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Abstract. In this paper we study a class of perturbed constrained nonconvex variational problems depend-

ing on either time/state or time/state’s derivative variables. Its (optimal) value function is proved to be convex

and then several related properties are obtained. Existence, strong duality results and necessary/sufficient op-
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normal cone, it is shown that local minima are global. Such results are given in terms of the Hamiltonian

function. Finally various examples are exhibited showing the wide applicability of our main results.
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1. Introduction and formulation of the problem. We consider, given a ∈ Rm, the

following class of minimization problems (P (a)):

inf
{∫ 1

0

f0(t, z(t))dt : z ∈ K(a)
}
, (1.1)

where

K(a)
.
=
{
z ∈ L1([0, 1],Rn) : z ∈ Z,

∫ 1

0

g0(t, z(t))dt ∈ −W + a
}
. (1.2)

Here, W ⊆ Rm is nonempty, closed and convex; Z is the set of functions z ∈ L1([0, 1],Rn) satisfying

z(t) ∈ Z(t) for a. e. t ∈ [0, 1], with Z : [0, 1] ⇒ Rn a measurable set-valued mapping with nonempty and

closed values; f0 : [0, 1]× Rn → R ∪ {+∞}, g0 : [0, 1]× Rn → Rm and f0(t, ·) is lower semicontinuous

and g0(t, ·) is continuous for a.e. t ∈ [0, 1]; f0 is a Borel function and g0(·, z) is measurable (with respect

to Lebesgue measure) for all z ∈ Rn such that g0(·, z(·)) ∈ L1([0, 1],Rm) for all z ∈ Z. We consider

the functions f : L1([0, 1],Rn)→ R ∪ {+∞} and g : L1([0, 1],Rn)→ Rm defined by

f(z)
.
=

∫ 1

0

f0(t, z(t))dt, g(z)
.
=

∫ 1

0

g0(t, z(t))dt. (1.3)

Furthermore, we impose the following assumptions on f0:

• there exists z0 ∈ Z such that ∫ 1

0

f0(t, z0(t))dt < +∞; (1.4)

• there exist α ∈ Rn and β ∈ L1([0, 1],R) satisfying

f0(t, z) ≥ 〈α, z〉+ β(t), for a.e. t ∈ [0, 1], all z ∈ Rn. (1.5)
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Under the latter assumption, f(z) > −∞ for all z ∈ L1([0, 1],Rn).

Problems like (1.1) subsume an important class of variational problems, namely

inf
{∫ 1

0

f0(t, ẋ(t))dt : x ∈W 1,1([0, 1],Rn) : x(0) = a, x(1) = b
}
, (1.6)

where W 1,1([0, 1],Rn) denotes the space of absolutely continuous functions from [0, 1] to Rn, and a, b

are given vectors in Rn.

Several models in Mathematical economics can be written in the form of (1.1), see [1] for instance. The

classical existence result due to Tonelli requires the convexity and superlinear growth assumptions on

f0(t, ·), which imply the weak lower semicontinuity of the integral functional and the weak compactness

of its sublevel sets (see, for instance, Theorem 16.2 in [5]). Our goal is to avoid such assumptions

by analyzing carefully the value function associated with (1.1) depending on a, which allows us to

consider integrands with slow growth. Important existence results, including the nonoccurrence of the

Lavrentiev phenomenon, recently obtained for nonconvex optimal control and variational problems,

but using different approaches, can be found in [16]. In particular, generic results, in the sense of Baire

category, were also presented.

The particular case g0(t, z) = z and W = {0} was considered in [6], and under convexity of f0(t, ·)
in [8].

One of the main goals of the present paper is, after a carefully analysis of the value function, to

provide a necessary and sufficient optimality condition of zero-order for a feasible solution to problem

(P (0)) to be optimal (Corollary 3.7), along with sufficient and/or necessary conditions for the same

problem via the Hamiltonian.

The structure of the paper is as follows. Next section deals with some basic notations, definitions

and preliminaries; in particular, a variant of the Lyapunov convexity theorem (Theorem 2.1), suitable

for our purpose, is recalled. Section 3 describes the most important properties of the value function

(including convexity) to be used in subsequent sections. In Section 4, we establish necessary optimality

conditions via the subdifferential of the optimal value function. Some of the results of the preceding

section are applied in Section 5 to prove that local minimality implies global for the problem (1.1). In

connection to assumption (5.1), Section 6 provides several equivalent conditions implying the previous

assumption. Finally Section 7 establishes some formulas for computing the value function via the

Hamiltonian, and some existence results as well.

2. Basic notations and preliminaries. Given two vectors a, b in Rn, 〈a, b〉 denotes their

inner or scalar product. A set P ⊆ Rn is said to be a cone if tP ⊆ P , for all t ≥ 0. For a given

A ⊆ Rn: A, co(A), int A, bd A, stand for the closure of A, the convex hull of A (the smallest convex

set containing A), topological interior of A, boundary of A, respectively. Furthermore cone(A) denotes

the smallest cone containing A, that is,

cone(A) =
⋃
t≥0

tA,

whereas cone(A) denotes the smallest closed cone containing A: obviously cone(A) = cone(A).

Moreover, x ∈ A is said to be a relative interior point of A if cone(A − x) is a vector space (see for

instance [2]). The set of relative interior points of A is denoted by ri A. It is well-known that, in case

A is convex, x ∈ ri A if and only if x is an interior point with respect to the affine hull of A, or

equivalently if N(A;x) is a vector space, where N(A;x)
.
= {ξ ∈ Rn : 〈ξ, a− x〉 ≤ 0, ∀ a ∈ A}, is the

(outward) normal cone to A at x ∈ A.

The positive polar of the convex cone P ⊆ Rn is defined by:

P ∗
.
= {y∗ ∈ Rn : 〈y∗, x〉 ≥ 0, ∀x ∈ P}.
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We now recall an extension of the Lyapunov theorem proved in [12]. This plays an important role

in the existence theory for optimal control problems without convexity assumptions, see for instance

[6] and references therein.

Given a set K ⊆ L1([0, 1],Rk), define the set

I(K)
.
=
{∫ 1

0

φ(t)dt : φ ∈ K
}
.

K is said to be decomposable if, for every measurable set B ⊆ [0, 1] and all u, v ∈ K:

u · χB + v · χ[0,1]\B ∈ K,

where χB is the characteristic function of the set B, i.e. χB(x) = 1 if x ∈ B, and χB(x) = 0 elsewhere.

The next theorem is taken from [12] and provides a simple existence result for problem (1.1) as a

consequence of Corollary 3.3, as Remark 3.4 shows.

Theorem 2.1. ([12, Theorem 4]) If K ⊆ L1([0, 1],Rk) is decomposable, then I(K) is convex and

I(K) = I(co K). If, in addition, K is (strong) closed and the closure of I(K) contains neither a line

nor an extremal halfline, then I(K) is closed.

In what follows, we recall some main facts about envelopes of functions. Given h : Rn → R∪{±∞},
h, co h stand for the greatest lower semicontinuous function not larger than h and for the greatest

convex and lower semicontinuous function not larger than h, respectively. To be coherent with our

previous notation we need the following definition of epigraph of a function

epi h
.
= {(t, x) ∈ R× Rn : h(x) ≤ t}.

Denotes also

epi0 h
.
= {(t, x) ∈ R× Rn : h(x) < t}.

In case h is convex, we have ([15, Lemma 7.3])

ri(epi h) = {(t, x) ∈ R× Rn : x ∈ ri(dom h), h(x) < t}. (2.1)

It is known that

epi h = epi h; co(epi h) = epi co h.

Moreover, if co h(x) > −∞ for all x ∈ Rn then co h(x) = h∗∗(x) for all x ∈ Rn, where h∗∗
.
= (h∗)∗

is the bipolar or biconjugate of h, that is, the conjugate of h∗. There are examples showing the

assumption co h(x) > −∞ for all x ∈ Rn is necessary to get the previous equality. In general we have

h∗∗ ≤ co h ≤ h.

For any nonempty set W ⊆ Rm, and a, b ∈ Rm, we write a ≤W b (or equivalently, b ≥W a) if b−a ∈W .

The indicator function ιS of the set S is defined by ιS(x) = 0 if x ∈ S and +∞ otherwise.

The space of absolutely continuous functions from [0, 1] into Rk is denoted by W 1,1([0, 1],Rk), and

it is equipped with the norm

‖x‖1,1 = ‖x(0)‖+

∫ 1

0

‖ẋ(t)‖dt.

It is well-known that W 1,1([0, 1],Rk) is a Banach space. Set W 1,1
k

.
= W 1,1([0, 1],Rk) and L1 .

=

L1([0, 1],Rn). As usual, the norm on the product space W 1,1
k × L1 is the sum of the norms of W 1,1

k

and L1, and it will be denoted by ‖ · ‖.
Set R+

.
= [0,+∞[, R++

.
= ]0,+∞[, R−− = −R++.

In what follows we use the convention +∞− (+∞) = +∞.
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3. The convexity of the optimal value function and related properties. We asso-

ciate with problem (1.1) the optimal value function ψ : Rm → R ∪ {±∞} defined as follows

ψ(a) =

inf
{∫ 1

0

f0(t, z(t))dt : g(z) ∈ −W + a, z ∈ Z
}

if K(a) 6= ∅;

+∞ otherwise.

Consider the Lagrangian L(λ, z) = f(z) + 〈λ, g(z)〉, λ ∈ W ∗, z ∈ L1([0, 1],Rn), and define the dual of

problem (P (0)) (a = 0 in (1.1)) by

vD
.
= sup
λ∈W∗

inf
z∈Z

L(λ, z). (3.1)

We consider a classic result (see e.g., [14, Theorem 7]), although proved under convexity

conditions, which relates the optimal value vD of (3.1) with the biconjugate of the value function ψ.

Theorem 3.1. Assume that f, g are defined as in (1.3), with W being additionally a cone, and

K(0) 6= ∅. Then vD = ψ∗∗(0).

Proof. Define F : Z × Rm −→ R ∪ {±∞}:

F (z, a) =

f(z), if g(z) ∈ −W + a;

+∞, otherwise.

Then the Lagrangian function can be written as

L(λ, z) = inf
a∈Rm

{F (z, a) + 〈λ, a〉 } =


f(z) + 〈λ, g(z)〉, if λ ∈W ∗,

−∞ if λ 6∈W ∗, f(z) < +∞;

+∞, if λ 6∈W ∗, f(z) = +∞,

(3.2)

and the value function as,

ψ(a) = inf
z∈Z

F (z, a).

Therefore

inf
z∈Z

L(λ, z) = inf
a∈Rm

{ inf
z∈Z

F (z, a) + 〈λ, a〉 } = − sup
a∈Rm

{〈−λ, a〉 − ψ(a)} = −ψ∗(−λ).

Then,

sup
λ∈W∗

inf
z∈Z

L(λ, z) = sup
λ∈Rm

inf
z∈Z

L(λ, z) = sup
λ∈Rm

[−ψ∗(−λ)] = ψ∗∗(0).

Set C0
.
= dom f ∩ Z = {z ∈ Z : f(z) < +∞} and

K0
.
=
{

(u, v) ∈ L1([0, 1],R1+m) : ∃ z ∈ Z, u(t) ≥ f0(t, z(t)),

v(t) ≥W g0(t, z(t)), for a.e. t ∈ [0, 1]
}
. (3.3)

We get the following result which is important by itself.

Theorem 3.2. Let F (z)
.
= (f(z), g(z)) with f, g defined as in (1.3) and W ⊆ Rm being any

nonempty closed and convex set. The following assertions hold.

(a) The set K0 is decomposable, I(K0) is convex and I(K0) = F (C0) + (R+ ×W ) ⊆ epi ψ.

(b) (r, a) ∈ epi ψ ⇐⇒ (r +
1

k
, a) ∈ F (C0) + (R+ ×W ), ∀ k ∈ N.

Consequently, the function ψ : Rm → R ∪ {±∞} is convex, and

I(K0) ⊆ epi ψ ⊆ I(K0). (3.4)
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(c) We have

(r, a) ∈ ri(epi ψ)⇐⇒ a ∈ ri(dom ψ) and ∃ k0 ∈ N, (r − 1

k
, a) ∈ epi ψ, ∀ k ≥ k0.

As a consequence, if A ⊆ ri (dom ψ) then,

(ri epi ψ) ∩ (R×A) = epi0 ψ ∩ (R×A). (3.5)

epi ψ ∩ (R×A) = epi ψ ∩ (R×A). (3.6)

Proof. (a): We observe first that K0 is a decomposable set. Indeed, let (ui, vi) ∈ K0, i = 1, 2 and

B ⊆ [0, 1] a measurable set. Then, for some zi ∈ L1, i = 1, 2, we have

ui(t) ≥ f0(t, zi(t)), vi(t) ≥W g0(t, zi(t)), zi(t) ∈ Z(t), for a.e. t ∈ [0, 1].

Clearly zi ∈ C0 for i = 1, 2. Setting z̃
.
= z1 ·χB+z2 ·χ[0,1]\B ∈ L1, we have for a.e. t ∈ [0, 1]: z̃(t) ∈ Z(t)

and

u1(t) · χB(t) + u2(t) · χ[0,1]\B(t) ≥ f0(t, z̃(t)), v1(t) · χB(t) + v2(t) · χ[0,1]\B(t) ≥W g0(t, z̃(t)),

i.e. (u1, v1) · χB + (u2, v2) · χ[0,1]\B ∈ K0, proving the decomposability of K0. Thus the convexity of

I(K0) follows from Theorem 2.1.

To prove the equality I(K0) = F (C0) + (R+ ×W ), first notice that I(K0) ⊆ F (C0) + (R+ ×W ) is

straightforward by the convexity and closedness of W . For the reverse inclusion it is enough to observe

that if (u, v) ∈ F (C0) + (R+ ×W ), then, for some z ∈ C0 and (h, p) ∈ (R+ ×W ),

(u, v) =
(∫ 1

0

[f0(t, z(t)) + h]dt,

∫ 1

0

[g0(t, z(t)) + p]dt
)
∈ I(K0),

proving the equality in (a). This also shows that F (C0) + (R+ ×W ) ⊆ epi ψ.

(b): By taking into account the inclusion in (a), the “only if” part is easily obtained. Let ψ(a) ≤ r <

+∞. Then K(a) 6= ∅, and for all k ∈ N there exists zk ∈ C0 such that f(zk) < r +
1

k
and g(zk) ≤W a.

Thus

(r +
1

k
, a) = (f(zk), g(zk)) + (r +

1

k
− f(zk), a− g(zk)) ∈ F (C0) + (R+ ×W ),

which completes the proof of the equivalence.

The convexity of ψ follows from the (a) which asserts the convexity of I(K0) = F (C0) + (R+ ×W ).

Combining (a) and the last equivalence, we get (3.4).

(c): Let (r, a) ∈ ri(epi ψ). By (2.1), a ∈ ri(dom ψ) and ψ(a) < r. For k0 ∈ N sufficiently large, we have

ψ(a) < r − 1

k
< r for all k ≥ k0. Thus, for such k ∈ N, one obtains

(r − 1

k
, a) ∈ ri(epi ψ) = ri I(K0) = ri I(K0).

Moreover, by convexity again, ri(epi ψ) = ri(epi ψ) = ri(epi ψ), proving one implication of the equiv-

alence. The other is trivial.

One inclusion in (3.5) follows from the previous equivalence and the other is straightforward.

For (3.6) we need to check the inclusion “⊆”. Let take any (r, a) ∈ epi ψ with a ∈ A. Then, we have

two possibilities: ψ(a) < r or ψ(a) = r. In the first case, we get (r, a) ∈ ri(epi ψ) and so (r, a) ∈ epi ψ.

In the second case, since ψ(a) = r < r +
1

k
, we obtain (r +

1

k
, a) ∈ ri(epi ψ). By (3.5), ψ(a) < r +

1

k
for all k ∈ N, and the conclusion follows.

It is not difficult to check that

dom ψ = g(C0) +W. (3.7)

Thus, since F (C0) + (R+ ×W ) is convex, we obtain immediately the convexity of g(C0) + W , i. e.,

dom ψ is convex, which is also a consequence of the convexity of ψ. This along with other results,

which follow from (3.6), are summarized in the following corollary.

Corollary 3.3. Under the above assumptions, the following hold:
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(a) ri(dom ψ) = ri(dom ψ), dom ψ = dom ψ and ψ(a) = ψ(a) ∀ a ∈ ri(dom ψ). Consequently,

ri(epi ψ) = ri(epi ψ) = {(r, a) ∈ R× ri(dom ψ) : ψ(a) < r}. (3.8)

(b) For a ∈ ri(dom ψ) with ψ(a) ∈ R, one has

ψ(a) = min{r ∈ R : (r, a) ∈ I(K0)} = inf{r ∈ R : (r, a) ∈ I(K0)}.

= min{r ∈ R : (r, a) ∈ epi ψ}.

Proof. (a): Let a ∈ ri(dom ψ) and take any r ∈ R satisfying ψ(a) < r < +∞. Then (r, a) ∈ ri(epi ψ),

and by (3.5), ψ(a) < r, implying a ∈ dom ψ. This proves that ri(dom ψ) ⊆ dom ψ, showing the desired

result. This also proves that ψ(a) = ψ(a) for all a ∈ ri(dom ψ).

Let us check the second equality. Since dom ψ ⊆ dom ψ, we obtain

dom ψ ⊆ dom ψ = ri(dom ψ) = ri(dom ψ) = dom ψ,

and the conclusion follows.

The last part is a consequence of (a) and (3.6).

(b): For a ∈ ri(dom ψ), one obtains,

ψ(a) = ψ(a) = min{r ∈ R : (r, a) ∈ epi ψ} = min{r ∈ R : (r, a) ∈ I(K0)}

≤ inf{r ∈ R : (r, a) ∈ epi ψ} ≤ inf{r ∈ R : (r, a) ∈ I(K0)} .= r0.

Assume that ψ(a) < r0. There exists rk ↓ ψ(a) such that (rk, a) ∈ epi ψ. By (a) of the previous

proposition, we get (rk +
1

k
, a) ∈ I(K0) for all k ∈ N. This means that r0 ≤ rk +

1

k
, which implies

r0 ≤ ψ(a), which is impossible, proving that ψ(a) = r0, and the conclusion follows.

Remark 3.4. From (b) of Corollary 3.3, we obtain an existence result to problem (P (a)) (see

(1.1)), namely: if a ∈ ri(g(C0) +W ), ψ(a) > −∞, and I(K0) is closed, then (P (a)) admits at least a

solution.

Conditions implying the closedness of I(K0) are given in Theorem 2.1; whereas the nonemptiness of

H yields ψ(a) > −∞, as Theorem 7.1 shows.

Theorems 3.1 and 3.2 lead to the following characterization of lower semicontinuity of ψ at 0.

Certainly, by Corollary 3.3, ψ is lsc in ri(dom ψ).

Proposition 3.5. Assume that ψ(0) < +∞ and that the assumptions of Theorem 3.2 hold. Then,

(a) if ψ(0) > −∞,

ψ(0) = ψ(0)⇐⇒ [I(K0)− ψ(0)(1, 0)] ∩ (−R++ × {0}) = ∅. (3.9)

⇐⇒ [cone(I(K0)− ψ(0)(1, 0))] ∩ (−R++ × {0}) = ∅.

(b) ψ(0) = −∞ if and only if

[I(K0)− ρ(1, 0)] ∩ −(R++ × {0}) 6= ∅, ∀ ρ ∈ R. (3.10)

Proof. (a): It follows by noticing that I(K0) = epi ψ.

(b): Simply consider the definition of ψ(0).

We now characterize the zero duality gap for our problem (P (0)) in terms of the lower semiconti-

nuity of ψ at 0. In particular, if 0 ∈ ri(g(C0) +W ) then there is no duality gap.

Theorem 3.6. Assume that W is additionally a cone, and ψ(0) < +∞, then

(a) vD = ψ(0);
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(b) the duality gap between (P (0)) and (3.1) is zero, i. e., ψ(0) = vD, if and only if ψ(0) = ψ(0).

Proof. (a): In view of Theorem 3.1, we need to check that ψ∗∗(0) = ψ(0). If ψ(0) = −∞ then

ψ∗∗(0) = −∞ since ψ∗∗ ≤ ψ. If ψ(0) ∈ R, due to the lower semicontinuity and convexity of ψ, we

conclude that ψ(= co ψ) never takes the value −∞, and therefore (co ψ =)ψ = ψ∗∗.

(b): It follows from (a).

We will see next that the condition 0 ∈ ri(g(C0) +W ) not only implies zero duality gap but also

the existence of solution for the dual problem provided ψ(0) is finite. This is due to the important

result derived from the convexity of ψ (see Corollary 3.3): the nonemptiness of ∂ψ(a) whenever a ∈
ri(dom ψ) = ri(g(C0) +W ).

Thus, on combining the previous theorem and Corollary 3.3, we establish the following result on

strong duality for (P (0)) without any coercivity or convexity assumption.

Corollary 3.7. Assume that ψ(0) ∈ R, with W being additionally a cone, K(0) 6= ∅ and 0 ∈
ri(g(C0) +W ). Then, there exists λ0 ∈W ∗ such that

inf
z∈K(0)

∫ 1

0

f0(t, z(t))dt = inf
z∈Z

∫ 1

0

[f0(t, z(t)) + 〈λ0, g0(t, z(t))〉]dt. (3.11)

For such λ0, we have

inf
z∈K(0)

∫ 1

0

f0(t, z(t))dt = inf
〈λ0,g(z)〉≤0

z∈Z

∫ 1

0

f0(t, z(t))dt. (3.12)

Hence,

z̄ solves (P (0))⇐⇒


〈λ0,

∫ 1

0

g0(t, z̄(t))dt〉 = 0,∫ 1

0
f0(t, z̄(t))dt = inf

z∈Z

∫ 1

0
[f0(t, z(t)) + 〈λ0, g0(t, z(t))〉]dt.

Proof. By the previous theorem and Corollary 3.3, we get the zero duality gap. Moreover, since

ψ(0) is finite and 0 ∈ ri(dom ψ) = ri(g(C0)+W ), a simple application of a convex separation theorem,

allows us to conclude that ∂ψ(0) 6= ∅. Let λ∗ ∈ ∂ψ(0). Then, ψ(a) − ψ(0) ≥ 〈λ∗, a〉 for all a ∈ Rm.

Since W is a convex cone, we get K(0) ⊆ K(a) for all w ∈W ; this along with the previous inequality

imply that 〈λ∗, a〉 ≤ 0 for all a ∈W , yielding −λ∗ ∈W ∗. We need only to check that −λ∗ is a solution

to problem (3.1).

Let us take any z ∈ Z. For a =
∫ 1

0
g0(t, z(t))dt ∈ Rm, we obtain∫ 1

0

f0(t, z(t))dt− 〈λ∗,
∫ 1

0

g0(t, z(t))dt〉 ≥ ψ(a)− 〈λ∗, a〉 ≥ ψ(0), ∀ z ∈ Z,

which proves one inequality in (3.11) for λ0 = −λ∗, the other is trivial.

Equality (3.12) and the remaining equivalence are not difficult to check. In case g0(t, z) = z and

Z = L1([0, 1],Rn), we obtain g(L1([0, 1],Rm)) = Rm. Thus, 0 ∈ ri(g(C0)+W ) trivially holds whatever

W is.

Related strong duality results were established in [3, 13].

Remark 3.8. Example 7.7 shows that the single condition a ∈ ri(dom ψ) does not imply, in

general, existence of solutions even when the optimal value is finite.

4. The subdifferential of the value function and necessary optimality condi-

tions. Our aim in this section is to exploit the convexity property of the value function ψ in or-

der to compute its subdifferential, we know that ∂ψ(a) is nonempty, convex and compact whenever

a ∈ ri(dom ψ).
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To that purpose, with the same assumptions on f0, g0, W and Z, let us consider problem (P (0)), i. e.,

(1.1) with a = 0, and its associated Hamiltonian function H : [0, 1]× Rm → R ∪ {±∞} defined by

H(t, p)
.
= sup
ξ∈Z(t)

{〈p, g0(t, ξ)〉 − f0(t, ξ)}. (4.1)

Obviously H(t, ·) is convex and lsc for all t ∈ [0, 1], and because of (1.4), we have for all p ∈ Rm

H(t, p) ≥ 〈p, g0(t, z0(t))〉 − f0(t, z0(t)), a. e. t ∈ [0, 1]. (4.2)

Set

U .
=
{

(x, z) ∈W 1,1
m × L1 : ẋ(t) = g0(t, z(t)), z(t) ∈ Z(t), a. e. t ∈ [0, 1], x(0) = 0

}
.

The next theorem does not require that W be a cone as in Corollary 3.7.

Theorem 4.1. Let z̄ ∈ K(0). Then the following assertions are equivalent:

(a) p ∈ ∂ψ(0) and z̄ solves (P (0));

(b) p ∈ N(W ;−
∫ 1

0
g0(t, z̄(t))dt) and

H(t, p) = 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1]. (4.3)

Proof. (a)⇒ (b): Let p ∈ ∂ψ(0), or equivalently

〈p, a〉 ≤ ψ(a)− ψ(0) ∀ a ∈ Rm. (4.4)

For any fixed w ∈W , set a
.
=
∫ 1

0
g0(t, z̄(t))dt+w. Then, we have

∫ 1

0
g0(t, z̄(t))dt ∈ −W + a. Replacing

a in (4.4) and taking into account that z̄ is a solution to (P (0)), we get

〈p, w +

∫ 1

0

g0(t, z̄(t))dt〉 ≤ 0,

proving the first result in (b).

To establish (4.3), pick any z ∈ L1, with z(t) ∈ Z(t) a. e. t ∈ [0, 1]. Then∫ 1

0

g0(t, z(t))dt ∈ −W + a,

where a =
∫ 1

0
g0(t, z(t))dt−

∫ 1

0
g0(t, z̄(t))dt. Using (4.4), we obtain

〈p,
∫ 1

0

g0(t, z(t))dt−
∫ 1

0

g0(t, z̄(t))dt〉 ≤
∫ 1

0

f0(t, z(t))dt− ψ(0).

Thus, since z̄ is a solution of the problem (P (0)) we have ψ(0) =
∫ 1

0
f0(t, z̄(t))dt and hence z̄ solves

the problem

min
{∫ 1

0

f0(t, z(t))dt− 〈p,
∫ 1

0

g0(t, z(t))dt〉 : z ∈ Z
}
, (4.5)

or equivalently (x̄, z̄), where x̄(t) =
∫ t
0
g0(s, z̄(s))ds, is a solution of the following problem

min
(x,z)∈U

∫ 1

0

f0(t, z(t))dt− 〈p, x(1)〉.

The maximum principle (Theorem 6.1 in [9]) yields q ∈W 1,1
m such that

q̇(t) = 0 a. e. t ∈ [0, 1]; −q(1) ∈ ∂〈−p, ·〉(x̄(1)) = {−p}

and

H(t, p) = 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1],
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proving (4.3).

(b)⇒ (a): From (4.3), we obtain for all z ∈ Z,

〈p, g0(t, z(t))〉 − f0(t, z(t)) ≤ 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1],

and hence

〈p,
∫ 1

0

g0(t, z(t))dt〉 −
∫ 1

0

f0(t, z(t))dt ≤ 〈p,
∫ 1

0

g0(t, z̄(t))dt〉 −
∫ 1

0

f0(t, z̄(t))dt. (4.6)

Now let z ∈ K(0). Then
∫ 1

0
g0(t, z(t))dt ∈ −W , and by the first part in (b),

〈p,−
∫ 1

0

g0(t, z(t))dt+

∫ 1

0

g0(t, z̄(t))dt〉 ≤ 0.

This along with (4.6) imply that for all z ∈ K(0),∫ 1

0

f0(t, z(t))dt ≥
∫ 1

0

f0(t, z̄(t))dt,

ensuring that z̄ is a solution to (P (0)).

We now prove p ∈ ∂ψ(0). Take any a ∈ Rm satisfying K(a) 6= ∅. Then for all z ∈ K(a), we have z ∈ Z
and

∫ 1

0
g0(t, z(t))dt− a ∈ −W . On the one hand, the first part of (b) ensures that

〈p,−
∫ 1

0

g0(t, z(t))dt+ a+

∫ 1

0

g0(t, z̄(t))dt〉 ≤ 0.

It follows from (4.6) ∫ 1

0

f0(t, z(t))dt ≥
∫ 1

0

f0(t, z̄(t))dt+ 〈p, a〉

and as ψ(0) =
∫ 1

0
f0(t, z̄(t))dt and z ∈ K(a) is arbitrary, we get

ψ(a)− ψ(0) ≥ 〈p, a〉,

or equivalently, p ∈ ∂ψ(0).

We recover Proposition 5.8 in [3].

Corollary 4.2. Assume that 0 ∈ ri(g(C0) +W ) and z̄ ∈ K(0). Then the following assertions are

equivalent:

(a) z̄ is a solution to (P (0));

(b) there exists p ∈ N(W ;−
∫ 1

0
g0(t, z̄(t))dt) such that

H(t, p) = 〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)), a. e. t ∈ [0, 1]. (4.7)

The set of p satisfying (b) is ∂ψ(0).

Proof. It suffices to see that our assumption 0 ∈ ri(dom ψ) ensures the existence of p ∈ ∂ψ(0) and

then, we apply Theorem 4.1.

5. Local minima for the problem (1.1) are global. The aim of the section is to show that

under the previous assumptions (except the assumption (1.5)) together with the following constraint

qualification

0 ∈ int[g(C0) +W ] (5.1)

ensures that each local minimum for (P (0)) is in fact global. Here, we recall that

C0 = {z ∈ Z : f(z) < +∞}.
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Theorem 5.1. Let f0 and g0 satisfying the previous measurability, lower semicontinuity and con-

tinuity assumptions and let W be closed and convex. Then, under the qualification condition (5.1),

each local minimum for (P (0)) is global.

Before giving the proof of this theorem, we establish a result concerning the necessary optimality

conditions of (P (0)). These necessary conditions are expressed in terms of the limiting Fréchet (or

Mordukhovich [11]) normal cone that we begin by recalling here.

Let C be a closed subset of Rn containing some point c. The Fréchet normal cone to C at c is the set

N̂(C; c)
.
=

{
ξ ∈ Rn : lim inf

x∈C→c

〈−ξ, x− c〉
‖x− c‖ ≥ 0

}
.

The normal cone to C at c is the set

N(C; c)
.
= lim sup

x∈C→c
N̂(C;x).

Lemma 5.2. If z̄ is a local solution for (P (0)), then there exist p ∈ Rm and λ ∈ {0, 1}, with

(p, λ) 6= (0, 0), such that p ∈ N(W ;−
∫ 1

0
g0(t, z̄(t))dt) and

〈p, g0(t, z̄(t))〉 − λf0(t, z̄(t)) = max
z∈Z(t)∩dom f(t,·)

[〈p, g0(t, z)〉 − λf0(t, z)], a. e. t ∈ [0, 1].

Proof. We define the functions ` : Rm × Rn × Rm × Rn → R ∪ {+∞} and L : [0, 1]× Rm × Rn ×
Rm × Rn → R ∪ {+∞} by

`(s1, s2, s3, s4) = ι{0}(s1) + ι{0}(s2) + ι−W (s3)

L(t, x, y, u, v) =

{
f0(t, v) if v ∈ Z(t), u = g0(t, v),

+∞ otherwise.

Let us note that, as L does not depend on (x, y), then for each element (x, y, u, v, r) ∈ epi L(t, ·) we

have

(β, x∗, y∗, u∗, v∗) ∈ N(epi L(t, ·); (x, y, u, v, r)) ⇒ x∗ = 0, y∗ = 0. (5.2)

Put x̄(t) =
∫ t
0
g(τ, z̄(τ))dτ and ȳ(t) =

∫ t
0
z̄(τ)dτ . Since z̄ is a local solution of the problem (P (0)), then

(x̄, ȳ) is a local solution of the following Bolza problem{
min

(x,y)∈W1,1
m ×W1,1

n

∫ 1

0

L(t, x(t), y(t), ẋ(t), ẏ(t))dt+ `(x(0), y(0), x(1), y(1))

It is not difficult to show that all the assumptions of Theorem 4.1.1 in [4] are satisfied and this theorem

asserts the existence of an arc q = (p, p0) ∈W 1,1
m ×W 1,1

n and λ ∈ {0, 1} such that

1. (q, λ) 6= 0;

2. −p(1) ∈ N(−W ; x̄(1)), p0(1) = 0;

3. q̇(t) ∈ co{R : (−λ,R, q) ∈ N(epiL(t, ·); (f(t, z̄(t), x̄(t), ȳ(t), ˙̄x(t), ˙̄y(t))) a.e. t ∈ [0, 1] and hence,

due to (5.2), q̇ = 0;

4. for almost every t ∈ [0, 1] and (u, v) ∈ domL(t, x̄(t), ȳ(t), ·, ·)

〈q(t), (u, v)− ( ˙̄x(t), ˙̄y(t))〉 ≤ λ[L(t, x̄(t), ȳ(t), (u, v))− L(t, x̄(t), ȳ(t), ˙̄x(t), ˙̄y(t))].
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Assertions 2. and 3. assert that p0 = 0 and p(t) = p(1) for all t ∈ [0, 1] (we will put p(t) = p for all

t ∈ [0, 1]), while assertion 4. implies the following

〈p, g0(t, z̄(t))〉 − λf0(t, z̄(t)) = max
z∈Z(t)∩dom f(t,·)

[〈p, g0(t, z)〉 − λf0(t, z)], a. e. t ∈ [0, 1],

and the proof of the lemma is finished because −p ∈ N(−W ; x̄(1)) iff p ∈ N(W ;−x̄(1)).

Now, we proceed to prove our theorem.

Proof. We will show that the multiplier λ in Lemma 5.2 is equal to 1. Indeed, suppose that λ = 0.

Then, in particular

〈p, g0(t, z̄(t))〉 ≥ 〈p, g0(t, z(t))〉, ∀ z ∈ C0,

and hence, by integrating we get

〈p, g(z)− g(z̄)〉 ≤ 0, ∀ z ∈ C0.

On the other hand, p ∈ N(W ;−
∫ 1

0
g(t, z̄(t))dt) = N(W ;−g(z̄)), or equivalently

〈p, w + g(z̄)〉 ≤ 0 ∀ w ∈W.

Now adding the two last inequalities, we obtain that

〈p, g(z) + w〉 ≤ 0, ∀ z ∈ C0, ∀ w ∈W.

Using our constraint qualification (5.1), we conclude that p = 0 and this contradicts (p, λ) 6= (0, 0). So

λ = 1 and hence the last equality in Lemma 5.2 can be written as

〈p, g0(t, z̄(t))〉 − f0(t, z̄(t)) = max
z∈Z(t)

[〈p, g0(t, z)〉 − f0(t, z)], a. e. t ∈ [0, 1].

We now apply Corollary 4.2 to conclude that z̄ is a (global) solution to (P (0)), and the proof is

completed.

Now, we can ask when the constraint qualification (5.1) is satisfied. In fact, it is easy to see that

the following implication holds true for some ρ > 0

K(a) 6= ∅ ∀ a ∈ B(0, ρ) ⇒ 0 ∈ int[g(C0) +W ]

provided Z ⊆ dom f .

Several characterization concerning the nonemptiness of K(a) around 0 will be presented in the

next section.

6. The behaviour of the set-valued mapping K. The main intention of this section is

to give sufficient conditions ensuring the nonemptiness and the behaviour of the set-valued mapping

K considered in the previous section.

We will consider the set-valued mapping K̃ : Rm ⇒W 1,1 × L1 defined by

K̃(a)
.
=
{

(x, u) ∈W 1,1 × L1 : ẋ(t) = g0(t, u(t)), u(t) ∈ Z(t), a. e. t ∈ [0, 1],

x(0) = 0, x(1) ∈ −W + a
}
.

Theorem 6.1. Let z̄ ∈ K(ā) and put x̄(t) =
∫ t
0
g0(τ, z̄(τ))dτ , for all t ∈ [0, 1].

U .
=
{

(x, u) ∈W 1,1 × L1 : ẋ(t) = g0(t, u(t)), u(t) ∈ Z(t), a. e. t ∈ [0, 1], x(0) = 0
}
.

Suppose that g0(t, ·) is continuous for almost every t ∈ [0, 1] and W is a closed set in Rm. Let us

consider the following assertions:
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i) There is no p ∈ Rm, with p 6= 0, satisfying

−p ∈ N(−W ; x̄(1)− ā), 〈p, g0(t, z̄(t))〉 = max
z∈Z(t)

〈p, g0(t, z)〉, a. e. t ∈ [0, 1].

ii) There exist α > 0 and r > 0 such that

d((x, u), K̃(a)) ≤ αd(x(1),−W + a)

for all (x, u) ∈ B((x̄, z̄), r) ∩ U and a ∈ B(ā, r).

iii) There exist α > 0 and r > 0 such that

K̃(a) ∩B((x̄, z̄), r) ⊆ K̃(a′) + α‖a− a′‖B(0, 1).

for all a, a′ ∈ B(ā, r).

iv) There exists r > 0 such that

∀a ∈ B(ā, r), K(a) 6= ∅.

Then i)⇒ ii)⇒ iii)⇒ iv). If moreover W is convex, then iv)⇒ i).

Proof. The implications ii) ⇒ iii) ⇒ iv) ⇒ i) are obvious. We establish only the implication

i) ⇒ ii) : Suppose that ii) does not hold. Then, there are sequences (yk, vk) ∈ U , with yk → x̄ and

vk → z̄, and ak → ā such that for k large enough

d((yk, vk), K̃(ak)) > kd(yk(1),−W + ak). (6.1)

It follows that (yk, vk) /∈ K̃(ak). Let us consider the function fk : W 1,1 × L1 → R defined by

fk(x, u) = d(x(1),−W + ak).

Put εk =
√
fk(yk, vk) > 0 and λk = min{kε2k, εk}. Then εk → 0 and λk → 0. Obviously,

fk(yk, vk) ≤ inf
(y,u)∈U

fk(y, u) + ε2k.

Our assumption on g0 ensures that U is closed in W 1,1 × L1. Now, applying Ekeland variational

principle one gets the existence of (xk, uk) ∈ U such that

‖(xk, uk)− (yk, vk)‖ ≤ λk, (6.2)

fk(xk, uk) ≤ fk(x, u) + sk‖(x, u)− (xk, uk)‖, ∀(x, u) ∈ U . (6.3)

where sk =
ε2k
λk

. Using the inequality (6.3), we obtain that (xk, uk) is a solution to the following optimal

control problem of Mayer type min
(x,u)∈U

d(x(1)− ak,−W ) + sk‖x(0)− xk(0)‖

+sk
∫ 1

0
[‖g0(t, u(t))− g0(t, uk(t))‖+ ‖u(t)− uk(t)‖]dt

The maximum principle yields an arc pk ∈W 1,1([0, 1],Rn) such that

ṗk(t) = 0, a. e. t ∈ [0, 1]; − pk(1) ∈ ∂d(· − ak,−W )(xk(1))

and for a. e. t ∈ [0, 1]

〈pk(t), g0(t, uk(t))〉

= max
u∈Z(t)

〈pk(t), g0(t, u)〉 − sk[‖u− uk(t)‖+ ‖g0(t, u)− g0(t, uk(t))‖], (6.4)
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where ∂d(· − ak,−W )(xk(1)) is the limiting subdifferential ([11]) of the distance function to the set

−W + ak. From (6.1) and (6.2) it follows that xk(1) /∈ −W + ak, and this implies that ‖pk(1)‖ = 1

(see [10]). Since λk → 0, (6.2) together with vk → z̄ ensure that uk → z̄ in L1([0, 1],Rn) and hence

there exists a subsequence (uϕ(k)) of (uk) such that

uϕ(k)(t)→ z̄(t), a. e. t ∈ [0, 1]

and extracting a subsequence, if necessary, we may also assume that pϕ(k)(1) → p, with p 6= 0.

Because of the closedness of the limiting subdifferential ([11]), −p ∈ ∂d(·,−W )(
∫ 1

0
g0(t, z̄(t))dt− ā) ⊆

N(−W ;
∫ 1

0
g0(t, z̄(t))dt− ā). Now, having in mind that sϕ(k) = max( 1

ϕ(k)
, εϕ(k)), we get sϕ(k) → 0. On

the other hand, relation (6.4) and the continuity of g0(t, ·) ensures that

〈p, g0(t, z̄(t))〉 = max
u∈Z(t)

〈p, g0(t, u)〉, a. e. t ∈ [0, 1],

and this contradicts i).

7. Computing the value function via the Hamiltonian and existence of solu-

tions. This section is devoted to provide conditions under which the value function ψ is minorized

by an affine linear function. As a consequence, we find a formula for ψ∗ and so of ψ. To that end, let

us define the function G : Rm → R ∪ {±∞} by

G(p) =

∫ 1

0

H(t, p)dt, (7.1)

where, H is the Hamiltonian function defined as in (4.1). It follows that G is lsc and convex. Using

Theorem 2.2 in [7], we may rewrite the function G as follows :

G(p) = sup
z∈Z

∫ 1

0

[〈p, g0(t, z(t))〉 − f0(t, z(t))]dt. (7.2)

The next function will be useful in the sequel

G0(p) =

G(p) if p ∈ −W ∗,

+∞ if p 6∈ −W ∗.

Thus, G0 is lsc and convex. Set

H .
=
{
p ∈ −W ∗ : H(·, p) ∈ L1([0, 1],R)

}
. (7.3)

Then, by (4.2), H is convex and

p ∈ H ⇐⇒ p ∈ −W ∗ and p ∈ dom G⇐⇒ p ∈ dom G0.

The next result generalizes and extends Theorem 3.2 in [6], where the case W = {0} and g0(t, z) = z

is considered.

Theorem 7.1. Assume that W is additionally a cone and H 6= ∅. The following statements hold.

(a) ψ(a) ≥ 〈p∗, a〉 −G(p∗) > −∞, ∀ a ∈ Rm, ∀ p∗ ∈ H; consequently ψ = co ψ = ψ∗∗;

(b) Assume that (1.4) and (1.5) be satisfied. Then ψ∗(p) = G0(p), ∀ p ∈ Rm, and so ψ∗∗ = ψ =

G∗0, which gives vD = G∗0(0).

(c) ψ(a) = G∗0(a) for all a ∈ ri(g(C0) +W ).

Proof. (a): Let p∗ ∈ H. We have

G(p∗)
.
=

∫ 1

0

H(t, p∗)dt ≥
∫ 1

0

〈p∗, g0(t, z(t))〉dt−
∫ 1

0

f0(t, z(t))dt, ∀ z ∈ Z.
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Take any a ∈ Rm such that K(a) 6= ∅. Then for z ∈ K(a) there exists p ∈W such that:∫ 1

0

f0(t, z(t))dt ≥
∫ 1

0

〈p∗, g0(t, z(t))〉dt−
∫ 1

0

H(t, p∗)dt ≥
∫ 1

0

〈p∗, a− p〉dt−G(p∗).

Since p∗ ∈ −W ∗ we have:

ψ(a) ≥
∫ 1

0

〈p∗, a〉dt−G(p∗) = 〈p∗, a〉 −G(p∗).

(b): Let λ ∈ Rm. Then,

ψ∗(λ) = sup
a∈Rn
{〈λ, a〉 − ψ(a)} = sup

{a: K(a)6=∅}
sup

z∈K(a)

{〈λ, a〉 − f(z)}

= sup
z∈C0, p∈W

{〈λ, g(z)〉+ 〈λ, p〉 − f(z)} = sup
z∈C0

{〈λ, g(z)〉 − f(z)}+ sup
p∈W

〈λ, p〉

=


sup
z∈C0

{〈λ, g(z)〉 − f(z)} if λ ∈ −W ∗,

+∞ if λ 6∈ −W ∗.
(7.4)

By definition

H(t, λ) ≥ 〈λ, g0(t, z(t))〉 − f0(t, z(t)), for a.e. t ∈ [0, 1], ∀ z ∈ Z,

so that for all λ ∈ Rm,

G(λ) ≥
∫ 1

0

[〈λ, g0(t, z(t))〉 − f0(t, z(t))]dt = 〈λ, g(z)〉 − f(z), ∀ z ∈ Z.

Hence, G(λ) ≥ ψ∗(λ) for all λ ∈ −W ∗ because of (7.4). Suppose that G(λ) > ψ∗(λ) for some λ ∈ −W ∗.
Then there exists z ∈ Z such that∫ 1

0

〈λ, g0(t, z(t))〉dt−
∫ 1

0

f0(t, z(t))dt > ψ∗(λ).

But relation (1.5) together with the last inequality ensure that f(z) <∞, and hence z ∈ C0 and this

contradiction completes the proof of the equality G(λ) = ψ∗(λ).

(c): It is a consequence of (b).

Next corollary, which is important by itself, provides another formula for the optimal value ψ(0).

Corollary 7.2. Assume that W is additionally a cone, H 6= ∅, 0 ∈ ri(g(C0) + W ), (1.4) and

(1.5) be satisfied. Then there exists p∗ ∈ −W ∗ such that ψ(0) = −G(p∗).

Proof. By assumption, it is known that there exists p∗ ∈ ∂ψ(0) and ψ(0) = ψ(0) by Corollary 3.3.

Recall that by Theorem 3.2, the function ψ is convex and by (a) of Theorem 7.1 if follows that it is

proper. Applying Theorem 23.5 in [15], we get

p∗ ∈ ∂ψ(0) ⇔ ψ(0) + ψ∗(p∗) = 0.

Then

ψ(0) = −ψ∗(p∗). (7.5)

From Theorem 7.1 we also have that ψ∗(p) = G0(p), for all p ∈ Rm and ψ(0) = G∗0(0). Then, taking

into account (7.5), we get

ψ(0) = G∗0(0) = −G0(p∗).

Moreover, from (7.5) it also follows that p∗ ∈ dom ψ∗ = dom G0 = H; therefore p∗ ∈ −W ∗ and

G0(p∗) = G(p∗).

The following existence theorem subsumes Corollary 3.1 in [6].

Theorem 7.3. Assume that W is in addition a cone, H 6= ∅, and (1.4) along with (1.5) hold. If

K0 is closed and the set epi G∗0 contains no lines or extremal half-lines, then for every a ∈ Rm either
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ψ(a) = +∞ or (P (a)) admits a solution, and the duality gap between (P (0)) and (3.1) is zero, i. e.,

vD = ψ(0).

Proof. By Theorem 2.1, I(K0) is closed since I(K0) = epi G∗0. Thus, I(K0) = F (C0) + (R+ ×W )

is closed and convex. From (3.4) we obtain

epi ψ = F (C0) + (R+ ×W ).

which implies that (P (a)) admits a solution for every a ∈ Rm satisfying K(a) 6= ∅, and ψ = ψ. Hence

vD = ψ∗∗(0) = ψ(0) by Theorem 3.6(a).

Unfortunately we were unable to check thatK0 is closed in this general setting. However ifW = {0}
and g0(t, z) = z, K0 is closed as one can check it directly. This case was considered in [6].

Next result follows a reasoning similar to that applied in Proposition 3.1 in [6].

Theorem 7.4. Assume that H is a nonempty open set, g(C0)+W is open, where W is additionally

a cone, K0 is closed and (1.4) and (1.5) be satisfied. Then for every a ∈ Rm either ψ(a) = +∞ or

(P (a)) admits a solution, for every a ∈ g(C0) +W .

Proof. We will show that the assumptions of Theorem 7.3 are fulfilled. To this aim, it is enough to

show that epi G∗0 contains no lines or extremal half-lines. Recall that by Theorem 3.4, I(K0) = epi ψ,

and by Theorem 7.1(b), epi G∗0 = I(K0). We first note that ψ(a) 6= −∞, for every a ∈ dom ψ, otherwise

ψ(ā) = −∞ for a given ā ∈ dom ψ would imply ψ(a) = −∞, for every a ∈ dom ψ̄ ⊇ dom ψ, and

this contradicts Theorem 7.1(a), recalling that ψ(a) = ψ(a) for every a ∈ ri(dom ψ). This implies that

I(K0) cannot have any vertical line, i.e., lines of the form (t, γ̄), t ∈ R, where γ̄ ∈ Rm.

We next show that I(K0) cannot have any extremal vertical half-line, i.e., half-line of the form (t, γ̄),

t ≥ t̄ ∈ R.

Let us consider any point (ψ(ā), ā) ∈ I(K0) and let H be any supporting hyperplane to I(K0) at

(ψ̄(ā), ā). Let D
.
= I(K0) ∩H. We observe that D may contain a vertical halfline but this cannot be

extremal, since otherwise (ψ(ā), ā) would be an extremal point of I(K0), and by Theorem 3 in [12],

it follows that (ψ̄(ā), ā) ∈ I(K0) ⊆ epi ψ: this is a contradiction, since, being dom ψ = g(C0) + W

open, then ∂ψ(a) is compact for every a ∈ dom ψ so that epi ψ cannot have any vertical supporting

hyperplane. This shows that epi G∗0 cannot have any vertical lines, nor vertical extremal half-lines.

Next, we prove that it cannot have any non vertical half-lines. Suppose that there exists a half-

line s
.
= {(α, ξ0) + η(β, z), η ≥ 0} contained in bd(epi G∗0), ξ0, z ∈ Rm, z 6= 0, α, β ∈ R, and let

Γ(ξ)
.
= 〈q, ξ〉 − γ0, q ∈ Rm, γ0 ∈ R be a supporting hyperplane for epi G∗0 containing the half-line

s. Then G∗0(ξ) ≥ Γ(ξ) for all ξ ∈ Rm, which implies G∗∗0 (q) = G0(q) ≤ Γ∗(q) = γ0, yielding q ∈ H.

Moreover,

G∗0(ξ0 + ηz) = Γ(ξ0 + ηz), ∀ η ≥ 0

because s is contained in the graph of Γ.

Let p ∈ H; by the previous relations and recalling that G0 is a lsc convex function, we get

G∗∗0 (p) = G0(p) = sup
ξ∈Rm

[〈p, ξ〉 −G∗0(ξ)]

≥ 〈p, ξ0 + ηz〉 −G∗0(ξ0 + ηz) = 〈p− q, ξ0 + ηz〉+ γ0, ∀ η ≥ 0. (7.6)

Since G0(p) <∞, it follows that

〈p− q, z〉 ≤ 0, ∀ p ∈ H,

which is impossible because q ∈ H = int H and z 6= 0. Thus bd(epi G∗0) does not contain any half-line,

and since epi G∗0 is a proper closed convex set, this implies that it cannot contain any line too, which

completes the proof.
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Remark 7.5. By the previous proof it is possible to show that the assumption on the opennes of

H can be replaced by the following: “for every p ∈ H, the subdifferential of G0 is either bounded or

empty”. Indeed, (7.6) yields

G0(p)−G0(q) ≥ G0(p)− γ0 ≥ 〈p− q, ξ0 + ηz〉, ∀ p ∈ H, ∀ η ≥ 0,

i.e., ξ0 + ηz ∈ ∂G0(q), for all η ≥ 0. By the previous assumption we get a contradiction that completes

the proof.

A particular situation where g(C0) + W is open occurs when g(C0) + W = Rm. It is satisfied if

g0(t, z) = z and C0 = L1, in which case m = n. Observe also that in such situation K0 is closed.

Next three examples illustrates the validity of our Theorem 7.3 showing that some of the assump-

tions are essential; whereas the fourth one shows an instance where our Theorem 7.4 is applicable with

g(C0) +W being an open set contained strictly in Rm.

Example 7.6. Let us consider the problem

ψ(a)
.
= inf

{∫ 1

0

−[z(t)]2dt s. t.

∫ 1

0

z(t)dt = a, z ∈ Z
}
,

where Z(t)
.
= [ 1√

t
,+∞[ for t ∈ (0, 1]. Here W = {0}. Since z(t) ≥ 1√

t
for a.e. t ∈ [0, 1], then

a =

∫ 1

0

z(t)dt ≥
∫ 1

0

1√
t
dt = 2, ∀z ∈ Z.

Obviously a = 2 ∈ bd(dom ψ) and

ψ(2) =

∫ 1

0

−1

t
dt = −∞.

We actually have ψ(a) = −∞ for all a ≥ 2. Indeed, the function z(t)
.
= a

2
√
t
∈ K(a), for all a ≥ 2, and

ψ(a) ≤
∫ 1

0

−a
2

4t
dt = −∞.

Note that

ψ(a) = ψ(a) =

+∞, if a < 2

−∞, if a ≥ 2,

is convex; whereas ψ∗∗ ≡ −∞, H = ∅ and G ≡ +∞.

Example 7.7. Consider the problem

ψ(a)
.
= inf

{∫ 1

0

e−[z1(t)z2(t)]
2

dt s. t.

∫ 1

0

[z2(t)− z1(t)]2dt ≤ a, z ∈ Z
}
,

where Z(t)
.
= (R+ × R+) for t ∈ [0, 1]. Here W = R+. Obviously K(a) = ∅ for a < 0. Setting

z̄1(t) = z̄2(t) = c for all t ∈ [0, 1], then for every a ≥ 0, and for every c ≥ 0, z̄ ∈ K(a). Obviously

a = 0 ∈ bd(dom ψ) and

0 ≤ ψ(a) ≤
∫ 1

0

e−c
4

dt = e−c
4

, ∀ c ≥ 0,

which implies

ψ(a) = 0, ∀ a ≥ 0.

Note that the infimum is never attained and

ψ(a) =

+∞, if a < 0,

0, if a ≥ 0



On the convexity of the value function for nonconvex variational problems 17

is convex with ψ = ψ. Here H = ]−∞, 0],

G(p) = G0(p) =

+∞, if p > 0,

0, if p ≤ 0.

Thus ψ = G∗0 as expected by Theorem 7.1. Moreover the assumptions of Theorem 2.1 (with K0 instead

of K), or Theorem 7.3 are not fulfilled since an extremal halfline belongs to I(K0) = epi ψ.

Example 7.8. Consider the problem

inf
{∫ 1

0

e−[z(t)]dt s. t.

∫ 1

0

z(t)

1 + z(t)
dt ≤ a, z ∈ Z

}
,

where Z(t)
.
= [0,+∞[ for t ∈ [0, 1]. Here W = R+. Obviously K(a) = ∅ for a < 0.

Let a ≥ 1. Setting z̄(t) = c ≥ 0, ∀ t ∈ [0, 1], then for every a ≥ 1, and for every c ≥ 0, z̄ ∈ K(a).

Then,

0 ≤ ψ(a) ≤
∫ 1

0

e−cdt = e−c, ∀ c ≥ 0,

which implies ψ(a) = 0 for all a ≥ 1. Note that the infimum is never attained for a ≥ 1.

Let 0 ≤ a < 1. In such a case we have ψ(a) > 0. Indeed ψ(a) = 0 if and only if there exists a

sequence zk ∈ K(a) such that

lim
k→+∞

zk(t) = +∞, for a. e. t ∈ [0, 1]

but this would imply

lim
k→+∞

∫ 1

0

zk(t)

1 + zk(t)
dt = 1

which contradicts that zk ∈ K(a) with a < 1, for k sufficiently large. Therefore,

ψ(a) =


+∞, if a < 0

ψ(a) > 0, if 0 ≤ a < 1,

0, if a ≥ 1

Since ri(dom ψ) = ]0,+∞[, then ψ(a) = ψ(a), for every a ∈ ]0,+∞[. Observe that (ψ(a), a) =

(ψ(1), 1) is an extreme point of epi ψ with a = 1 belonging to ri(dom ψ) and such that the infimum

value of (P (1)) is not attained.

We note that the assumptions of Theorem 2.1, or Theorem 7.3, are not fulfilled since an extremal

half-line belongs to I(K0) = epi ψ.

Next instance exhibits a situation where dom ψ is open without being the whole space Rm.

Example 7.9. Consider the problem

inf
{∫ 1

0

f0(t, z)dt s. t.

∫ 1

0

g0(t, z)dt = a, z ∈ Z
}
,

where

f0(t, z) = f0(z) =


+∞, if z ≤ 0 or z ≥ 1

1

z(1− z) , if 0 < z < 1
, g0(t, z) = g0(z) = z.

Z(t)
.
= [0, 1] for a.e. t ∈ [0, 1]. Here W = {0}.

Clearly ψ(0) = ψ(1) = +∞, and since K(a) = ∅ for a < 0 and a > 1, we get ψ(a) = +∞ for a < 0 and

a > 1; whereas ψ(a) < +∞ for 0 < a < 1, since K(a) is nonempty, being z(t) = a for a.e. t ∈ [0, 1] a

feasible solution.

Hence, dom ψ = g(C0) +W = ]0, 1[ is an open set.
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Consider the Hamiltonian

H(t, p)
.
= sup
ξ∈Z(t)

{〈p, g0(t, ξ)〉 − f0(t, ξ)} = sup
0<ξ<1

{pξ − 1

ξ(1− ξ)}.

Note that the supremum is finite for every p ∈ R, since

lim
ξ→0+

{pξ − 1

ξ(1− ξ)} = lim
ξ→1−

{pξ − 1

ξ(1− ξ)} = −∞

and the argument of the supremum is a continuous function on ]0, 1[. Then, H = R and, since g(t, z) =

z, it follows that the set K0 is closed.

Therefore the assumptions of Theorem 7.4 are fulfilled and the problem admits an optimal solution

for every a ∈ ]0, 1[.

Remark 7.10. We notice that the set I(K0) is closed in the simplest case when K0 is an affine

set, i.e., ∀x, y ∈ K0, ∀α ∈ R, αx+ (1− α)y ∈ K0. Then, recalling that I : K0 → Rn+1 is linear, I(K)

is an affine set in Rm+1 and therefore it is closed. Clearly K0 is affine if f0(t, ·) and g0(t, ·) are linear,

for a.e. t ∈ [0, 1] and C0 is an affine set in L1([0, 1],Rn).

Theorem 7.1 and Theorem 7.3 extend Theorem 3.2 and Corollary 3.1 of [6], respectively. A related

existence result may be found in [1].
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