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1 Introduction

In a series of seminal papers (see [21], [22], [23], and [24]) J.J. Moreau intro-
duced and developped the sudy of the constrained differential inclusion{

−u̇(t) ∈ N(C(t), u(t)) a.e t ∈ [T0, T ]
u(T0) = u0 ∈ C(T0)

(1.1)

where T, T0 are two real numbers with 0 ≤ T0 < T and N(C(t), ·) denotes
the normal cone. In those papers the sets C(t) are closed convex sets of a
Hilbert space H moving in an absolutely continuous way, see the next section
for details (or in a way with bounded variation). General motivation arising
from Mechanics appeared in [24] and [19]. Any absolutely continuous solution
u(·) of the differential inclusion must stay in C(t) (since the multimapping
C satisfies the above continuity property), that is, u(t) ∈ C(t) for all t ∈
[T0, T ].... Moreau coined the name of sweeping process to designate such a
differential inclusion.

Two years later the first paper by Moreau, planning procedures in math-
ematical economy led C. Henry [16] to the differential inclusion

u̇(t) ∈ ProjT (S,u(t))(Γ(u(t)), u(T0) = u0 ∈ S,

where Γ is an upper semicontinuous multimapping with nonempty compact
convex values, S is a closed convex set, and T (S, u(t)) is the tangent cone
to S. Henry reduced in some sense the problem to the investigation of the
existence of a solution of the differential inclusion

u̇(t) ∈ −N(S, u(t)) + Γ(u(t)) with u(T0) = u0 ∈ S. (1.2)

The latter differential inclusion appears as a perturbation of the differential
inclusion (1.1) with the multimapping Γ. The extension of the study of
(1.2) when S is merely Clarke regular has been done by B. Cornet [9]. The
investigation of the more general form

−u̇(t) ∈ N(C(t), u(t)) + F (t, u(t)) and u(T0) = u0 ∈ C(T0) (1.3)

seems to be started with Castaing, Duc Ha and Valadier [4] where F (t, ·)
is convex compact valued and upper semicontinuous, and all sets C(t) are
convex or all are complement of open convex sets. As for (1.1), because of
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the presence of the normal cone, for any solution u(·), we see that u(t) is
constrained to stay in C(t). This means in particular that (1.3) appears as
a constrained differential inclusion.

Actually, general existence results concerning (1.1) with nonconvex sets
C(t) in finite dimension have been established by Benabdellah [2], Colombo
and Goncharov [10], Thibault [28], Valadier [30], and we also refer to the
references in [28]. The existence of solution of the general perturbed differ-
ential inclusion (1.3) with merely the closedness of the sets C(t) has been
proved in [28] under the upper semicontinuity and the convex valuedness of
F (t, ·). When the multimapping F (t, ·) is lower semicontinuous with noncon-
vex values, it is shown in Faik and Syam [12] that (1.3) still has, in the finite
dimensional setting, at least a solution provided the sets C(t) are uniformly
ρ-prox-regular (see the next section for the concept). In that paper it is also
assumed that F satisfies a linear growth inclusion condition of the type

F (t, x) ⊂ (β(t) + γ(t)‖x‖)B,

where B denotes the closed unit ball centered at the origin.
Our aim in the present paper is to show for a large class of closed sets

C(t) of a Hilbert space, that with any sweeping process differential inclusion
(1.1) or its perturbed form (1.3) (which are in fact constrained differential
inclusions, as seen above) one can associate an unconstrained differential
inclusion whose any absolutely continuous solution is also a solution of the
original differential inclusion (1.1) or (1.3). In section 2 we introduce that
class. It consists of closed subsets S of a Hilbert space for which the origin is
kept uniformly positively far from the Clarke subdifferential of the distance
function, say ∂Cd(·, S)(x), for all x in some open tube {x′ : 0 < d(x′, S) < ρ}
for some ρ ∈]0,+∞]. The class is much larger than that of uniformly prox-
regular sets. Sets of that class are not even required to be Clarke regular.
Several properties of the class are examined in a great generality. Section 3
provides the reduction results. They are applied in the last section to prove
an existence theorem for (1.3) in the finite dimensional framework when the
perturbation F (t, ·) enjoys a mixed semicontinuity property. The theorem
extends significantly similar results in [12, 15].
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2 Notation and preliminaries

For any x ∈ H and r ≥ 0 the closed ball centered at x with radius r will be
denoted by BH [x, r]. For x = 0 and r = 1 we will put BH or B in place of
BH [0, 1].

We give first some background material on variational analysis. We state
only the definitions and results which will be needed in the development of
the paper. For more details on the subject, we refer to [7, 20, 26]. Throughout
H is a real Hilbert space endowed with the inner product 〈·, ·〉 and ‖ ‖ is the
associated norm. Let f : H → R ∪ {+∞} be a function and x ∈ H be a
point where it is finite. A vector v ∈ H is a Fréchet subgradient of f at x
(see, e.g., [20, 26]) if for each number ε > 0 there exists some neighborhood
U of x such that

〈v, x′ − x〉 ≤ f(x′)− f(x) + ε‖x′ − x‖ for all x′ ∈ U.

The set ∂Ff(x) of all Fréchet subgradients of f at x is the Fréchet subdiffer-
ential of f at x. The Fréchet subdifferential enjoys only (see, e.g.,[20]) fuzzy
calculus rules. A limiting process is needed to obtain pointbased calculus
rules. A vector v ∈ H is a limiting (Fréchet) subgradient or (basic subgradi-
ent) of f at x if there exist a sequence ((xn, f(xn)))n converging to (x, f(x))
and a sequence (vn)n converging weakly to v such that vn ∈ ∂Ff(xn). The
set ∂Lf(x) of all limiting subgradients of f at x is the Mordukhovich limiting
subdifferential of f at x. As usual, if f(x) is not finite, one puts ∂Ff(x) = ∅
and ∂Lf(x) = ∅. When f is the indicator function ψS of a subset S of H
(defined by ψS(x′) = 0 if x′ ∈ S and ψS(x′) = ∞ otherwise), ∂FψS(x) and
∂LψS(x) are the Fréchet normal cone NF (S, x) and the Mordukhovich lim-
iting normal cone NL(S, x) of S at x. This means that a vector v ∈ H is a
Fréchet normal vector to S at x ∈ S if and only if for every number ε > 0
there is a neighborhood U of x such that

〈v, x′ − x〉 ≤ ε‖x′ − x‖ for all x′ ∈ S ∩ U, (2.1)

and
NL(S, x) = seq Lim sup

S3y→x
NF (S, y). (2.2)

In the latter equality, the second member denotes the ‖ ‖×w(H,H) sequen-
tial Painlevé-Kuratowski upper limit, that is,

seq Lim sup
S3y→x

NF (S, y) :=

{
v ∈ H : ∃ sequences S 3 yn → x, vn

w−→ v,
with vn ∈ N(S, yn)

}
.
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Let d(·, S) or dS(·) be the usual distance function associated with S, i.e.,
d(x, S) := inf

y∈S
‖x− y‖. The Fréchet normal cone (see [20]) is related to the

distance function through the equality

NF (S, x) = R+∂
Fd(·, S)(x) and ∂Fd(·, S)(x) = NF (S, x) ∩ BH (2.3)

and the Mordukhovich limiting normal cone as well (see [27]) through the
similar equality

NL(S, x) = R+∂
Ld(·, S)(x), (2.4)

where R+ denotes the set of non negative real numbers.
The proximal normal cone can be defined in a simlar way as (2.1). A

vector v ∈ H is a proximal normal vector to S at x ∈ S whenever there exist
a constant σ ≥ 0 and a neighborhood U of x such that

〈v, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ U ∩ S.

The set of such vectors is the proximal normal cone NP (S, x) to S at x.
Obviously

NP (S, x) ⊂ NF (S, x) ⊂ NL(S, x).

Nevertheless, the limiting process leads, in our Hilbert setting, to equalities
(see, e.g. [17, 20, 26]), that is,

NL(S, x) = seq Lim sup
S3y→x

NF (S, y) = seq Lim sup
S3y→x

NP (S, y). (2.5)

The proximal normal cone enjoys a geometrical characterization (see, e.g.,
[7]) given by the equality

NP (S, x) = {v ∈ H : ∃ρ > 0 s.t. x ∈ ProjS(x+ ρv)}, (2.6)

where
ProjS(u) := {y ∈ S : d(u, S) := ‖u− y‖}.

The uniformity of the positive constant ρ in (2.6) for the unit proximal
normal vectors to S leads to the concept of uniformly prox-regular sets. For
a given ρ ∈]0,+∞] the closed subset S is uniformly ρ-prox-regular (see [25])
(or equivalently ρ-proximally smooth (see [8]) or ρ-positively reached (see
[13])) if and only if every unit proximal normal vector to S can be realized
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by a ρ-ball, which can be translated in the fact that for all x ∈ S and all
0 6= v ∈ NP (S, x) one has〈

v

‖v‖
, x′ − x

〉
≤ 1

2ρ
‖x′ − x‖2 ,

for all x′ ∈ S. We make the convenion 1
ρ

= 0 for ρ = +∞. Recall that for
ρ = +∞ the uniform ρ-prox-regularity of the closed set S is equivalent to
the convexity of the set.

We will also need the concept of Clarke normal cone (see [6]). One of
the best ways to define it is as the polar of a tangent cone. Recall that a
vector h ∈ H is in the Clarke tangent cone TC(S, x) to the set S at x ∈ S
when for every sequence (xn)n in S converging to x and every sequence of
positive numbers (tn)n converging to 0, there exists some sequence (hn)n in
H converging to h such that xn + tnhn ∈ S for all integers n. This cone is
closed and convex and its negative polar NC(S, x) is the Clarke normal cone
to S at x ∈ S, that is,

NC(S, x) = {v ∈ H : 〈v, h〉 ≤ 0 ∀h ∈ TC(S, x)}.

As usual, one puts NC(S, x) = ∅ if x 6∈ S. In the Hilbert space H, the
equality (see, e.g., [20])

NC(S, x) = co (NL(S, x))

(where co denotes the closed convex hull) provides the relationship between
the Clarke normal cone and the Mordukhovich limiting normal cone. Through
that normal cone, the Clarke subdifferential of the function f : H → R ∪
{+∞} is defined by

∂Cf(x) := {v ∈ H : (v,−1) ∈ NC(epi f, (x, f(x)))},

where epi f := {(y, r) ∈ H × R : f(y) ≤ r} is the epigraph of f . When
the function f is finite and locally Lipschitzian around x, the Clarke sub-
differential is characterized (see [6]) in the following simple and amenable
way

∂Cf(x) = {v ∈ H : 〈v, h〉 ≤ f 0(x;h) ∀h ∈ H}, (2.7)

where
f 0(x;h) := lim sup

(t,x′)→(0+,x)

t−1[f(x′ + th)− f(x′)] (2.8)

6



is the generalized directional derivative of the locally Lipschitzian function f
at x in the direction h. The funtion f 0(x; ·) is in fact the support function of
∂Cf(x). That characterization easily yields that the Clarke subdifferential
of any locally Lipschitzian function enjoys the important property of upper
(or outer) semicontinuity. The equality (see [6])

NC(S, x) = cl (R+∂
Cd(·, S)(x)) for x ∈ S, (2.9)

giving the expression of the Clarke normal cone in terms of the distance
function, will allow us to take advantage, in the next section, of the upper
semicontinuity of the Clarke subdifferential of the particular Lipschitzian
function d(·, S). As usual, it will be convenient to write below ∂Cd(x, S) in
place of ∂Cd(·, S)(x). When f is locally Lipschitzian one also has ∂Cf(x) =
co (∂Lf(x)) (see, e.g., [20]), and hence in particular for the distance function

∂Cd(x, S) = co (∂Ld(x, S)) for all x ∈ H. (2.10)

The following proposition provides some properties of the Fréchet and
Clarke subdifferentials of the distance function d(·, S) when the set S is prox-
regular. It also summarizes some important consequences of the uniform
prox-regularity which will be needed in the paper. For the proofs of these
results we refer the reader to [25].

Proposition 1 Let S be a nonemty closed subset in H and let ρ ∈]0,∞].
Then the following are equivalent.
(a) S is uniformly ρ-prox-regular;
(b) For any point x′ in the open enlargement {x ∈ H : d(x, S) < ρ} the set
ProjS(x′) is a singleton and the mapping ProjS(·) is continuous on this open
enlargement;
(c) The Fréchet subdifferential of d(·, S) coincides with its Clarke subdiffer-
ential at all points x ∈ H satisfying d(x, S) < ρ;
(d) The distance function d(·, S) is continuously Fréchet differentiable on
the open tube {x ∈ H : 0 < d(x, S) < ρ};
(e) For all xi ∈ S and all vi ∈ NP (S, xi) with ‖vi‖ ≤ ρ (i = 1, 2) one has

〈v1 − v2, x1 − x2〉 ≥ −‖x1 − x2‖2 .

As a consequence of (c), (e), (2.5), and the above equalities relating the
Fréchet and Clarke normal cones to the distance function, we obtain that,
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for uniformly ρ-prox-regular sets, the proximal normal cone to S coincides
with all the normal cones contained in the Clarke normal cone at all points
x ∈ S, i.e., NP (S, x) = NF (S, x) = NC(S, x).

The properties (b) and (e) have been among the key points in the proofs
of existence of solution of (perturbation of) sweeping process associated with
ρ-prox-regular moving sets in [3] and [11]. As we will see in the next section,
some new results can be reached with the larger class of sets in Definition 1.
It is a localization of the class of subdifferentially behaved sets in [14]. The
localization will be crucial for our development.

Let us denote, for ρ ∈]0,+∞], by Uρ(S), the open ρ-tube around the set
S involving in the statement of (d) in Proposition 1, that is,

Uρ(S) := {x ∈ H : 0 < d(x, S) < ρ}.

Definition 1 Let α be a real number in the interval ]0, 1] and ρ ∈]0,+∞],
and let ∂ be the Mordukhovich or Clarke subdifferential. Let S be a nonempty
closed subset of H with S 6= H. We say that the ∂-subdifferential of the
distance function d(·, S) keeps the origin α-far-off on the open ρ-tube around
S provided

α ≤ inf
x∈Uρ(S)

d(0, ∂d(x, S)). (2.11)

Observe that for any number α satisfying (2.11) we have α ≤ 1. Indeed, it
suffices to take some point x0 in the open set Uρ(S) such that ∂Fd(x0, S) 6= ∅
(such a point exists, see, e.g., [20]) and to see that for any v0 ∈ ∂Fd(x0, S) we
have α ≤ inf

x∈Uρ(S)
d(0, ∂Fd(x, S)) ≤ ‖v0‖ = 1. That justifies the requirement

of the interval ]0, 1] in the property of the definition.
We note that the above property could be of course localized around a

point x̄ ∈ S in the form

α ≤ inf
x∈W\S

d(0, ∂d(x, S))

for a certain open neighborhood W of x̄ in H. This will be developed else-
where.

As we will see below, that property ensures a good behavior of sets in
the study of some evolution differential inclusions of sweeping process type.
When ρ =∞, that is, the origin is kept α-far from ∂d(·, S) at the exterior of
S, we recover the concept of ∂-behaved sets of [14].
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We know (see [18]) that for any x outside of any closed set S and any
v ∈ ∂Fd(x, S) we have ‖v‖ = 1. Thus the property in Definition 1 with
∂ = ∂F has no influence in the behavior of the set S. It is the same for
∂ = ∂L whenever H is finite dimensional. At the opposite, the property with
Clarke subdifferential may avoid in some sense some critical behavior.

The following proposition examines the case of sets whose distance func-
tions are Clarke subdifferentially regular. Recall that a locally Lipschitzian
function f is Clarke subdifferentially regular on an open set W if and only
if ∂Cf(x) = ∂Ff(x) for all x ∈ W . By (c) of Proposition 1, the Clarke
subdifferential regularity of the distance function d(·, S) on the open ρ-tube
Uρ(S) is equivalent to the uniform ρ-prox regularity of the closed set S.

Proposition 2 Let S be a nonempty closed subset of H with S 6= H. If S
is uniformly ρ-prox-regular, then

inf
x∈Uρ(S)

d(0, ∂Cd(x, S)) = inf
x∈Uρ(S)

d(0, ∂Ld(x, S)) = 1,

which means that the origin is kept 1-far from ∂Cd(·, S) on Uρ(S).

Proof. We have already recalled above that for any x 6∈ S, any vector
v ∈ ∂Fd(x, S) is a unit vector. The equalities of the proposition follow then
from the above equivalence between the Clarke subdifferential regularity of
d(·, S) on Uρ(S) and the uniform ρ-prox-regularity of S. �

The proposition says that any uniformly prox-regular set S has the prop-
erty that the origin is kept positively far from ∂Cd(·, S) on an open tube
around S. The converse does not hold in the sense that there are sets with
such a property which are not uniformly prox-regular.

Example 1 The set S := {(r, s) ∈ R2 : s ≥ −|r|} in R2 is not uniformly ρ-
prox-regular for any ρ ∈]0,+∞] but the Clarke subdifferential of its distance
function keeps the origin positively far-off at the exterior of S.

For any (r, s) 6∈ S we have

d((r, s), S) =

√
2

2
||r|+ s|.
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This equality confirms first, according to (d) of Proposition 1 , that S is not
ρ-prox-regular for any ρ ∈]0,+∞]. Further, observe that for (r, s) 6∈ S we
have s < 0 and that the above equality may be reformulated as

d((r, s), S) =

√
2

2
(−r − s) if r ≥ 0 and d((r, s), S) =

√
2

2
(r − s) if r ≤ 0.

So at any point (r, s) 6∈ S where the gradient ∇d(·, S)(r, s) exists, it is equal

to
√

2
2

(−1,−1) if r > 0 and to
√

2
2

(1,−1) if r < 0. Taking into account (see
[6]) the representation ∂Cf(x) = co {lim∇f(xn) : xn → x} for any locally
Lipschitzian function f on a finite dimensional space, we see that at any
point (r, s) 6∈ S, with r = 0, we have

∂Cd((r, s), S) = {
√

2

2
(1− 2λ,−1) ∈ R2 : λ ∈ [0, 1]}

hence for any non-empty open set U ⊂ R2 \ S, with U ∩ {0} × R 6= ∅

inf
(r,s)∈U

d(0, ∂Cd((r, s), S) =

√
2

2
.

In particular the Clarke subdifferential of d(., S) keeps the origin
√

2
2

-far-off
at the exterior of S. �

Recall that a closed set S is Clarke tangentially regular at x ∈ S when
the Clarke tangent cone TC(S, x) and the Bouligand contingent cone K(S, x)
coincide. When the coincidence holds at every x ∈ S, one says that the set
S is Clarke regular. A vector v is in the contingent cone K(S, x) if there
exist a sequence of positive numbers (tn)n converging to zero and a sequence
of vectors (vn)n converging to v with respect to the norm ‖ ‖ such that
x + tnvn ∈ S for all integers n. When the convergence of (vn)n to v is
required with respect to the weak topology in H, the vector v is in the weak
contingent cone WK(S, x). The above example even makes clear that the
property in Definition 1 is stricly weaker than Clarke tangential regularity
in the finite dimensional setting.. Indeed, for the set S in that example, it is
easily seen that TC(S, (0, 0)) 6= K(S, (0, 0)).

3 Reduction theorem

Let T0 and T be two non negative real numbers with T0 < T . Throughout
C : [T0, T ] ⇒ H will be a multimapping with nonempty closed values. The
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two following assumptions concerning the multimapping C(·) will be involved
in the paper:
(H1): there exist two constants α ∈]0, 1] and ρ ∈]0,+∞] such that, for each
t ∈ [T0, T ], the origin is kept α-far from the Clarke subdifferential of the
distance function d(·, C(t)) on the open ρ-tube Uρ(C(t));
(H2): the set C(t) varies in an absolutely continuous way, that is, there exists
an absolutely continuous non negative function ζ : [T0, T ]→ R+ such that

|d(x,C(t))− d(y, C(s))| ≤ ‖x− y‖+ |ζ(t)− ζ(s)|

for all x, y ∈ H and all s, t ∈ [T0, T ]

We note that the assumption (H2) is entailed by (and, in the finite di-
mensional setting, is in fact equivalent to) the geometric inclusion

C(s) ⊂ C(t) + |ζ(t)− ζ(s)|BH (3.1)

for all s, t ∈ [T0, T ].

In the remaining of this section, unless otherwise stated, N(·, ·) will denote
either the Clarke normal cone or the Mordukhovich limting normal cone, and
∂ will be the subdifferential associated with this normal cone.

Consider the constrained differential inclusion{
−u̇(t) ∈ N(C(t), u(t)) a.e. t ∈ [T0, T ]

u(T0) = u0 ∈ C(T0).
(3.2)

We recall that a solution of (3.2) is an absolutely continuous mapping u :
[T0, T ]→ H such that u̇(t) ∈ −N(C(t), u(t)) for almost every t ∈ [T0, T ] and
u(t) ∈ C(t) for all t ∈ [T0, T ]. The differential inclusion is then implicitly
subject to the constraints u(t) ∈ C(t). Under the assumption (H2), the
constraints are completely implicit in the inclusion u̇(t) ∈ −N(C(t), u(t))
since it is not hard to see that under (H2) when u(t) ∈ C(t) for a.e. t ∈ [T0, T ],
then u(t) ∈ C(t) for all t ∈ [T0, T ] because of the continuity of u(·).

Our aim in this section is to study the relationship between the above
constrained differential inclusion and the following unconstrained one{

−u̇(t) ∈ 1

α2
|ζ̇(t)| ∂d(u(t), C(t)) a.e. t ∈ [T0, T ]

u(T0) = u0 ∈ C(T0).
(3.3)

Let us start with the following lemma which is in the line of Lemma 2 in
[14]. To keep the paper self-contained, we provide a proof.
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Lemma 1 Let ∂ be any subdifferential included in the Clarke one for locally
Lipschitzian functions. Let S be a nonempty closed subset of H for which the
∂-subdifferential of the distance function d(·, S) keeps the origin α-far-off in
the open ρ-tube Uρ(S). Then for any x ∈ Uρ(S) and any v ∈ ∂d(x, S) one
has

lim
s↓0

s−1[d(x− sv, S)− d(x, S)] ≤ −α2.

Proof. Fix any x ∈ Uρ(S). By the inclusion of ∂ in the Clarke subdifferential,
it is easily seen that 2d(x, S)v ∈ ∂Cd2(x, S) and hence, by a well-known
property of Clarke subdifferential −2d(x, S)v ∈ ∂C(−d(·, S))2(x). Further
the equality

−(d(x, S))2 = −‖x‖2 + sup
y∈S

(2〈x, y〉 − ‖y‖2)

makes clear that the function −d2(·, S) is Clarke directionally regular (as the
sum of two locally Lipschitzian Clarke directionally regular functions at x,
the second one being convex continuous). So, writing

s−1[d(x−sv, S)−d(x, S)] = s−1[−d2(x−sv, S)+d2(x, S)][−d(x−sv, S)−d(x, S)]−1,

we see first that the limit in the statement of the lemma that we denote by
L exists and

−2Ld(x, S) = lim
s↓0

s−1[−d2(x− sv, S) + d2(x, S)] = (−d2(·, S))0(x;−v),

the second equality being due to the Clarke directional regularity of the
function −d2(·, S) at x. Therefore, by (2.7)

〈−2d(x, S)v,−v〉 ≤ −2Ld(x, S), i.e., L ≤ −‖v‖2.

Since x ∈ Uρ(S), according to Definition 1 , the latter inequality ensures us
that L ≤ −α2. �

Under the uniform prox-regularity of the sets C(t) instead of the assump-
tion (H1) above, the following result has been initiated in [28] and slightly
extended in [15]. We show that it still holds under the weaker assumption
(H1).

Theorem 1 Assume that (H1) and (H2) are satisfied. Then any absolutely
continuous solution u : [T0, T ]→ H of (3.3) is a solution of (3.2).
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Proof. Fix any solution u(·) of the unconstrained differential inclusion (3.3).
Since ∂d(x, S) ⊂ N(S, x) for any x ∈ S (see (2.4) and 2.10)), it is enough to
prove that u(t) ∈ C(t) for all t ∈ [T0, T ].

Let us recall that ζ̇(·) ∈ L1([T0, T ],R) and hence

lim
λ(A)→0

∫
A

|ζ̇(t)| dt = 0,

where λ denotes here the Lebesgue measure. Let us fix δ > 0 such that∫
A

|ζ̇(t)| dt < (1 +
1

α2
)−1ρ (3.4)

for all Lebesgue measurable sets A ⊂ [T0, T ] satisfying λ(A) < δ.
Step 1. Suppose for a moment that T − T0 < δ and let us show that
u(t) ∈ C(t) for every t ∈ [T0, T ].

We first observe that, for any t ∈ [T0, T ], according to the assumption
(H2) and to the initial condition u(T0) ∈ C(T0) we have

d(u(t), C(t)) ≤ ‖u(t)− u(T0)‖+ |ζ(t)− ζ(T0)|+ d(u(T0), C(T0))

= ‖
∫ t
T0
u̇(s) ds‖+ |

∫ t
T0
ζ̇(s) ds|

and hence, since ‖u̇(s)‖ ≤ |ζ̇(s)|
α2 for a.e. s ∈ [T0, T ] because u(·) is (by

assumption) a solution of the differential inclusion (3.3), we get

d(u(t), C(t)) ≤
∫ t
T0
‖u̇(s)‖ ds+

∫ t
T0
|ζ̇(s)| ds

≤ (1 + 1
α2 )
∫ t
T0
|ζ̇(s)| ds,

which entails by (3.4) and by the inequality T − T0 < δ

d(u(t), C(t)) < ρ, i.e., u(t) ∈ Uρ(S) for all t ∈ [T0, T ]. (3.5)

We follow now the proof of Theorem 2.1 in [28]. By (H2) the function h
given by h(t) := d(u(t), C(t)) is absolutely continuous on the interval [T0, T ].
Let t be any element of ]T0, T [ where ḣ(t), ζ̇(t), and u̇(t) exist and where the
inclusion in (3.3) holds. Then writing

h(t+ s)− h(t) = d(u(t+ s), C(t+ s))− d(u(t), C(t))
= d(u(t+ s), C(t+ s))− d(u(t+ s), C(t))

+d(u(t+ s), C(t))− d(u(t), C(t))
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and having in mind the assumption (H2) we obtain for s > 0 sufficiently
small

h(t+ s)− h(t) ≤ |ζ(t+ s)− ζ(t)|+ d(u(t+ s), C(t))− d(u(t), C(t)). (3.6)

Further, for s > 0 small enough

s−1[d(u(t+ s), C(t))− d(u(t), C(t))]
= s−1[d(u(t) + su̇(t) + sε(s, t), C(t))− d(u(t), C(t))]
= s−1[d(u(t) + su̇(t), C(t))− d(u(t), C(t))] + η(s, t),

for some mappings ε(·, t) and η(·, t) with lim
s↓0

ε(s, t) = 0 and lim
s↓0

η(s, t) = 0 in

H. Since u(t) ∈ Uρ(C(t)) by (3.5), taking the inclusion in (3.3) into account,
we then obtain thanks to Lemma 1

lim
s↓0

s−1[d(u(t+ s), C(t))− d(u(t), C(t))] ≤ −|ζ̇(t)|.

Using the latter inequality and (3.6) we see that

ḣ(t) ≤ |ζ̇(t)| − | ˙ζ(t)| = 0.

Thus ḣ(s) ≤ 0 for a.e. s ∈]T0, T [. Since h(T0) = 0, this yields for every
t ∈ [T0, T ]

0 ≤ h(t) =

∫ t

T0

ḣ(s) ds ≤ 0

and hence h(t) = 0. This means that u(t) ∈ C(t) for all t ∈ [T0, T ].
Step 2. Let go back to the general case without any restriction on the lenght
of the interval [T0, T ].

On the basis of Step 1, fix like in [15] an integer N such that T−T0

N
< δ

and fix also the subdivision of [T0, T ] with T0, T1, · · · , TN = T given, for each
k ∈ {0, 1, · · · , N} by

Tk = T0 + k
(T − T0)

N
.

For each k = 1, · · · , N denote by uk(·) the restriction of u(·) to [Tk−1, Tk],
that is, uk := u|[Tk−1,Tk]. We observe first that u1 : [T0, T1]→ H is a solution
of the unconstrained differential inclusion{

−u̇1(t) ∈ 1

α2
|ζ̇(t)| ∂d(u1(t), C(t)) a.e t ∈ [T0, T1]

u1(T0) = u0 ∈ C(T0).
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Since T1−T0 < δ, it follows from Step 1 that the mapping u1(·) also satisfies

u1(t) ∈ C(t) for all t ∈ [T0, T1].

Suppose that, for each i = 1, · · · , k − 1, we have ui(t) ∈ C(t) for all
t ∈ [Ti−1, Ti]. Taking into account the equalities uk−1(Tk−1) = u(Tk−1) =
uk(Tk−1), we see that the mapping uk : [Tk−1, Tk] → H is a solution of the
differential inclusion{

−u̇k(t) ∈ 1

α2
|ζ̇(t)| ∂d(uk(t), C(t)) a.e. t ∈ [Tk−1, Tk]

uk(Tk−1) = uk−1(Tk−1) ∈ C(Tk−1).

Because of the inequality Tk − Tk−1 < δ, we may apply again the result of
Step 1 to get

uk(t) ∈ C(t) for all t ∈ [Tk−1, Tk].

Inductively we then obtain for each k = 1, · · · , N that

uk(t) ∈ C(t) for all t ∈ [Tk−1, Tk].

These inclusions can be reformulated as u(t) ∈ C(t) for all t ∈ [T0, T ], which
implies that u(·) is a solution of the differential inclusion (3.2). �

The following example shows the necessity of the assumption (H1).

Example 2 Let C(t) = {x ∈ R2 : ‖x‖2 = t}. Take T0 = 0, and N(·, ·)
and ∂ for the Clarke normal cone and Clarke subdifferential, respectively.
Then the sets (C(t)) fulfill assumption (H2), but not (H1). Moreover the
arc u(t) = 0 for all t, is a solution of the differential inclusion (3.3), while
0 /∈ C(t), for all t > 0. Hence u is not a solution of (3.2).

As a direct consequence of the above theorem and of Proposition 2 we
recover the reduction theorem of [28, Theorem 2.1] and [15, Theorem 2] in
(b) of the next corollary. The assertion (a) of the corollary follows from the
fact that, in the finite dimensional setting, ‖v‖ = 1 for all v ∈ ∂Ld(x, S)
when x 6∈ S (because as recorded in section 2 any vector in ∂Fd(x′, S) is a
unit vector if x′ 6∈ S).
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Corollary 1 Assume that (H2) is satisfied. Then the following hold.
(a) Each absolutely solution of (3.3) with α = 1 is also a solution of (3.2)
provided that ∂ = ∂L and N = NL.
(b) If all the sets C(t) are uniformly ρ-prox-regular, then each solution of
(3.3) with α = 1 is a solution of (3.2).

The following theorem deals with a multivalued perturbation F : [T0, T ]×
H ⇒ H. The concrete cases of (b) and (c) require an inclusion-type growth
condition. The more general case of an intersection-type growth condition
will be seen later. The theorem uses the concept of measurable multimap-
pings for which we refer to [5]. Instead of assuming here that the multivalued
perturbation F is L([T0, T ])⊗B(H)-measurable, where L([T0, T ]) and B(H)
denote the Lebesgue and Borel σ-fields of [T0, T ] andH, we merely require the
measurability of the multimapping F (·, u(·)) for each L([T0, T ])-measurable
mapping u(·).

Theorem 2 Assume that (H1) and (H2) hold. Let F : [T0, T ] × H ⇒ H
be a multimapping with nonempty closed values such that the multimapping
t 7→ F (t, v(t)) is Lebesgue measurable for each Lebesgue measurable mapping
v(·) from [T0, T ] into H. Let the differential inclusions{

−u̇(t) ∈ N(C(t), u(t)) + F (t, u(t))
u(T0) = u0 ∈ C(T0)

(3.7)

and {
−u̇(t) ∈ 1

α2
m(t) ∂d(C(t), u(t)) + F (t, u(t))

u(T0) = u0 ∈ C(T0),
(3.8)

where m(·) is a non negative real valued Lebesgue integrable function.
(a) Suppose that u(·) is a solution of (3.8) and let z(·) be a Lebesgue mea-
surable selection of the multimapping F (·, u(·)) such that

−u̇(t) ∈ 1

α2
m(t) ∂d(u(t), C(t)) + z(t),

which exists since u(·) is a solution of (3.8).
If m(t) ≥ |ζ̇(t)| + ‖z(t)‖ for a.e. t ∈ [T0, T ], then u(·) is also a solution

of (3.7).
(b) If the multimapping F satisfies, for some non negative Lebesgue integrable
function β(·) the boundedness condition F (t, x) ⊂ β(t)BH for all t ∈ [T0, T ]
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and all x ∈ H, then any solution of (3.8) with m(t) ≥ |ζ̇(t)| + β(t) is a
solution of (3.7).
(c) Let β(·) and γ(·) be non negative Lebesgue integrable functions for which
the multimapping F fulfills the inclusion-type growth condition

F (t, x) ⊂ (β(t) + γ(t)‖x‖)BH

for all (t, x) ∈ [T0, T ]×H. Then any solution of (3.8) with

m(t) ≥ |ζ̇(t)|+ β(t) + γ(t)(‖u0‖+ exp(

∫ t

T0

γ(s) ds)

∫ t

T0

(
1

α2
|ζ̇(s)|+ β(s)) ds

is also a solution of (3.7).

Proof. (a) Let z(·) and m(·) as above. As in [4] (see also [28]) we put

Z(t) =

∫ t

T0

z(s) ds, D(t) = C(t)− Z(t), and v(t) = u(t)− Z(t)

for all t ∈ [T0, T ]. It is easily verified that the ∂-subdifferential of the distance
function d(·, D(t)) of each set D(t) keeps the origin α-far-off on the tube
Uρ(D(t)), that is, (H1); and it is not hard to see that for all x, y ∈ H and
s, t ∈ [T0, T ]

|d(x,D(t))− d(y,D(s))| ≤ ‖x− y‖+ |
∫ t

s

m(τ) dτ |,

that is, (H2) holds with M(·) in place of ζ(·), where M(t) := ζ(T0) +∫ t
T0
m(s) ds. Further, from (3.8) and subdifferential calculus we have

−v̇(t) ∈ 1

α2
|Ṁ(t)| ∂d(v(t), D(t)) for a.e. t ∈ [T0, T ]

and v(T0) = u(T0) − Z(T0) ∈ D(T0). Then, applying Theorem 1 yields
for a.e. t ∈ [T0, T ] that −v̇(t) ∈ N(D(t), v(t)), which is equivalent to
−u̇(t) ∈ N(C(t), u(t)) + z(t). This entails that u(·) is a solution of (3.7).
(b) The assertion (b) follows directly from (a).
(c) Let u(·) be a solution of (3.8) with m(·) as given in (c). By measurabil-
ity arguments of multimappings, there is a measurable selection z(·) of the
multimapping F (·, u(·)) such that for a.e. t ∈ [T0, T ] we have

−u̇(t) ∈ 1

α2
|ζ̇(t)| ∂d(u(t), C(t)) + z(t),
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which says in particular according to the inclusion-type growth condition
that

‖u̇(t)‖ ≤ 1

α2
|ζ̇(t)|+ β(t) + γ(t)‖u(t)‖.

Putting r(t) := ‖u0‖ +
∫ t
T0
‖u̇(s)‖ ds and δ(t) :=

1

α2
|ζ̇(t)| + β(t), the latter

inequality ensures us that ṙ(t) ≤ δ(t) + γ(t)r(t) for a.e. t ∈ [T0, T ]. The
Gronwall lemma yields for every t ∈ [T0, T ] that

r(t) ≤ r(T0) + exp(

∫ t

T0

γ(s) ds)

∫ t

T0

δ(s) ds,

which implies

‖u(t)‖ ≤ ‖u0‖+ exp(

∫ t

T0

γ(s) ds)

∫ t

T0

δ(s) ds.

Taking into account this inequality and the inclusion-type growth condition
we obtain

‖z(t)‖ ≤ β(t) + γ(t)(‖u0‖+ exp(

∫ t

T0

γ(s) ds)

∫ t

T0

(
1

α2
|ζ̇(s)|+ β(s)) ds

and hence m(t) ≥ | ˙ζ(t)|+ ‖z(t)‖. We then apply (a) to obtain that u(·) is a
solution of (3.7), which completes the proof. �

The next proposition can be seen as a part of the path to the converse of
the implication established in Theorem 1.

Proposition 3 Assume that (3.1) holds. For each absolutely continuous
mapping u : [T0, T ]→ H satisfying u(t) ∈ C(t) for all t ∈ [T0, T ] one has

−u̇(t) ∈ (WK(C(t), u(t)) + |ζ̇(t)|BH) ∩ (−WK(C(t), u(t)) + |ζ̇(t)|BH)

for a.e. t ∈ [T0, T ] (in fact for every t where u(·) and ζ(·) are derivable).

Proof. Fix any t ∈]T0, T [ where u̇(t) and ζ̇(t) exist. For s > 0 sufficiently
small, from the inclusion u(t− s) ∈ C(t− s) and from (3.1) we derive

u(t)− s(u̇(t) + ε(s, t)) ∈ C(t) + |ζ(t− s)− ζ(t)|BH ,
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where lim
s↓0

ε(s, t) = 0 in H, and hence for some b(s, t) ∈ BH and some η(s, t) ∈
R with lim

s↓0
η(s, t) = 0 we have

u(t)− s(u̇(t) + ε(s, t) + (|ζ̇(t)|+ η(s, t)) b(s, t)) ∈ C(t).

Taking some sequence sn ↓ 0 such that (b(sn, t))n converges weakly to a
certain b′ ∈ BH , the latter inclusion ensures (see the definition of the weak
contingent cone WK(·, ·) recorded in section 2) that

−u̇(t)−|ζ̇(t)| b′ ∈ WK(C(t), u(t) hence −u̇(t) ∈ WK(C(t), u(t))+|ζ̇(t)|BH .

In a similar way starting instead with u(t+ s) ∈ C(t+ s) we obtain that

u̇(t) ∈ WK(C(t), u(t)) + |ζ̇(t)|BH .

The proof of the proposition is then complete. �

From the above proposition we can derive the following result of [28,
Proposition 2.1].

Corollary 2 Assume that for each t ∈ [T0, T ] the set C(t) is Fréchet regular
in the sense that for each x ∈ C(t) the equality NF (C(t), x) = NC(C(t), x)
holds. Then under (H2), each solution of (3.2) is a solution of (3.3).

Proof. It is easily seen that (H2) ensures that for each positive real number
ε the inclusion (3.1) holds with the function (1 + ε)ζ(·) in place of ζ(·). Fix
any t ∈]T0, T [ where u̇(t) and ζ̇(t) exist and such that −u̇(t) ∈ N(C(t), u(t)).
By the above proposition, for a certain b(t) ∈ BH (depending on ε) we
have −u̇(t) + (1 + ε)|ζ̇(t)| b(t) ∈ WK(C(t), u(t)). Further, our regularity
assumption implies that N(C(t), u(t)) = NF (C(t), u(t)) and hence −u̇(t) ∈
NF (C(t), u(t)). Therefore taking into account the definitions of NF (·, ·) and
WK(·, ·) it is not hard to see that

〈−u̇(t),−u̇(t) + (1 + ε)|ζ̇(t)| b(t)〉 ≤ 0.

This being true for any ε > 0, we deduce that ‖u̇(t)‖ ≤ |ζ(t)| ≤ 1

α2
|ζ(t)| (we

recall that 0 < α ≤ 1). Then

−u̇(t) ∈ NF (C(t), u(t)) ∩ (
1

α2
|ζ(t)|BH) =

1

α2
|ζ(t)|∂Fd(u(t), C(t)),
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the equality being due to (2.3). So the inclusion in (3.3) is fulfilled. �

The second corollary is a direct consequence of the above one and of
Theorem 1.

Corollary 3 Assume that (H2) is satisfied and that all the sets C(t) are
Fréchet regular. Then an absolutely continuous mapping u : [T0, T ] → H is
a solution of (3.2) if and only if it is a solution of (3.3).

4 An existence result

In the previous section, differential inclusion of the type

−u̇(t) ∈ N(C(t), u(t)) + F (t, u(t)) with u(T0) = u0 ∈ C(t0),

implicitly subject to the constraints u(t) ∈ C(t), because of the presence
of the normal cone N(C(t), u(t)), has been reduced to the unconstrained
differential one

−u̇(t) ∈ 1

α2
m(t) ∂d(u(t), C(t)) + F (t, u(t)) with u(T0) = u0,

in the sense that it has been proved that any absolutely continuous solution of
the second one is a solution of the first. The reduction has been reached under
the assumption that the origin be α-far from ∂d(·, C(t)) on a uniform open
tube around C(t). The principle of reduction can be seen as a penalization
with an appropriate multiple of the subdifferential of the distance function
d(·, C(t)). The function m(·) determines the coefficient of the penalization.

In this section we turn to the illustration of how that reduction can lead
to a general existence theorem in the finite dimensional space. The inclusion
growth condition on the multimapping F in Theorem 3.2 is even relaxed in
the following intersection linear growth condition:
(H3):

F (t, x) ∩ (β(t) + γ(t) ‖x‖)BH 6= ∅
for all (t, x) ∈ [T0, T ]×H for some functions β(·), γ(·) ∈ L1([T0, T ],R+).

Let ε > 0 and u0 ∈ C(T0) be fixed and let η(·) : [T0, T ] → R be the
absolutely continuous solution of the ordinary differential equation{

η̇(t) = δ(t) + 2γ(t)η(t)
η(T0) = 0,

(4.1)
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where δ(t) := ε+ β(t) + γ(t)‖u0‖+ γ(t)
∫ t
T0
|ζ̇(s)| ds. We observe that

η(t) =

∫ t

T0

δ(s) exp(2

∫ t

s

β(r) dr) ds for all t ∈ [T0, T ] (4.2)

and η̇(t) ≥ 0 a.e. t ∈ [T0, T ].
We denote by ξ the absolutely continuous function defined for each t ∈ [T0, T ]
by

ξ(t) =

∫ t

T0

(|ζ̇(s)|+ η̇(s)) ds. (4.3)

Before stating the existence theorem, recall that a multimapping ∆ :
H ⇒ H is graphically closed (or closed) at a point x (where ∆(x) 6= ∅) when
for every sequence (xn, yn)n in the graph gph ∆ := {(x′, y′) : y′ ∈ ∆(x′)}
converging to (x, y), the limit point (x, y) stays in gph ∆, i.e., y ∈ ∆(x).
Obviously, upper (or outer) semicontinuity at a point of a multimapping with
closed values entails its graphical closedness at the point. We will also need
the concept of mixed semicontinuity property (see [29]) for the multimapping
∆. By this, one understands that at each point x ∈ H where ∆(x) is convex
the multimapping ∆ is graphically closed, and whenever ∆(x) is not convex
∆ is lower semicontinuous on a certain neighborhood of x.

Theorem 3 Assume that H is finite dimensional and that (H1), (H2) are
fulfilled. Let F : [T0, T ] ×H ⇒ H be a nonempty closed valued L([T0, T ]) ⊗
B(H)-measurable multimapping such that (H3) holds and such that F (t, ·)
satisfies the mixed semicontinuity property above for each t ∈ [T0, T ].

Then, for each u0 ∈ C(T0), there is an absolutely continuous solution of
the constrained differential inclusion{

−u̇(t) ∈ NC(C(t), u(t)) + F (t, u(t)) a.e. t ∈ [T0, T ]
u(T0) = u0 ∈ C(T0),

(4.4)

and this solution u(·) satisfies the inequality

‖u̇(t)‖ ≤ 1

α2
|ζ̇(t)|+ (1 +

1

α2
)η̇(t)), (4.5)

for almost all t ∈ [T0, T ], where ζ̇(t) is the derivative of the function involved
in (H2) and where η̇(t) is given by (4.1) and (4.2).
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The proof below will need the following theorem by Tostonogov [29]. In
it and in the remaining of the paper, C([T0, T ], H) denotes the Banach space
of all continuous mappings from [T0, T ] into H endowed with the supremum
norm. A Carathéodory function g : [T0, T ] × H → R will be said to be
integrably bounded on bounded subsets if for each real number r > 0 the
function t 7→ sup

‖x‖≤r
|g(t, x)| is integrable on [T0, T ].

Theorem 4 ( see [29]) Let G : [T0, T ]×H⇒H be a nonempty closed valued
L([T0, T ]) ⊗ B(H)-mesurable multimapping such that for each t ∈ [T0, T ]
the multimapping G(t, ·) satisfies the mixed semicontinuity property above.
Assume that there exists a function g : [T0, T ] × H→ R+ of Carathéodory
type which is integrably bounded on bounded subsets of H and which is such
that

G(t, x) ∩B[0, (g(t, x)] 6= ∅ for all (t, x) ∈ [T0, T ]×H.
Then for any ε > 0 and any compact set K ⊂ C([T0, T ], H) there is a

nonempty closed convex valued multimapping Φ : K ⇒ L1([T0, T ], H) which
has a sequentially closed graph with respect to the norm (of uniform conver-
gence) in K and the weak topology w(L1

H , L
∞
H ) in L1([T0, T ], H) and which is

such that for any u ∈ K and ϕ ∈ Φ(u) one has for a.e. t ∈ [T0, T ]

ϕ(t) ∈ G(t, u(t)), (4.6)

‖ϕ(t)‖ ≤ g(t, u(t)) + ε. (4.7)

Proof of Theorem 3.
Step 1. Let u0 ∈ C(T0). Fix ε > 0 and consider the absolutely continu-

ous solution η(·) of Equation (4.1) on [T0, T ] with η(T0) = 0.
Step 2 is the following proposition.

Proposition 4 Let the multimapping G be as in Theorem 4 with g(t, x) =
β(t) + γ(t)‖x‖, the functions β(·) and γ(·) being non negative and integrable
on [T0, T ]. Let Γ : [T0, T ] ⇒ H be an L([T0, T ])⊗B(H)-measurable multimap-
ping with nonempty convex compact values and such that for each t ∈ [T0, T ]
the multimapping Γ(t, ·) is upper (or outer) semicontinuous. Assume that
the multimapping Γ is integrably bounded, that is, there exists a non negative
Lebesgue integrable function σ such that

Γ(t, x) ⊂ σ(t)BH for all (t, x) ∈ [T0, T ]×H.
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Then the differential inclusion

u̇(t) ∈ Γ(t, u(t)) +G(t, u(t)) with u(T0) = u0 ∈ H

has a solution u(·) for which there is a Lebesgue measurable selection ϕ of
G(·, u(·)) such that ‖ϕ(t)‖ ≤ η̇(t)

u̇(t) ∈ Γ(t, u(t)) + ϕ(t) for a.e. t ∈ [T0, T ]

and hence ‖u̇(t)‖ ≤ σ(t) + η̇(t) for a.e. t ∈ [T0, T ], where η(·) is given by
(4.1) and (4.2).

Proof. Put m0(t) := σ(t) + η̇(t) and

K :=

{
u ∈ C([T0, T ], H) : u(t) = u0 +

∫ t
T0
u̇(s) ds ∀t ∈ [T0, T ];

u̇ ∈ L1([T0, T ]) and ‖u̇(t)‖ ≤ m0(t) a.e t ∈ [T0, T ]

}
.

The set K is obviously convex. Further the function m0(·) being integrable
on [T0, T ], the convex set K is also compact in C([T0, T ], H).

Applying Theorem 4 with g(t, x) := β(t) + γ(t) ‖x‖ yields a nonempty
closed convex valued multimapping Φ : K ⇒ L1([T0, T ], H) whose graph is
sequentially closed with respect to the topology of uniform convergence in K
and the weak topology in L1([T0, T ], H) and such that, for any u ∈ K and
ϕ ∈ Φ(u), for a.e. t ∈ [T0, T ] we have

ϕ(t) ∈ G(t, u(t)) and ‖ϕ(t)‖ ≤ β(t) + γ(t) ‖u(t)‖+ ε. (4.8)

Consider the multimapping Ψ : K ⇒ C([T0, T ], H) defined by

Ψ(u) =

{
v ∈ C([T0, T ], H) : v(t) = u0 +

∫ t
T0

(w(s) + ϕ(s)) ds,∀t ∈ [T0, T ];

w ∈ L1([T0, T ]), w(t) ∈ Γ(t, u(t)) a.e. and ϕ ∈ Φ(u)

}
.

Fix any u ∈ K and v ∈ Ψ(u). Take by definition of Ψ any ϕ ∈ Φ(u) and any
Lebesgue measurable mapping w satisfying

w(t) ∈ Γ(t, u(t)) and v̇(t) = w(t) + ϕ(t) for a.e. t ∈ [T0, T ]. (4.9)

We claim that
‖ϕ(t)‖ ≤ η̇(t) for a.e. t ∈ [T0, T ]. (4.10)
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Indeed, by (4.8) we have for a.e. t ∈ [T0, T ]

‖ϕ(t)‖ ≤ ε+ β(t) + γ(t) ‖u(t)‖

≤ ε+ β(t) + γ(t)(‖u0‖+

∫ t

T0

‖u̇(s)‖ ds),

hence by definition of K

‖ϕ(t)‖ ≤ ε+ β(t) + γ(t)(‖u0‖+

∫ t

T0

(σ(s) + η̇(s)) ds).

Using (4.1) we obtain

‖ϕ(t)‖ ≤ η̇(t) for a.e. t ∈ [T0, T ],

that is, (4.10) of the claim is proved.
Further v(·) is absolutely continuous and by (4.10)

‖v̇(t)‖ ≤ ‖σ(t)‖+ ‖ϕ(t)‖ ≤ ξ̇(t) + η̇(t) = m0(t).

This implies the inclusion Ψ(u) ⊂ K for each u ∈ K, i.e. , Ψ : K ⇒ K is a
multimapping from K into K.

Now let us prove that the graph of the multimapping Ψ is upper semi-
continuous. Obviously Ψ(u) is convex according to the convexity of Φ(u)
and of Γ(t, u(t)). Let ((un, vn))n be a sequence in gph (Ψ) converging to
(u, v) ∈ K × K with respect to the topology of uniform convergence. We
may write vn(t) = u0 +

∫ t
T0

(wn(s) + ϕn(s)) ds with wn(t) ∈ Γ(t, un(t)) and
ϕn ∈ Φ(un). Since ‖wn(t)‖ ≤ σ(t), a (non relabeled) subsequence of (wn)
converges w(L1, L∞) to a certain mapping w(·). Taking into account the
uniform convergence of (un(·))n to u(·) and the upper semicontinuity with
respect to x of the convex compact valued measurable multimapping Γ, by
the closure theorem [5, Theorem VI.4] we obtain w(t) ∈ Γ(t, u(t)) for a.e.
t ∈ [T0, T ]. Futhermore by (4.10) we have ‖ϕn(t)‖ ≤ η̇(t) a.e. Thus a (non
relabeled) subsequence of (ϕn)n converges w(L1, L∞) to some mapping ϕ.
The graph of Φ being sequentially ‖ ‖ × w(L1, L∞) closed in K ×K, we get
ϕ ∈ Φ(u). On the other hand, it is not difficult to see that for all t ∈ [T0, T ]
we have v(t) = u0 +

∫ t
T0

(w(s) + ϕ(s)) ds. This shows that (u, v) ∈ gph (Ψ),
that is, the graph of Ψ is closed and hence it is upper semicontinuous because
K is compact for the topology of uniform convergence.
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The upper semicontinuity of the closed convex valued multimapping Ψ
of the convex compact set K into itself allows us to apply the Kakutani
fixed point theorem, which yiels a certain u ∈ K satisfying u ∈ Ψ(u). This
inclusion along with (4.10) translates the conclusions of the proposition. �

We continue the proof of Theorem 3 with Step 3.

Step 3. Put m(t) := |ζ̇(t)|+ η̇(t) and note that for each t the multimapping

− 1

α2
m(t) ∂Cd(·, C(t)) is upper semicontinuous (as recorded in section 2 for

the Clarke subdifferential of locally Lipschitzian functions) with nonempty
convex compact values. Further, it not hard to verify, through the expression
of the support function (see (2.5)), that the multimapping associating with

(t, x) the set − 1

α2
m(t) ∂Cd(x,C(t)) is L([T0, T ]) ⊗ B(H)-measurable. We

may then apply Proposition 4 with Γ(t, x) = − 1

α2
m(t) ∂Cd(x,C(t)), σ(t) =

1

α2
m(t), and −F (t, x) in place of G(t, x). Thus there exist an absolutely

continuous mapping u(·) from [T0, T ] into H and a measurable selection ϕ(·)
of F (·, u(·)) with ‖ϕ(t)‖ ≤ η̇(t) for a.e. t ∈ [T0, T ] and such that

−u̇(t) ∈ 1

α2
m(t) ∂Cd(u(t), C(t)) + ϕ(t) a.e. and u(T0) = u0 ∈ C(T0).

Since m(t) ≥ |ζ̇(t)|+‖ϕ(t)‖ a.e., by Theorem 2 the mapping u(·) is a solution
of the differential inclusion (4.4) and for a.e. t ∈ [T0, T ] one has

‖u̇(t)‖ ≤ 1

α2
(|ζ̇(t)|+ η̇(t)) + η̇(t).

This completes the proof of Theorem 3. �

Acknowledgments. The authors are very grateful the referee for his in-
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