m > 1.

Proof. We claim that that there exists m > 1 such that for each xk → x̄
and vk ∈ ∂cf(xk), for all k, we have

lim sup
k→∞

|f(xk)− f(x̄)− 〈vk, xk − x̄〉
‖xk − x̄‖m

| = 0.

Suppose that our claim is false. Then there exists an increasing function
ϕ : IN 7→ IN such that

lim sup
k→∞

|f(xk)− f(x̄)− 〈vk, xk − x̄〉
‖xk − x̄‖1+ 1

k

| =

lim
k→∞

|f(xϕ(k))− f(x̄)− 〈vϕ(k), xϕ(k) − x̄〉
‖xϕ(k) − x̄‖1+ 1

ϕ(k)

| > 0.
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Since f is locally Lipschitzian at x̄, the sequence (vϕ(k)) is bounded and
we can assume that vϕ(k) → v̄, with v̄ ∈ ∂cf(x̄). Now consider the function
g : IRn × IRn 7→ IR defined by

g(x, v) = f(x)− 〈v, x− x̄〉.

Since f is subanalytic and locally Lipschitzian at x̄, then so is g. As

∂cg(x, v) = {∂cf(x)− v} × {x̄− x〉

it follows that (x̄, v̄) is a Clarke’s critical point of g.
By Bolte et al. (2007), there exist a > 0, r > 0 and θ ∈]0, 1[ such that

|g(x, v)− g(x̄, v̄)|θ ≤ ad((0, 0), ∂cg(x, v)) ∀x ∈ B(x̄, r), ∀v ∈ B(v̄, r)

or equivalently

|f(x)−f(x̄)−〈v, x−x̄〉|θ ≤ a[d(v, ∂cf(x)+‖x−x̄‖] ∀x ∈ B(x̄, r), ∀v ∈ B(v̄, r).

For k sufficiently large enough we get

|f(xϕ(k))− f(x̄)− 〈vϕ(k), xϕ(k) − x̄〉|θ ≤ a‖xϕ(k) − x̄‖

which ensures that (because ‖xϕ(k)−x̄‖ 1
θ = ‖xϕ(k)− x̄‖1+ 1

ϕ(k) O(‖xϕ(k)− x̄‖))

lim
k→∞

|f(xϕ(k))− f(x̄)− 〈vϕ(k), xϕ(k) − x̄〉
‖xϕ(k) − x̄‖1+ 1

ϕ(k)

| = 0

and this contradiction completes the proof.¥

We also have the following equivalent version.

THEOREM 4 Let f : IRn 7→ IR be a subanalytic function which is locally
Lipschitzian at x̄. Then there exists m > 1 such that

lim
x→x̄

sup
v∈∂cf(x)

|f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖m

| = 0.

Consequently,

lim
x→x̄

f(x)− f(x̄)− f0(x, x− x̄)
‖x− x̄‖m

= 0

and

lim
x→x̄

f0(x, x− x̄) + f0(x, x̄− x)
‖x− x̄‖m

= 0.
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Proof. We claim that there exists m > 1 such that

lim sup
x→x̄

sup
v∈∂cf(x)

|f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖m

| = 0.

So suppose the contrary, that is there exist a sequence xk → x̄ and a real
number α > 0 such that

lim
k→∞

sup
v∈∂cf(xk)

|f(xk)− f(x̄)− 〈v, xk − x̄〉
‖xk − x̄‖1+ 1

k

| > α.

So there exist k0 ∈ IN and a sequence (vk) such that for all k ≥ k0 we have

vk ∈ ∂cf(xk) and |f(xk)− f(x̄)− 〈v, xk − x̄〉
‖xk − x̄‖1+ 1

k

| > α

2

and this is a contradiction with Theorem 3.¥

Taking into account Remark 1 and Theorem 4, we obtain the following
result.

COROLLARY 8 Let f : IRn 7→ IR be a subanalytic function which is
locally Lipschitzian at x̄. Then for all h ∈ IRn

f ′(x̄, h) := lim
t→0+

f(x̄ + th)− f(x̄)
t

= lim
t→0+

f0(x̄ + th, h).

REMARK 2 The last result does not assert that a locally subanalytic func-
tion f at x̄ is Clarke regular, that is

f ′(x̄, h) = f0(x̄, h) ∀h.

For example the distance function to the subanalytic set

A = {(x, y) ∈ IR2 : x ≤ 0 y2 ≤ x4}

is not Clarke regular at 0.

REMARK 3 After we have sent the paper to the journal, we received the
paper by Bolte, Daniilidis and Lewis (2007) where the authors showed that
tame functions are semismooth.
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