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1. Introduction. This paper is mainly concerned with the following multiob-
jective dynamic optimization problem with the dynamic governed by a differential
inclusion:

min f(x(a), x(b)),(P)

(x(a), x(b)) ∈ S,
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],

where f : R
n × R

n �→ R
m is a mapping, S ⊂ R

n × R
n is a closed nonempty set, and

F : [a, b] × R
n �→ R

n is a closed-valued multivalued mapping which is measurable in
t ∈ [a, b].

These problems naturally arise, for example, in economics (economic growth mod-
els) (see [16] and references therein), in chemical engineering (polymerization pro-
cesses) (see [3], [4], and references therein), and in multiobjective control design (see
[45], [9], and references therein). Problems considered in this paper use preferences
determined by cones (Pareto and weak Pareto optimum), use preferences determined
by utility function, or use the concept of Nash equilibrium.

Our aim in this paper is to use a general preference including the previous ones
in order to state necessary and Hamiltonian necessary conditions for multiobjective
optimal control problems (P).

The concept of preference appeared in the value theory in economics. Many
authors in the early studies often defined the preference by a utility function, i.e.,
given a preference whether it is always possible to find a utility function that can
determine the preference.

In [17] the author proved that a preference ≺ can be determined by a continuous
utility function if and only if for any x the sets

{y : x ≺ y} and {y : y ≺ x} are closed.(1)

This theorem is not general and besides this it is an existence theorem (i.e., does pro-
vide methods for determing a utility function), and there are some useful preferences
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that do not satisfy (1) (like the preference determined by lexicographical order). There
are different approaches and various results on necessary conditions for (P). Several re-
searches have been devoted to the weak Pareto solution and its generalization (see [5],
[11], [15], [32], [42], [46], [47], and references therein). Other research gets refinements
of necessary optimality conditions for real-valued objective optimal control problems
(see [23], [29], [30], [31], [44], [43], and [26]) or Hamiltonian necessary conditions (see
[37], [19], [20], [13], [35], [36], [39], [48], and [49]).

These results are expressed in terms of various generalized derivatives including
Clarke’s generalized subgradient [11], a limiting subgradient which is also known under
other names: limiting subgradient set in [12], approximate subdifferential in Ioffe
[22], subdifferential in Mordukhovich [36], and subgradient set in the general sense
in Rockafellar [40]. Most of these results are obtained for Lipschitz, integrably sub-
Lipschitz, bounded, or unbounded differential inclusions.

In [23], Ioffe used results of [40] and [24] to obtain general necessary optimality
conditions and Hamiltonian optimality conditions for single-objective optimal control
problems.

In [49], Zhu used recent progress in nonsmooth analysis, in particular calculus
for smooth subdifferentials of lower semicontinuous (l.s.c.) functions (see [6], [7], [14],
[24]), the methods for proving the extremal principle (see [27], [28], [33], [38]), and
techniques in handling the Hamiltonian for a differential inclusion, to prove Hamilto-
nian necessary conditions that extend the classical Hamiltonian necessary conditions
for optimal control problems that had previously been derived for uniformly Lipschitz,
bounded, and convex-valued differential inclusions related to a general preference. The
obtained conditions are expressed in terms of Clarke’s generalized gradient which is
larger than the limiting Fréchet subdifferential. The regularity conditions (A3) im-
posed in [49], which use the usual limiting normal cone, are too strong to include the
preference defined by a utility function (see Example 3).

In this paper we propose a different approach. We introduce a definition of reg-
ularity modified from that introduced in [49]. To solve the problem of regularity of
preference determined by a utility function, we define a larger limiting normal cone to
replace the usual one in [49]. Under our regularity condition of the general preference
and a sub-Lipschitz property of multivalued mappings, introduced by Loewen and
Rockafellar in [29], we obtain Euler–Lagrange necessary optimality conditions for mul-
tiobjective optimal control problems with nonconvex differential inclusion constraints
in terms of the limiting Fréchet subdifferential. Necessary optimality conditions for
the weak Pareto solution and its generalization can be derived and refined by using
our necessary conditions.

Our main result extends the necessary optimality condition of Ioffe (see Theorem
1 in [23]) from a single objective optimal control of differential inclusion problem to a
multiobjective one. This is also an extension of the Hamiltonian necessary optimality
conditions for convex differential inclusions obtained in [49].

The paper is organized as follows. Section 2 contains the key definitions, nor-
mals, subgradients, and coderivatives used in what follows. In section 3 we state our
main result and establish necessary optimality conditions for multiobjective control
problems with some examples and discussions. Then we derive necessary conditions
for these examples of preferences. In section 4 we give a technical proof of the main
result.

2. Background. Now we state basic tools of generalized differentiation that are
more appropriate for our main purpose. Details may be found in [33].
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Let C be a closed subset of R
n containing some point c. The ε-normal cone to C

at c is the set

N̂ε(C, c) :=

{
ζ ∈ R

n : lim inf
x∈C→c

〈−ζ, x− c〉
‖x− c‖ ≥ −ε

}
.

The normal cone to C at c is the set

N(C; c) := lim sup
x∈C→c
ε→0+

N̂ε(C, c).

Now let f : R
n −→ R∪{∞} be an l.s.c. function, and let c ∈ R

n such that f(c) <∞.
The limiting Fréchet subdifferential of f at c is the set

∂f(c) = {ζ ∈ R
n : (ζ,−1) ∈ N(epi f ; (c, f(c)))},

where epi f denotes the epigraph of f . We have the following analytic characterization
of ∂f(c):

∂f(c) = lim sup
x→c

f(x)→f(c)

ε→0+

∂εf(x),

where

∂εf(x) =

{
x∗ ∈ X∗ : lim inf

h→0

f(x+ h) − f(x) − 〈x∗, h〉
‖h‖ ≥ −ε

}
.

The singular subdifferential of f at c is the set

∂∞f(c) = {ζ ∈ R
n : (ζ, 0) ∈ N(epi f ; (c, f(c)))}.

Next we consider a multivalued mapping F from R
n to R

m of the closed graph

GrF := {(x, y) : y ∈ F (x)} .
The multivalued mapping D∗F (x, y) : R

m �→ R
n defined by

D∗F (x, y)(y∗) := {x∗ ∈ R
n : (x∗,−y∗) ∈ N(GrF ; (x, y))}

is called the coderivative of F at the point (x, y) ∈ GrF .
The domain over which our study occurs is typically one of the functions

W 1,1([a, b],Rn) (abbreviated W 1,1) consisting of all absolutely continuous functions
x : [a, b] �→ R

n for which |ẋ| is integrable on [a, b] (ẋ denotes the derivative (a.e.) of
x). An arc is a function in W 1,1. The space W 1,1 is endowed with the norm

‖x‖ = |x(a)| +

∫ b

a

|ẋ(t)|dt,

where | · | denotes the Euclidean norm of R
n. Here B stands for the closed unit ball

in R
n and

B(z, r) = {x ∈W 1,1 : ‖x− z‖ ≤ r}.
The distance function on W 1,1, R

n or R
n × R

n will be denoted by d(· , · ). The
convex hull and the closed convex hull are denoted by co and c̄o, respectively.
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The following lemma is needed.
Lemma 2.1. Let G be pseudo-Lipschitzian [1], [41] around (x0, y0) ∈ GrG with

modulus K; i.e., there exists r > 0 such that for all x, u ∈ x0 + rB

G(x) ∩ (y0 + rB) ⊂ G(u) +K|x− u|B.
Then for all y∗ ∈ R

n, with D∗G(x0, y0)(y∗) �= ∅, one has
sup {|x∗| : x∗ ∈ D∗G(x0, y0)(y∗)} ≤ K|y∗|.

If in addition G is closed-valued, then for all (x, y) ∈ (x0 + r
12B) × (y0 + r

12B), with
(x, y) /∈ GrG, and all (x∗, y∗) ∈ ∂d(· ; G(·))(x, y) we have

|y∗| = 1 and |x∗| ≤ K|y∗|.
Proof. It suffices to establish the second part; the first one follows from the

definition of limiting Fréchet subdifferential. Let (x, y) ∈ (x0 + r
12B) × (y0 + r

12B),
with (x, y) /∈ GrG, and let (x∗, y∗) ∈ ∂d(·;G(·))(x, y). Then there are sequences
xk → x, yk → y, x∗k → x∗, y∗k → y∗, εk → 0+, and rk → 0+ such that

d(v;G(u)) − d(yk;G(xk)) − 〈x∗k, u− xk〉 − 〈y∗k, v − yk〉 + εk[|u− xk| + |v − yk|] ≥ 0

for all u ∈ xk + rkB and v ∈ yk + rkB. For each integer k, there exists vk ∈ G(xk)
such that

d(yk;G(xk)) = |yk − vk|.
So

|y′ − v| − |yk − vk| − 〈x∗k, u− xk〉 − 〈y∗k, v − yk〉 + εk[|u− xk| + |v − yk|] ≥ 0

for all u ∈ xk + rkB, v ∈ yk + rkB, and y′ ∈ G(u).
Consider the function g defined by

g(u, y′, v) = |y′ − v| − 〈x∗k, u− xk〉 − 〈y∗k, v − yk〉 + εk[|u− xk| + |v − yk|].
Then [34]

(0, 0, 0) ∈ ∂g(xk, vk, yk) +N(GrG; (xk, vk)) × {0}.
As for k large enough yk �= vk, then

∂g(xk, vk, yk) ⊂ {(0, v∗,−v∗) : |v∗| = 1} + (−x∗k, 0,−y∗k) + εkB × {0} × εkB,

and hence we obtain (u∗k, v
∗
k) ∈ N(GrG; (xk, vk)), with |v∗k| = 1, such that

|x∗k − u∗k| ≤ εk and |y∗k − v∗k| ≤ εk.
Now since d(yk;G(xk))) = |yk − vk|, we get for k sufficiently large

|yk − vk| ≤ r

2
,

and hence

|x0 − xk| + |y0 − vk| ≤ 5r

6
.
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Thus for all u, u′ ∈ xk + r
6B

G(u) ∩
(
vk +

r

6
B) ⊂ G(u′

)
+K|u− u′|B.

So the first part of the lemma ensures that

|u∗k| ≤ K|v∗k|,
and since u∗k → x∗ and v∗k → y∗ we get |x∗| ≤ K|y∗|, and the proof is complete.

Lemma 2.2. Let G : V �→ R
m be a multivalued mapping, where V is a nonempty

set in R
n. Suppose that

(i) GrG is closed and
(ii) there exists a compact set K in R

m such that

G(x) ⊂ K ∀x ∈ V.
Then G is upper semicontinuous (u.s.c.) on V ; that is, for all u ∈ V and all ε > 0
there exists a neighborhood U of u in V such that

G(x) ⊂ G(u) + εB ∀x ∈ U.
With the help of the last lemma, we can prove the following one.
Lemma 2.3. Suppose that the mapping f : (x0, y0) + rB �→ R is Lipschitzian with

constant K. Define the multivalued mapping Γ: (x0, y0) + rB × R
n × R �→ R

n by

Γ(x, y, p, s) = co{q : (q, p) ∈ ∂f(x, y) + sB}.
Then for all λ ∈]0, 1[, all (x, y, s) ∈ (x0, y0, 0)+λrB, and all p ∈ R

n, with Γ(x, y, p, s) �=
∅, Γ is u.s.c. at (x, y, p, s) in the sense of Lemma 2.2.

Proof. Note that (ii) of Lemma 2.2 is satisfied. It is not difficult to show that Γ
is of closed graph and to apply Lemma 2.2.

Lemma 2.4 (see [11]). Let ε > 0 and Γ : [a, b] × R
n × R

n × R
n × R �→ R

n be a
multivalued mapping such that for almost all t ∈ [a, b], Γ(t, ·) has nonempty, compact,
and convex values around (z(t), ż(t), p, s), with s ∈ [0, ε] and Γ(t, z(t), ż(t), p, s) �= ∅.
For sequences (zk) and (pk) in W 1,1, (φk) in L1([a, b], ]0,+∞[), (αk) and (sk) in R+

with zk → z in W 1,1, φk → φ in L1([a, b], ]0,+∞[) for some integrable function φ,
αk → 0, and sk → 0 we suppose the following:

(i) For every (x, y, p, s) in the interior of the set

{(x′, y′, p′, s′) : t ∈ [a, b], x′ ∈ z(t) + εB, y′ ∈ ż(t) + εB,

s′ ∈ [0, ε], Γ(t, x′, y′, p′, s′) �= ∅}
the multivalued mapping t′ �→ Γ(t′, x, y, p, s) is measurable.

(ii) For all k, |ṗk(t)| ≤ φk(t) for almost all t ∈ [a, b].
(iii) For all k, ṗk(t) ∈ Γ(t, zk(t), żk(t), pk(t), sk) + αkB a.e. t ∈ [a, b].
(iv) For almost all t ∈ [a, b] for every p ∈ R

n with Γ(t, z(t), ż(t), p, 0) �= ∅, the
multivalued mapping (x′, y′, p′, s′) �→ Γ(t, x′, y′, p′, s′) is u.s.c. at (z(t), ż(t), p, 0).

(v) The sequence (pk(a)) is bounded.
(vi) There exists an integrable function ψ such that

sup
{(p′,s′):s′∈[0,ε], Γ(t,z(t),ż(t),p′,s′) �=∅}

max
y∈Γ(t,z(t),ż(t),p′,s′)

|y| ≤ ψ(t) a.e.
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Then there is a subsequence of (pk) which converges uniformly to an arc p satisfying

ṗ(t) ∈ Γ(t, z(t), ż(t), p(t), 0) a.e. t ∈ [a, b].

We conclude this section by recalling necessary optimality conditions for the fol-
lowing generalized problem of Bolza:

(PB) min

{
/(x(a), x(b)) +

∫ b

a

L(t, x(t), ẋ(t)) dt

}
,

where the functions L : [a, b] × R
n × R

n �→ R ∪ {+∞} and / : R
n × R

n �→ R ∪ {+∞}
are such that for each t ∈ [a, b], the functions L(t, ·, ·) and / are l.s.c. on R

n × R
n.

The function L is epi-Lipschitz [10] at an arc z if there exist an integrable function
k : [a, b] �→ R and a positive ε satisfying the following conditions: for almost all
t ∈ [a, b], given two points z1 and z2 within ε of z(t) and u1 ∈ R

n such that L(t, z1, u1)
is finite, there exist a point u2 ∈ R

n and δ ≥ 0 such that L(t, z2, u2) is finite and

|u1 − u2| + |L(t, z1, u1) − L(t, z2, u2) − δ| ≤ k(t)|z1 − z2|.

This is equivalent to saying that the multivalued mapping

E(t, s) = {(u, r) ∈ R
n × R : L(t, s, u) ≤ r}

is Lipschitzian in s on z(t) + εB with constant k(t) (i.e., for all s, s′ ∈ z(t) + εB we
have E(t, s′) ⊂ E(t, s) + k(t) | s′ − s | B).

L is said to be epimeasurable (in t) [10] if for each s ∈ R
n the multivalued mapping

E(t, s) is Lebesgue measurable in t.
The notation ∂L will denote the limiting Fréchet subdifferential of the function

L(t, ·, ·).
Now we may state a variant of the necessary conditions for the generalized Bolza

problem established in Jourani [26].
Theorem 2.1. Let z solve locally the generalized problem of Bolza (PB) (in

W 1,1). Suppose that L(t, z, u) is epimeasurable in t, and L(t, ·, ·) is epi-Lipschitzian
at z, and / is locally Lipschitzian around (z(a), z(b)). Then there exists an arc p such
that one has

ṗ(t) ∈ co{q : (q, p(t)) ∈ ∂L(t, z(t), ż(t))} a.e. t ∈ [a, b],

(p(a),−p(b)) ∈ ∂/(z(a), z(b)),

〈p(t), ż(t)〉 − L(t, z(t), ż(t)) = max{〈p(t), v〉 − L(t, z(t), v) : v ∈ R
n}.

3. The main result.
Definition 3.1. F is said to be sub-Lipschitzian in the sense of Loewen and

Rockafellar [29] at z if there exist β > 0, ε > 0, and a summable function k : [a, b] �→ R

such that for almost all t ∈ [a, b], for all N > 0, for all x, x′ ∈ z(t) + εB, and
y ∈ ż(t) +NB one has

d(y, F (t, x)) − d(y, F (t, x′)) ≤ (k(t) + βN)|x− x′|.
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Let ≺ be a (nonreflexive) preference for vectors in R
m. We consider the following

multiobjective optimization problem:

min f(x(a), x(b)),(P)

(x(a), x(b)) ∈ S,
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],

where f : R
n × R

n �→ R
m is a mapping, S ⊂ R

n × R
n is a closed nonempty set, and

F : [a, b] × R
n �→ R

n is a closed-valued multivalued mapping which is measurable in
t ∈ [a, b].

We say that an arc x ∈W 1,1 is a feasible trajectory for problem (P) if x satisfies
(x(a), x(b)) ∈ S and ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b].

z is a solution to (P), provided that it is feasible and there does not exist any
feasible trajectory x of (P) such that f(x(a), x(b)) ≺ f(z(a), z(b)). For all r ∈ R

m,
we denote

L(r) := {s ∈ R
m : s ≺ r}.

We will need the following regularity assumptions on the preference modified from
[49].

Definition 3.2. We say that a preference ≺ is regular at r ∈ R
m, provided that

(A1) for any s ∈ R
m, s ∈ clL(s);

(A2) for any r ≺ s, t ∈ clL(r) implies that t ≺ s.
Remark 3.1. The preference determined by the lexicographical order ≺ is defined

by r ≺ s if there exists an integer q ∈ {0, 1, . . . ,m−1} such that ri = si, i = 1, . . . , q,
and rq+1 < sq+1. This preference is not regular. Indeed we consider in R

3 the vectors
r = (1, 1, 3), s = (1, 1, 5), and t = (1, 1, 6). We have r ≺ s and t ∈ clL(r), but s ≺ t;
then (A2) does not hold so that ≺ is not regular at r.

Note that a preference determined by the lexicographical order does not corre-
spond to any real utility function [16].

Remark 3.2. Our definition of regularity is different from that given by Zhu in
[49], where the following third condition is in force: for any sequences rk, θk �→ r in
R

m

lim sup
k→+∞

N(clL(rk); θk) ⊂ N(clL(r); r).

But with this condition, preferences defined by a utility function (e.g., u) are not
regular at any r ∈ R

m even if

lim
s→r

d(0, ∂u(s)) > 0.

For more details, see Example 3.
We consider the following enlargement cone of the limiting Fréchet normal cone:

Ñ(clL(x), x) = lim sup
y,x′→x

N(clL(y);x
′
).

Before stating our main result we recall that the Hamiltonian associated with F
is defined by

H(t, x, y) = sup
v∈F (t,x)

〈y, v〉.
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Theorem 3.1. Let z be a local solution to the multiobjective optimal control prob-
lem (P). Suppose that F is sub-Lipschitzian at z and that the preference ≺ is regular at
f(z(a), z(b)). Then there exist p ∈W 1,1, λ ≥ 0, and w ∈ Ñ(clL(f(z(a), z(b))), f(z(a),
z(b))), with |ω| = 1 such that (λ, p) �= 0 and

ṗ(t) ∈ coD∗F (t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b];(2)

(p(a),−p(b)) ∈ λ∂(〈ω, f(·, ·)〉)(z(a), z(b)) +N(S; (z(a), z(b)));(3)

〈p(t), ż(t)〉 = H(t, z(t), p(t)) a.e. t ∈ [a, b].(4)

If in addition F is convex-valued, then (2) may be replaced by the following one:

ṗ(t) ∈ co {q : (−q, ż(t)) ∈ ∂H(t, (z(t), p(t)))} a.e. t ∈ [a, b].(5)

The aim of Theorem 3.1 is to extend the necessary optimality conditions of Ioffe
(Theorem 1 in [23]) from a single objective optimal control of differential inclusion
problem to a multiobjective one. By using the large class of sub-Lipschitz differential
inclusion, Theorem 3.1 also extends the Hamiltonian necessary optimality conditions
for convex-valued differential inclusions obtained in [49].

In the remainder of this section we now examine a few examples. The proof of
Theorem 3.1 is postponed to the next section.

Example 1 (a generalized Pareto optimal). Let K be a pointed convex cone
(K ∩ (−K) = {0}). We define the preference ≺ by r ≺ s if and only if r − s ∈
K and r �= s. A multiobjective optimal control problem with this preference is
called a generalized Pareto optimal control problem. Notice that if K = R

m
− (resp.,

K = int R
m
− , where R

m
− = {(x1, x2, . . . , xm) ∈ R

m : xi ≤ 0 for all i = 1, . . . ,m})
we get Pareto (resp., weak Pareto) optimal control problems. This preference is
regular at any r ∈ R

m. Moreover, for any r ∈ R
m we have Ñ(clL(r), r) = K0 with

K0 = {s ∈ R
m : 〈s, q〉 ≤ 0 for all q ∈ K}.

Corollary 3.1. Let z be a local solution to the generalized Pareto multiobjective
optimal control problem (P). Then there exist p ∈ W 1,1, λ ≥ 0, and ω ∈ K0 with
| ω |= 1 such that (λ, p) �= 0 and

ṗ(t) ∈ coD∗F (t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b];(6)

(p(a),−p(b)) ∈ λ∂(〈ω, f(·, ·)〉)(z(a), z(b)) +N(S; (z(a), z(b)));(7)

〈p(t), ż(t)〉 = H(t, z(t), p(t)) a.e. t ∈ [a, b].(8)

Example 2 (a preference determined by a utility function). Let u be a continuous
function; we define the preference ≺ determined by utility function u by r ≺ s if and
only if u(r) < u(s).

Lemma 3.1. Let u be a continuous utility function determining the preference ≺.
Suppose that

lim inf
s→r

d(0, ∂u(s)) > 0.(9)
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Then the preference ≺ is regular at r and

Ñ(clL(r), r) = lim sup
r′→r

N(clL(r′); r′) = ∂∞u(r)
⋃(⋃

a>0

a∂u(r)

)
.

Proof. The proof of Lemma 3.1 is similar to that given in [49]. From (9), L(r) is
nonempty, and from the continuity of u it follows that ≺ satisfies (A1) and (A2) in
Definition 3.2, and thus ≺ is regular. Now for r

′
sufficiently close to r, clL(r

′
) = {s ∈

R
m : u(s) − u(r

′
) ≤ 0}. Then

∂εu(r
′
) ⊂ N̂ε(clL(r

′
), r

′
).

By passing to the limits we have

∂∞u(r)
⋃(⋃

a>0

a∂u(r)

)
⊂ lim sup

r′→r
N(clL(r′); r′) ⊂ Ñ(clL(r), r).

Conversely, let ζ ∈ Ñ(clL(r), r) such that ζ �= 0. Then there are sequences ζk → ζ,
rk, r

′
k → r such that ζk ∈ N(clL(rk); r

′
k). By the definition of limiting Fréchet normal

cone, we may assume that ζk ∈ N̂εk(clL(rk), r
′
k). We must have u(rk) = u(r

′
k).

Indeed, N̂εk(clL(rk), r
′
k) = {0} when u(r

′
k) < u(rk) and is empty when u(r

′
k) > u(rk).

Then N̂εk(clL(rk), r
′
k) = N̂εk(clL(rk), rk). From N̂εk(clL(rk), rk) = N̂εk({s : u(s) −

u(rk) ≤ 0}, rk) and [8], there exist ak > 0 and θk ∈ ∂εku(r) such that | akθk − ζk |< 1
k

so that

lim
k→∞

akθk = ζ.

We claim that (ak) is bounded. Indeed, suppose the contrary. Then (ak) has a subse-
quence going to infinity. But in this case (θk) must have a subsequence converging to
zero, and this contradicts (9). So (ak) is bounded, and we can assume that ak → a.
If a �= 0, then ζ ∈ a∂u(r). If a = 0, then ζ ∈ ∂∞u(r), and the proof is complete.

From Lemma 3.1 and Theorem 3.1 we have the following corollary.
Corollary 3.2. Let ≺ be a preference determined by a utility function u and z

be a local solution to the multiobjective optimal control problem (P). Suppose that

lim inf
s→f(z(a),z(b))

d(0, ∂u(s)) > 0.

Then there exist p ∈W 1,1, λ ≥ 0, and

ω ∈ ∂∞u(f(z(a), z(b)))
⋃(⋃

a>0

a∂u(f(z(a), z(b)))

)

with | ω |= 1 such that (λ, p) �= 0, and

ṗ(t) ∈ coD∗F (t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b];(10)

(p(a),−p(b)) ∈ λ∂(〈ω, f(·, ·)〉)(z(a), z(b)) +N(S; (z(a), z(b)));(11)

〈p(t), ż(t)〉 = H(t, z(t), p(t)) a.e. t ∈ [a, b].(12)
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In [49], the author showed that, for a preference ≺ defined by a continuous utility
function u, N(clL(r); r) = ∂∞u(r)

⋃(⋃
a>0 a∂u(r)

)
, provided that lims→r d(0, ∂u(s)) >

0. This could give him the regularity and the explicit shape of N(clL(r); r). But there
is a gap in the proof. The following example shows that Zhu’s regularity does not
hold.

Example 3. Consider the function u : R
2 → R defined by

u(x, y) =| x | − | y | .
Then u is Lipschitz continuous and satisfies ∂u(0, 0) = [−1, 1] × {−1, 1}, so that
(0, 0) /∈ ∂u(0, 0), ∂∞u(0, 0) = {(0, 0)}, and

N(clL(0, 0); (0, 0)) = {(x, y) ∈ R
2 : |y| = |x|}.

Then it is clear that

N(clL(0, 0); (0, 0)) �= ∂∞u(0, 0)
⋃(⋃

a>0

a∂u(0, 0)

)
.

4. Proof of Theorem 3.1. Since F is sub-Lipschitzian at z there exist β > 0,
ε > 0, and a summable function k : [a, b] �→ R such that for almost all t ∈ [a, b], for
all N > 0, for all x, x′ ∈ z(t) + εB, and y ∈ ż(t) +NB one has

d(y, F (t, x)) − d(y, F (t, x′)) ≤ (k(t) + βN)|x− x′|.
Let G be the solution set of the system

ẋ(t) ∈ F (t, x(t)) a.e., (x(a), x(b)) ∈ S.(13)

Let ε be as above. We say that the system (13) is seminormal [25] at z if there
exist α > 0 and r > 0 such that for all x ∈ B(z, r)

d(x,G ∩B(z, ε)) ≤ α
{
d((x(a), x(b));S) +

∫ b

a

d(ẋ(t);F (t, x(t)))dt

}
.(14)

Set Gε = G ∩B(z, ε).
We divide the proof into two parts and each part is divided into two steps.
Part 1 (when system (13) is not seminormal at z). The proof of this part is similar

to that given in [23].
Step 1 (application of Ekeland’s variational principle [18] and Theorem 2.1). Con-

sider the function h defined by

h(x) = d((x(a), x(b));S) +

∫ b

a

d(ẋ(t);F (t, x(t)))dt.

Since F is sub-Lipschitzian at z, then h is l.s.c. on the set B(z, ε) and Gε is closed
(see the appendix). If system (13) is not seminormal at z, then there is a sequence
xk → z in W 1,1 such that for k large enough

d(xk, Gε) > kh(xk).

Set εk =
√
h(xk) > 0, λk = min(εk, kε

2
k), and sk =

ε2k
λk

. Then εk → 0+ and sk → 0+.
Therefore one has

h(xk) ≤ inf
x∈B(z,ε)

h(x) + ε2k.
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By Ekeland variational principle we get zk ∈ B(z, ε) satisfying

‖zk − xk‖ < λk,(15)

h(zk) ≤ h(x) + sk‖x− zk‖ ∀x ∈ B(z, ε).(16)

Observe that for k sufficiently large ‖ zk − z ‖≤ ε
2 . By the closedness of Gε and

relation (15) zk /∈ G, and by (16) zk is a local solution to the following Bolza problem:

min

{
/k(x(a), x(b)) +

∫ b

a

Lk(t, x(t), ẋ(t))dt

}
,

where

/k(u, v) = d((u, v);S) + sk|u− zk(a)|

and

Lk(t, x, y) =

{
d(y;F (t, x)) + sk|y − żk(t)| if (x, y) ∈ A(t),
+∞ otherwise,

where A(t) = (z(t) + εB) × (ż(t) + (N + |ż(t) − żk(t)|)B) and N > 0 is an arbitrary
integer.

Since Lk(t, ·, ·) is l.s.c, epi-Lipschitzian at zk (see the appendix) and epimeasurable
in t and since /k is locally Lipschitzian around (zk(a), zk(b)), then Theorem 2.1 yields
the existence of an arc pk in W 1,1 satisfying

ṗk(t) ∈ co{q : (q, pk(t)) ∈ ∂Lk(t, zk(t), żk(t))} a.e. t ∈ [a, b](17)

(pk(a),−pk(b)) ∈ ∂/k(zk(a), zk(b)),(18)

〈pk(t), żk(t)〉 − Lk(t, zk(t), żk(t)) = max
v∈Rn

{〈pk(t), v〉 − Lk(t, zk(t), v)}.(19)

From (17), (18), and (19) we have

(pk(a),−pk(b)) ∈ ∂d((zk(a), zk(b));S) + skB × {0},(20)

ṗk(t) ∈ co {q : (q, pk(t)) ∈ ∂d(·;F (t, ·))(zk(t), żk(t)) + {0} × skB} a.e.,(21)

〈pk(t), żk(t)〉 − d(żk(t);F (t, zk(t)))

= max
v∈ż(t)+(N+|ż(t)−żk(t)|)B

{〈pk(t), v〉 − d(v;F (t, zk(t))) − sk|v − żk(t)|} a.e.

Step 2 (application of Lemmas 2.1–2.4). By (20) there exists ζk ∈ ∂d((zk(a),
zk(b));S) such that

(pk(a),−pk(b)) − ζk ∈ skB × {0}.(22)
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Since zk /∈ G, we have either

|ζk| = 1 if (zk(a), zk(b)) /∈ S(23)

or (because of Lemma 2.1 and (21)) on a set of positive measure on which żk(t) /∈
F (t, zk(t)) we have

1 − sk ≤ |pk(t)| ≤ 1 + sk.(24)

It follows from (22)–(24) that

1√
2
− sk ≤ max

t∈[a,b]
|pk(t)| ≤ 1 + sk.(25)

Now let Γ : [a, b]×R
n ×R

n ×R
n ×R+ �→ R

n be the multivalued mapping defined by

Γ(t, x, y, w, s) = co {q : (q, w) ∈ ∂d(·;F (t, ·))(x, y) + {0} × sB} .
Then

(pk(a),−pk(b)) − ζk ∈ skB × {0},(26)

ṗk(t) ∈ Γ(t, zk(t), żk(t), pk(t), sk) a.e.,(27)

(28) 〈pk(t), żk(t)〉 − d(żk(t);F (t, zk(t)))

= max
v∈ż(t)+(N+|ż(t)−żk(t)|)B

{〈pk(t), v〉 − d(v;F (t, zk(t))) − sk|v − żk(t)|} a.e.

Extracting a subsequence if necessary we may suppose that ζk → ζ for some ζ in
∂d((z(a), z(b));S) with

|ζ| = 1 if (zk(a), zk(b)) /∈ S for infinite number of k.

On the other hand, by Lemma 2.2, the multivalued mapping Γ(t, ·) is u.s.c. with
compact convex values and by the definition of the limiting Fréchet subdifferential
and the sub-Lipschitz condition we have (via Lemma 2.1 and (21)) for all k

|ṗk(t)| ≤ 1 + k(t) + β(1 + |ż(t) − żk(t)|) a.e.

Note that Γ(t, x, y, w, s) is measurable in t (see the appendix). By Lemma 2.4 there
exists a subsequence of (pk) converging uniformly to an arc p satisfying

ṗ(t) ∈ Γ(t, z(t), ż(t), p(t), 0) a.e.,(29)

and hence we obtain, by passing to the limit in (26) and (28),

(p(a),−p(b)) ∈ ∂d((z(a), z(b));S),(30)

〈p(t), ż(t)〉 = max
v∈F (t,z(t))∩(ż(t)+NB)

〈p(t), v〉 a.e.(31)

Now because of (25) the pair (ζ, p) must be nonzero. In fact we have

1√
2
≤ max

t∈[a,b]
|p(t)| ≤ 1.(32)
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As p depends on N , we obtain a sequence (pN ) satisfying (29)–(32) and

|ṗN (t)| ≤ 1 + k(t) + β a.e.

Again Lemma 2.4 produces a subsequence of (pN ) converging uniformly to some p
which satisfies the following:

ṗ(t) ∈ Γ(t, z(t), ż(t), p(t), 0) a.e.,

(p(a),−p(b)) ∈ ∂d((z(a), z(b));S),

〈p(t), ż(t)〉 = max
v∈F (t,z(t))

〈p(t), v〉,

1√
2
≤ max

t∈[a,b]
|p(t)| ≤ 1.

Finally we have

ṗ(t) ∈ coD∗F (t, z(t), ż(t))(−p(t)) a.e. t ∈ [a, b],

(p(a),−p(b)) ∈ N(S; (z(a), z(b))),

〈p(t), ż(t)〉 = H(t, z(t), p(t)) a.e. t ∈ [a, b].

Part 2 (when system (13) is seminormal).
Step 1 (application of Ekeland’s variational principle). Let k be a positive integer,

choose θk ≺ f(z(a), z(b)) such that |θk − f(z(a), z(b))| < 1
k2 , and define Θ := clL(θk).

Define the function

h(x, θ) =

{ |f(x(a), x(b)) − θ| if x ∈ B(z, s1),
+∞ otherwise,

where s1 is such that f is Lipschitzian on (z(a), z(b)) + s1B with constant kf . From
(A1) we have (z, θk) ∈ Gε × Θ, and hence

h(z, θk) ≤ inf
(x,θ)∈Gε×Θ

h(x, θ) +
1

k2
.

Note that Gε and Θ are closed in W 1,1 and R
m, respectively, and that h is l.s.c.

on Gε ×Θ. Then by Ekeland variational principle there exists (zk, γk) ∈ Gε ×Θ such
that

‖zk − z‖ + |γk − θk| ≤ 1

k
(33)

and

h(zk, γk) ≤ h(x, θ) +
1

k
[‖zk − x‖ + |γk − θ|] ∀(x, θ) ∈ Gε × Θ.(34)

From (34) one gets

h(zk, γk) ≤ h(x, γk) +
1

k
‖zk − x‖ ∀x ∈ Gε(35)
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and

h(zk, γk) ≤ h(zk, θ) +
1

k
|γk − θ| ∀θ ∈ Θ.(36)

Since z is an optimal local solution to problem (P), then, by (A2) and the choice of θk,

one has γk �= f(zk(a), zk(b)). Set wk = f(zk(a),zk(b))−γk

|f(zk(a),zk(b))−γk| . Extracting a subsequence

we may assume that (wk) converges to some w, with |w| = 1 so that by (36) one has

w ∈ lim sup
k→+∞

N(clL(θk); γk)

and then

ω ∈ Ñ(clL(f(z(a), z(b))), f(z(a), z(b))).

Now from (35) and the seminormality of (13) there exist α > 0 and min(s1, r, ε) >
s > 0 (both not depending on k) such that

h(zk, γk) ≤ h(x, γk) +
1

k
‖zk − x‖

+ α(kf + 1)

[
d((x(a), x(b));S) +

∫ b

a

d(ẋ(t), F (t, x(t))dt

]

for all x ∈ B(z, s), where r and α are as in (14).
Define the functions

/k(u, v) = |f(u, v) − γk| +
1

k
|u− zk(a)| + α(kf + 1)d((u, v);S)

and

Lk(t, x, y) =

{
α(kf + 1)d(y;F (t, x)) + 1

k |y − żk(t)| if (x, y) ∈ A(t),
+∞ otherwise,

where A(t) = (z(t) + sB)× (ż(t) + (N + |ż(t)− żk(t)|)B) so that zk is a local solution
to the Bolza problem

min

{
/k(x(a), x(b)) +

∫ b

a

Lk(t, x(t), ẋ(t))dt

}
.

Step 2 (application of Theorem 2.1 and Lemmas 2.1–2.4). It is easy to check that
/k is l.s.c and locally Lipschitzian around (zk(a), zk(b)), Lk(t, ·, ·) is l.s.c, and Lk is
epimeasurable in t and epi-Lipschitzian at zk (see the appendix). Then by Theorem
2.1 there exists an arc pk in W 1,1 satisfying

ṗk(t) ∈ co{q : (q, pk(t)) ∈ ∂Lk(t, zk(t), żk(t))} a.e. t ∈ [a, b],(37)

(pk(a),−pk(b)) ∈ ∂/k(zk(a), zk(b)),(38)

〈pk(t), żk(t)〉 − Lk(t, zk(t), żk(t)) = max
v∈Rn

{〈pk(t), v〉 − Lk(t, zk(t), v)}.(39)
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Consider the multivalued mapping defined by

Γ(t, x, y, w, s) = co {q : (q, w) ∈ α(kf + 1)∂d(·;F (t, ·))(x, y) + {0} × sB} .

From (37)–(39) we have

(40) (pk(a),−pk(b)) ∈ ∂(|f(·) − γk|)(zk(a), zk(b))

+ N(S; (zk(a), zk(b))) +
1

k
B × {0},

ṗk(t) ∈ Γ

(
t, zk(t), żk(t), pk(t),

1

k

)
a.e.,(41)

(42) 〈pk(t), żk(t)〉 − α(kf + 1)d(żk(t);F (t, zk(t)))

= max
v∈żk(t)+(N+|ż(t)−żk(t)|)B

{〈pk(t), v〉 − α(kf + 1)d(v;F (t, zk(t))) − sk|v − żk(t)|} a.e.

By Lemma 2.2, the multivalued mapping Γ(t, ·) is u.s.c. with compact convex val-
ues, and by the definition of the limiting Fréchet subdifferential and the sub-Lipschitz
condition we have (via Lemma 2.1 and (41)) for all k

|ṗk(t)| ≤ α(kf + 1)(1 + k(t) + β(1 + |ż(t) − żk(t)|)) a.e.

By Lemma 2.4 there exists a subsequence of (pk) converging uniformly to an arc p
satisfying

ṗ(t) ∈ Γ(t, z(t), ż(t), p(t), 0) a.e.(43)

Note that

∂(|f(·, ·) − γk|)(zk(a), zk(b)) ⊂ ∂(〈wk, f(·, ·)〉)(zk(a), zk(b)),

and hence, by passing to the limit in (40) and (42) and using the same argument as
in Part 1, Step 2, we have

(p(a),−p(b)) ∈ ∂(〈ω, f(·, ·)〉)(z(a), z(b)) +N(S; (z(a), z(b))),

〈p(t), ż(t)〉 = H(t, z(t), p(t)) a.e.

Now if we assume that F is convex-valued, then, by (29) and/or (43) and Rock-
afeller result [40], we obtain

ṗ(t) ∈ co {q : (−q, ż(t)) ∈ ∂H(t, z(t), p(t))} a.e. t ∈ [a, b],

which completes the proof.
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5. Appendix.

• h(x) = d((x(a), x(b));S) +
∫ b

a
d(ẋ(t);F (t, x(t)))dt is l.s.c. on B(z, ε).

Since F is sub-Lipschitzian at z, then there exist β > 0, ε > 0, and a
summable function k : [a, b] �→ R such that for almost all t ∈ [a, b], for
all N > 0, for all x, x′ ∈ z(t) + εB, and y ∈ ż(t) +NB one has

d(y, F (t, x)) − d(y, F (t, x′)) ≤ (k(t) + βN)|x− x′|.
Let x ∈ B(z, ε) and ε′ > 0, and set δ < ε′

1+
∫ b
a
k(t) dt+β(ε+b−a)

.

Let x′ ∈ B(z, ε) such that ‖ x− x′ ‖< δ, and set N =| ẋ′(t) − ż(t) | +1. We
have∫ b

a

d(ẋ(t), F (t, x(t))) dt−
∫ b

a

d(ẋ′(t), F (t, x′(t))) dt |≤| ẋ(t) − ẋ′(t) |

+

∫ b

a

d(ẋ′(t), F (t, x(t))) dt−
∫ b

a

d(ẋ′(t), F (t, x′(t))) dt

≤ δ +

∫ b

a

(k(t) + βN) | x(t) − x′(t) | dt

≤ δ + δ

(∫ b

a

k(t) dt+ β(ε+ b− a)
)

≤ ε′.

Thus h is l.s.c on B(z, ε).
• Gε is closed.

Let (xn) be a subsequence in Gε such that xn −→ x in W 1,1. Since S is
closed (x(a), x(b)) ∈ S. Set N ′ =| ẋ(t)− ż(t) | +1; since F is sub-Lipschitzian
at z we have

d(ẋ(t), F (t, x(t))) ≤ (k(t) + βN) | x(t) − xn(t) | +d(ẋ(t), F (t, xn(t)))

so that∫ b

a

d(ẋ(t), F (t, x(t))) dt ≤‖ x− xn ‖
∫ b

a

(k(t) + βN) dt

+

∫ b

a

d(ẋ(t), F (t, xn(t))) dt

≤‖ x− xn ‖
(
β ‖ x− z ‖ +β(b− a) +

∫ b

a

k(t) dt

)

+ ‖ x− xn ‖ .
Then d(ẋ(t), F (t, x(t))) = 0 a.e., and since F is closed-valued x ∈ Gε.

• Lk(t, ·, ·) is epi-Lipschitzian at zk.
We have

Lk(t, x, y) =

{
α(kf + 1)d(y;F (t, x)) + 1

k |y − żk(t)| if (x, y) ∈ A(t),
+∞ otherwise,

where A(t) = (z(t) + sB) × (ż(t) + (N + |ż(t) − żk(t)|)B).
For k large enough we can suppose that | zk(t) − z(t) |< s

2 . Let x1, x2 ∈
B(zk(t), s2 ) and y ∈ R

n such that Lk(t, x1, y) is finite. Then

| x1 − z(t) |≤ s and | y − ż(t) |≤ N + |ż(t) − żk(t)|.
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Since | x2 − z(t) |< s, Lk(t, x2, y) is finite, and using the fact that F is
sub-Lipschitzian at z we get

Lk(t, x2, y) − Lk(t, x1, y) = α(kf + 1)[d(y;F (t, x2)) − d(y;F (t, x1))]

≤ α(kf + 1)(k(t) + β(N + |ż(t) − żk(t)|)) | x1 − x2 | .
Then Lk(t, ·, ·) is epi-Lipschitzian at zk.

• Γ(t, x, y, w, s) is measurable in t.
The measurability of the multivalued mapping Γ(t, x, y, w, s) in t follows from
the two following lemmas.
Lemma 5.1. Let G : [a, b] → R

n be a measurable multivalued mapping, and
let K be a compact set in R

n. Then the multivalued mapping G(·)+K is also
measurable.
Proof. It suffices to see that for any set A in R

n we have

(G(·) +K)−1(A) = G−1(A−K),

where G−1(A) = {t : G(t) ∩A �= ∅}.
Lemma 5.2. Let f : [a, b] × R

n × R
m → R be a l.s.c. function in (x, y) and

measurable in (t, x, y). Consider the multivalued mapping

R(t, x, y, p) = {q : (q,−p) ∈ ∂f(t, x, y) + {0} × sB} .
Then R and c̄oR are measurable in t.
Proof. It follows from Lemma 2 in [21] that the graph of the multivalued
mapping t→ ∂f(t, x, y) is measurable. As this multivalued mapping is closed-
valued, Theorem 8.1.4 in [2] implies that it is measurable in t. Now Lemma
5.1 asserts that the multivalued mapping

t −→ ∂f(t, x, y) + {0} × sB
is measurable in t. The measurability of t → R(t, x, y, p) follows from the
formula

(∂f(·, x, y) + {0} × sB)−1(A× {−p}) = R−1(·, x, y, p)(A).

The measurability of c̄oR follows from Theorem 8.2.2 in [2].
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2060 SAÏD BELLAASSALI AND ABDERRAHIM JOURANI

[6] J. Borwein and A. Ioffe, Proximal analysis in smooth spaces, Set-Valued Anal., 4 (1996),
pp. 1–24.

[7] J. M. Borwein and Q. J. Zhu, Viscosity solutions and viscosity subderivatives in smooth
Banach spaces with applications to metric regularity, SIAM J. Control. Optim., 34 (1996),
pp. 1568–1591.

[8] J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications, Nonlinear
Anal., 49 (2002), pp. 295–296.

[9] M. Chilali, P. Gahinet, and C. Scherer, Multiobjective output-feedback control via LMI op-
timization, in Proceedings of the IFAC World Congress, San Francisco, CA, 1996, pp. 249–
254.

[10] F. H. Clarke, The generalized problem of Bolza, SIAM J. Control Optim., 14 (1976), pp. 682–
699.

[11] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[12] F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conf.

Ser. in Appl. Math. 57, SIAM, Philadelphia, 1989.
[13] F. H. Clarke and P. R. Wolenski, Necessary conditions for functional differential inclusions,

Appl. Math. Optim., 34 (1996), pp. 51–78.
[14] F. H. Clarke, Yu. S. Ledyayev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis

and Control Theory, Grad. Texts in Math. 178, Springer-Verlag, New York, 1998.
[15] B. D. Craven, Nonsmooth multiobjective programming, Numer. Funct. Anal. Optim., 10

(1989), pp. 49–64.
[16] G. Debreu, Theory of Value, John Wiley and Sons, New York, 1959.
[17] G. Debreu, Mathematical Economics: Twenty Papers of Gerard Debreu, Cambrige University

Press, UK, 1983, pp. 163–172.
[18] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), pp. 324–353.
[19] H. Frankowska, The maximum principle for an optimal solution to a differential inclusion

with end points constraints, SIAM J. Control Optim., 25 (1987), pp. 145–157.
[20] H. Frankowska, Local controllability and infinitesimal generators of semigroups of set-valued

maps, SIAM J. Control. Optim., 25 (1987), pp. 412–432.
[21] A. D. Ioffe, Absolutely continuous subgradients of nonconvex integral functions, Nonlinear

Anal., 11 (1987), pp. 245–257.
[22] A. D. Ioffe, Approximate subdifferentials and applications I: The finite dimensional theory,

Trans. Amer. Math. Soc., 281 (1984), pp. 389–416.
[23] A. D. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization, Trans.

Amer. Math. Soc., 349 (1997), pp. 2871–2900.
[24] A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth

variational problems, Calc. Var. Partial Differential Equations, 4 (1996), pp. 59–87.
[25] A. Jourani, Normality, local controllability and NOC for multiobjective optimal control prob-

lems, in Contemporary Trends in Nonlinear Geometric Control Theory and Its Applica-
tions, A. Anzaldo-Meneses, B. Bonnard, J.-P. Gauthier, and F. Monroy-Pérez, eds., World
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